1
|
P. D. D, M. S, K.K. J, R. U, T.V. A, G. R, V.B. SK, Asaf M, Sebastian R. Role of microRNA, bta-miR-375 in Immune Sturdiness of Vechur: The Native Cattle Breed of Kerala, India. Heliyon 2023; 9:e22683. [PMID: 38213581 PMCID: PMC10782154 DOI: 10.1016/j.heliyon.2023.e22683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 10/04/2023] [Accepted: 11/16/2023] [Indexed: 01/13/2024] Open
Abstract
In the present study, next generation sequencing was employed to identify and explore the differential expression profiles of microRNAs (miRNAs) in peripheral blood mononuclear cells (PBMCs) of crossbred (B. taurus x B. indicus) and Vechur (B. indicus) cattle in response to the bacterial endotoxin-lipopolysaccharide (LPS). The PBMCs from adult apparently healthy female crossbred cows and Vechur cattle, a native cattle breed of Kerala, India were stimulated with 10 μg/mL of LPS for 6 h. Among the differentially expressed miRNAs, the expression of 13 miRNAs showed statistically significant up regulation while, significant decrease in the expression of 15 miRNAs was noticed in LPS treated PBMCs of Vechur cattle compared to crossbred cows. The expression profiling of miRNA, bta-miR-375, expression of which was found to be significantly down regulated in LPS treated PBMCs of Vechur cattle with respect to crossbred cattle by the NGS studies, is presented in the present manuscript. The decrease in expression of bta-miR-375 noticed by NGS was in accordance with the results of quantitative real time PCR assay. Functional gene enrichment analysis and pathway analysis revealed significant enrichment of predicted targets of bta-miR-375 in many immune related and cell signalling mechanisms. In addition, over representation of targets of bta-miR-375 was also noticed in pathogenesis of many of the bovine diseases. The study could also identify differences in the expression of cytokines, viz. Tumour Necrosis Factor Alpha (TNFα), Interleukin 4 (IL-4) and Interferon-γ (IFNγ) between LPS treated and untreated PBMCs of crossbred and Vechur cattle.
Collapse
Affiliation(s)
- Divya P. D.
- Department of Veterinary Biochemistry, CVAS, Pookode, Kerala Veterinary and Animal Sciences University, Kerala, India
| | - Shynu M.
- Department of Veterinary Biochemistry, CVAS, Mannuthy, Kerala Veterinary and Animal Sciences University, Kerala, India
| | - Jayavardhanan K.K.
- Department of Veterinary Biochemistry, CVAS, Mannuthy, Kerala Veterinary and Animal Sciences University, Kerala, India
| | - Uma R.
- Department of Veterinary Biochemistry, CVAS, Mannuthy, Kerala Veterinary and Animal Sciences University, Kerala, India
| | - Aravindakshan T.V.
- CASAGB, CVAS, Mannuthy, Kerala Veterinary and Animal Sciences University, Kerala, India
| | - Radhika G.
- CASAGB, CVAS, Mannuthy, Kerala Veterinary and Animal Sciences University, Kerala, India
| | - Sameer kumar V.B.
- Department of Genomic Science, Central University of Kerala, Kasaragod, India
| | - Muhasin Asaf
- Department of Animal Breeding and Genetics, CVAS, Pookode, Kerala Veterinary and Animal Sciences University, Kerala, India
| | - Renjith Sebastian
- Department of Veterinary Biochemistry, CVAS, Pookode, Kerala Veterinary and Animal Sciences University, Kerala, India
| |
Collapse
|
2
|
Suminda GGD, Bhandari S, Won Y, Goutam U, Kanth Pulicherla K, Son YO, Ghosh M. High-throughput sequencing technologies in the detection of livestock pathogens, diagnosis, and zoonotic surveillance. Comput Struct Biotechnol J 2022; 20:5378-5392. [PMID: 36212529 PMCID: PMC9526013 DOI: 10.1016/j.csbj.2022.09.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Increasing globalization, agricultural intensification, urbanization, and climatic changes have resulted in a significant recent increase in emerging infectious zoonotic diseases. Zoonotic diseases are becoming more common, so innovative, effective, and integrative research is required to better understand their transmission, ecological implications, and dynamics at wildlife-human interfaces. High-throughput sequencing (HTS) methodologies have enormous potential for unraveling these contingencies and improving our understanding, but they are only now beginning to be realized in livestock research. This study investigates the current state of use of sequencing technologies in the detection of livestock pathogens such as bovine, dogs (Canis lupus familiaris), sheep (Ovis aries), pigs (Sus scrofa), horses (Equus caballus), chicken (Gallus gallus domesticus), and ducks (Anatidae) as well as how it can improve the monitoring and detection of zoonotic infections. We also described several high-throughput sequencing approaches for improved detection of known, unknown, and emerging infectious agents, resulting in better infectious disease diagnosis, as well as surveillance of zoonotic infectious diseases. In the coming years, the continued advancement of sequencing technologies will improve livestock research and hasten the development of various new genomic and technological studies on farm animals.
Collapse
|
3
|
Zhang Z, Sun Y, Li Y. Plant rejuvenation: from phenotypes to mechanisms. PLANT CELL REPORTS 2020; 39:1249-1262. [PMID: 32780162 DOI: 10.1007/s00299-020-02577-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Plant rejuvenation refers to the reversal of the adult phase in plants and the recovery of part or all of juvenile plant characteristics. The growth and reproductive vitality of plants can be increased after rejuvenation. In recent years, research has successfully reversed the development clock in plants by certain methods; created rejuvenated plants and revealed the basic rules of plant morphology, physiology and reproduction. Here, we reconstitute the changes at the morphological and macromolecular levels, including those in RNA, phytohormones and DNA, during plant rejuvenation. In addition, the characteristics of plant phase changes that can be used as references for plant rejuvenation are also summarized. We further propose possible mechanisms for plant rejuvenation, methods for reversing plant development and problems that should be avoided. Overall, this study highlights the physiological and molecular events involved in plant rejuvenation.
Collapse
Affiliation(s)
- Zijie Zhang
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory For Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yuhan Sun
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory For Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yun Li
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory For Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
4
|
Chemonges S. Cardiorespiratory physiological perturbations after acute smoke-induced lung injury and during extracorporeal membrane oxygenation support in sheep. F1000Res 2020; 9:769. [PMID: 32953091 PMCID: PMC7481850 DOI: 10.12688/f1000research.24927.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2020] [Indexed: 01/19/2023] Open
Abstract
Background: Numerous successful therapies developed for human medicine involve animal experimentation. Animal studies that are focused solely on translational potential, may not sufficiently document unexpected outcomes. Considerable amounts of data from such studies could be used to advance veterinary science. For example, sheep are increasingly being used as models of intensive care and therefore, data arising from such models must be published. In this study, the hypothesis is that there is little information describing cardiorespiratory physiological data from sheep models of intensive care and the author aimed to analyse such data to provide biological information that is currently not available for sheep that received extracorporeal life support (ECLS) following acute smoke-induced lung injury. Methods: Nineteen mechanically ventilated adult ewes undergoing intensive care during evaluation of a form of ECLS (treatment) for acute lung injury were used to collate clinical observations. Eight sheep were injured by acute smoke inhalation prior to treatment (injured/treated), while another eight were not injured but treated (uninjured/treated). Two sheep were injured but not treated (injured/untreated), while one received room air instead of smoke as the injury and was not treated (placebo/untreated). The data were then analysed for 11 physiological categories and compared between the two treated groups. Results: Compared with the baseline, treatment contributed to and exacerbated the deterioration of pulmonary pathology by reducing lung compliance and the arterial oxygen partial pressure to fractional inspired oxygen (PaO 2/FiO 2) ratio. The oxygen extraction index changes mirrored those of the PaO 2/FiO 2 ratio. Decreasing coronary perfusion pressure predicted the severity of cardiopulmonary injury. Conclusions: These novel observations could help in understanding similar pathology such as that which occurs in animal victims of smoke inhalation from house or bush fires, aspiration pneumonia secondary to tick paralysis and in the management of the severe coronavirus disease 2019 (COVID-19) in humans.
Collapse
Affiliation(s)
- Saul Chemonges
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| |
Collapse
|
5
|
Chemonges S, Gupta R, Mills PC, Kopp SR, Sadowski P. Characterisation of the circulating acellular proteome of healthy sheep using LC-MS/MS-based proteomics analysis of serum. Proteome Sci 2017; 15:11. [PMID: 28615994 PMCID: PMC5466729 DOI: 10.1186/s12953-017-0119-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 06/02/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Unlike humans, there is currently no publicly available reference mass spectrometry-based circulating acellular proteome data for sheep, limiting the analysis and interpretation of a range of physiological changes and disease states. The objective of this study was to develop a robust and comprehensive method to characterise the circulating acellular proteome in ovine serum. METHODS Serum samples from healthy sheep were subjected to shotgun proteomic analysis using nano liquid chromatography nano electrospray ionisation tandem mass spectrometry (nanoLC-nanoESI-MS/MS) on a quadrupole time-of-flight instrument (TripleTOF® 5600+, SCIEX). Proteins were identified using ProteinPilot™ (SCIEX) and Mascot (Matrix Science) software based on a minimum of two unmodified highly scoring unique peptides per protein at a false discovery rate (FDR) of 1% software by searching a subset of the Universal Protein Resource Knowledgebase (UniProtKB) database (http://www.uniprot.org). PeptideShaker (CompOmics, VIB-UGent) searches were used to validate protein identifications from ProteinPilot™ and Mascot. RESULTS ProteinPilot™ and Mascot identified 245 and 379 protein groups (IDs), respectively, and PeptideShaker validated 133 protein IDs from the entire dataset. Since Mascot software is considered the industry standard and identified the most proteins, these were analysed using the Protein ANalysis THrough Evolutionary Relationships (PANTHER) classification tool revealing the association of 349 genes with 127 protein pathway hits. These data are available via ProteomeXchange with identifier PXD004989. CONCLUSIONS These results demonstrated for the first time the feasibility of characterising the ovine circulating acellular proteome using nanoLC-nanoESI-MS/MS. This peptide spectral data contributes to a protein library that can be used to identify a wide range of proteins in ovine serum.
Collapse
Affiliation(s)
- Saul Chemonges
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Rajesh Gupta
- Proteomics and Small Molecule Mass Spectrometry, Central Analytical Research Facility, Queensland University of Technology, Brisbane, Australia
| | - Paul C. Mills
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Steven R. Kopp
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Pawel Sadowski
- Proteomics and Small Molecule Mass Spectrometry, Central Analytical Research Facility, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
6
|
Locard-Paulet M, Pible O, Gonzalez de Peredo A, Alpha-Bazin B, Almunia C, Burlet-Schiltz O, Armengaud J. Clinical implications of recent advances in proteogenomics. Expert Rev Proteomics 2016; 13:185-99. [DOI: 10.1586/14789450.2016.1132169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Katsafadou A, Tsangaris G, Billinis C, Fthenakis G. Use of proteomics in the study of microbial diseases of small ruminants. Vet Microbiol 2015; 181:27-33. [DOI: 10.1016/j.vetmic.2015.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Watts RP, Bilska I, Diab S, Dunster KR, Bulmer AC, Barnett AG, Fraser JF. Novel 24-h ovine model of brain death to study the profile of the endothelin axis during cardiopulmonary injury. Intensive Care Med Exp 2015; 3:31. [PMID: 26596583 PMCID: PMC4656265 DOI: 10.1186/s40635-015-0067-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/13/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Upregulation of the endothelin axis has been observed in pulmonary tissue after brain death, contributing to primary graft dysfunction and ischaemia reperfusion injury. The current study aimed to develop a novel, 24-h, clinically relevant, ovine model of brain death to investigate the profile of the endothelin axis during brain death-associated cardiopulmonary injury. We hypothesised that brain death in sheep would also result in demonstrable injury to other transplantable organs. METHODS Twelve merino cross ewes were randomised into two groups. Following induction of general anaesthesia and placement of invasive monitoring, brain death was induced in six animals by inflation of an extradural catheter. All animals were supported in an intensive care unit environment for 24 h. Animal management reflected current human donor management, including administration of vasopressors, inotropes and hormone resuscitation therapy. Activation of the endothelin axis and transplantable organ injury were assessed using ELISA, immunohistochemistry and standard biochemical markers. RESULTS All animals were successfully supported for 24 h. ELISA suggested early endothelin-1 and big endothelin-1 release, peaking 1 and 6 h after BD, respectively, but there was no difference at 24 h. Immunohistochemistry confirmed the presence of the endothelin axis in pulmonary tissue. Brain dead animals demonstrated tachycardia and hypertension, followed by haemodynamic collapse, typified by a reduction in systemic vascular resistance to 46 ± 1 % of baseline. Mean pulmonary artery pressure rose to 186 ± 20 % of baseline at induction and remained elevated throughout the protocol, reaching 25 ± 2.2 mmHg at 24 h. Right ventricular stroke work increased 25.9 % above baseline by 24 h. Systemic markers of cardiac and hepatocellular injury were significantly elevated, with no evidence of renal dysfunction. CONCLUSIONS This novel, clinically relevant, ovine model of brain death demonstrated that increased pulmonary artery pressures are observed after brain death. This may contribute to right ventricular dysfunction and pulmonary injury. The development of this model will allow for further investigation of therapeutic strategies to minimise the deleterious effects of brain death on potentially transplantable organs.
Collapse
Affiliation(s)
- Ryan P Watts
- Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia.
- University of Queensland, Brisbane, Queensland, Australia.
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.
| | - Izabela Bilska
- Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia.
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Queensland, Australia.
| | - Sara Diab
- Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia.
| | - Kimble R Dunster
- Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia.
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Andrew C Bulmer
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Queensland, Australia.
| | - Adrian G Barnett
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Chermside, Queensland, Australia.
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.
- University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
9
|
Thomas FC, Waterston M, Hastie P, Parkin T, Haining H, Eckersall PD. The major acute phase proteins of bovine milk in a commercial dairy herd. BMC Vet Res 2015; 11:207. [PMID: 26276568 PMCID: PMC4536752 DOI: 10.1186/s12917-015-0533-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/06/2015] [Indexed: 11/24/2022] Open
Abstract
Background Milk acute phase proteins (APP) have been identified and show promise as biomarkers of mastitis. However analysis of their profile in dairy cows from a production herd is necessary in order to confirm their benefits in mastitis diagnosis. The profiles of milk haptoglobin (Hp), mammary associated serum amyloid A3 (M-SAA3) and C-reactive protein (CRP) were determined in 54 composite milk (milk from all functional quarters of a cow’s udder collected in a common receptacle) samples (CMS) from a commercial dairy farm. Milk Hp was also determined in individual quarter milk (milk from a single udder quarter) samples (QMS) (n = 149) of the cows. An ELISA was developed and validated for the determination of milk Hp while commercial kits were used for M-SAA3 and CRP assay respectively. Composite milk APP results were compared with cow factors including parity, stage of lactation, percentage protein and fat as well as somatic cell counts (SCC). Results Composite milk Hp ranged from <0.4–55 μg/ml with a median of 3.5 μg/ml; composite milk M-SAA3 ranged from <0.6–50 μg/ml and had a median of 1.2 μg/ml, while CRP ranged from <1.80–173 ng/ml and had a median of 24.6 ng/ml. Significant correlations were found between composite SCC and Hp (P-value <0.009) as well as parity and Hp (P < 0.009), but not between M-SAA3 and SCC, M-SAA3 and Hp, M-SAA3 and CRP or M-SAA3 and parity. Milk CRP was correlated with % fat (P = 0.002) and % protein (P = 0.001) of the milk samples. The lack of correlation of SCC with the M-SAA3 and CRP could result from these APP being more sensitive to intra-mammary infection than SCC. Quarter milk Hp had a range of <0.4–420 μg/ml with a median value of 3.6 μg/ml, with 92 % of samples below 20 μg/ml. Conclusion Baseline values of Hp, M-SAA3 and CRP were established in composite milk from cows with normal SCC on the dairy farm. Parity was recognized as a possible confounding factor when diagnosing mastitis using Hp. The value of the APP, Hp, M-SAA3 and CRP as substitutes or to complement SCC in indicating udder inflammation, was demonstrated.
Collapse
Affiliation(s)
- Funmilola Clara Thomas
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Veterinary Medical and Life Sciences, University of Glasgow, Bearsden Rd, Glasgow, G61 1QH, UK.
| | - Mary Waterston
- Institute of Infection Immunity and Inflammation, College of Veterinary Medical and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK.
| | - Peter Hastie
- School of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK.
| | - Timothy Parkin
- School of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK.
| | - Hayley Haining
- School of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK.
| | - Peter David Eckersall
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Veterinary Medical and Life Sciences, University of Glasgow, Bearsden Rd, Glasgow, G61 1QH, UK.
| |
Collapse
|
10
|
Ahanda MLE, Zerjal T, Dhorne-Pollet S, Rau A, Cooksey A, Giuffra E. Impact of the genetic background on the composition of the chicken plasma MiRNome in response to a stress. PLoS One 2014; 9:e114598. [PMID: 25473826 PMCID: PMC4256448 DOI: 10.1371/journal.pone.0114598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/10/2014] [Indexed: 12/20/2022] Open
Abstract
Circulating extra-cellular microRNAs (miRNAs) have emerged as promising minimally invasive markers in human medicine. We evaluated miRNAs isolated from total plasma as biomarker candidates of a response to an abiotic stress (feed deprivation) in a livestock species. Two chicken lines selected for high (R+) and low (R-) residual feed intake were chosen as an experimental model because of their extreme divergence in feed intake and energy metabolism. Adult R+ and R- cocks were sampled after 16 hours of feed deprivation and again four hours after re-feeding. More than 292 million sequence reads were generated by small RNA-seq of total plasma RNA. A total of 649 mature miRNAs were identified; after quality filtering, 148 miRNAs were retained for further analyses. We identified 23 and 19 differentially abundant miRNAs between feeding conditions and between lines respectively, with only two miRNAs identified in both comparisons. We validated a panel of six differentially abundant miRNAs by RT-qPCR on a larger number of plasma samples and checked their response to feed deprivation in liver. Finally, we evaluated the conservation and tissue distribution of differentially abundant miRNAs in plasma across a variety of red jungle fowl tissues. We show that the chicken plasma miRNome reacts promptly to the alteration of the animal physiological condition driven by a feed deprivation stress. The plasma content of stress-responsive miRNAs is strongly influenced by the genetic background, with differences reflecting the phenotypic divergence acquired through long-term selection, as evidenced by the profiles of conserved miRNAs with a regulatory role in energy metabolism (gga-miR-204, gga-miR-let-7f-5p and gga-miR-122-5p). These results reinforce the emerging view in human medicine that even small genetic differences can have a considerable impact on the resolution of biomarker studies, and provide support for the emerging interest in miRNAs as potential novel and minimally invasive biomarkers for livestock species.
Collapse
Affiliation(s)
- Marie-Laure Endale Ahanda
- INRA, UMR 1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
- CEA, DSV, IRCM, SREIT, Laboratoire de Radiobiologie et Etude du Génome, Jouy-en-Josas, France
- AgroParisTech, UMR 1313 Génétique Animale et Biologie Intégrative, Paris, France
| | - Tatiana Zerjal
- INRA, UMR 1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
- CEA, DSV, IRCM, SREIT, Laboratoire de Radiobiologie et Etude du Génome, Jouy-en-Josas, France
- AgroParisTech, UMR 1313 Génétique Animale et Biologie Intégrative, Paris, France
| | - Sophie Dhorne-Pollet
- INRA, UMR 1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
- CEA, DSV, IRCM, SREIT, Laboratoire de Radiobiologie et Etude du Génome, Jouy-en-Josas, France
- AgroParisTech, UMR 1313 Génétique Animale et Biologie Intégrative, Paris, France
| | - Andrea Rau
- INRA, UMR 1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
- AgroParisTech, UMR 1313 Génétique Animale et Biologie Intégrative, Paris, France
| | - Amanda Cooksey
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Elisabetta Giuffra
- INRA, UMR 1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
- CEA, DSV, IRCM, SREIT, Laboratoire de Radiobiologie et Etude du Génome, Jouy-en-Josas, France
- AgroParisTech, UMR 1313 Génétique Animale et Biologie Intégrative, Paris, France
| |
Collapse
|
11
|
The recognition of LpxC inhibitors as potential antibiotics could revolutionise the management of sepsis in veterinary patients if their unknown biological properties are widely evaluated in suitable animal models. Int J Vet Sci Med 2014. [DOI: 10.1016/j.ijvsm.2014.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Chemonges S, Shekar K, Tung JP, Dunster KR, Diab S, Platts D, Watts RP, Gregory SD, Foley S, Simonova G, McDonald C, Hayes R, Bellpart J, Timms D, Chew M, Fung YL, Toon M, Maybauer MO, Fraser JF. Optimal management of the critically ill: anaesthesia, monitoring, data capture, and point-of-care technological practices in ovine models of critical care. BIOMED RESEARCH INTERNATIONAL 2014; 2014:468309. [PMID: 24783206 PMCID: PMC3982457 DOI: 10.1155/2014/468309] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/21/2014] [Accepted: 02/10/2014] [Indexed: 12/18/2022]
Abstract
Animal models of critical illness are vital in biomedical research. They provide possibilities for the investigation of pathophysiological processes that may not otherwise be possible in humans. In order to be clinically applicable, the model should simulate the critical care situation realistically, including anaesthesia, monitoring, sampling, utilising appropriate personnel skill mix, and therapeutic interventions. There are limited data documenting the constitution of ideal technologically advanced large animal critical care practices and all the processes of the animal model. In this paper, we describe the procedure of animal preparation, anaesthesia induction and maintenance, physiologic monitoring, data capture, point-of-care technology, and animal aftercare that has been successfully used to study several novel ovine models of critical illness. The relevant investigations are on respiratory failure due to smoke inhalation, transfusion related acute lung injury, endotoxin-induced proteogenomic alterations, haemorrhagic shock, septic shock, brain death, cerebral microcirculation, and artificial heart studies. We have demonstrated the functionality of monitoring practices during anaesthesia required to provide a platform for undertaking systematic investigations in complex ovine models of critical illness.
Collapse
Affiliation(s)
- Saul Chemonges
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia ; Medical Engineering Research Facility (MERF), Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Kiran Shekar
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia ; Bond University, Gold Coast, QLD 4226, Australia
| | - John-Paul Tung
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; Research and Development, Australian Red Cross Blood Service, Kelvin Grove, Brisbane, QLD 4059, Australia
| | - Kimble R Dunster
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Sara Diab
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - David Platts
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Ryan P Watts
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; Department of Emergency Medicine, Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD 4102, Australia
| | - Shaun D Gregory
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia ; Innovative Cardiovascular Engineering and Technology Laboratory, The Prince Charles Hospital, Chermside, Brisbane, QLD 4032, Australia
| | - Samuel Foley
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Gabriela Simonova
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Charles McDonald
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Rylan Hayes
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Judith Bellpart
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Daniel Timms
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; Innovative Cardiovascular Engineering and Technology Laboratory, The Prince Charles Hospital, Chermside, Brisbane, QLD 4032, Australia
| | - Michelle Chew
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia
| | - Yoke L Fung
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Michael Toon
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia
| | - Marc O Maybauer
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - John F Fraser
- Critical Care Research Group Laboratory, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4032, Australia ; The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia ; Innovative Cardiovascular Engineering and Technology Laboratory, The Prince Charles Hospital, Chermside, Brisbane, QLD 4032, Australia
| |
Collapse
|