1
|
Zhang X, Ma L, Xue M, Sun Y, Wang Z. Advances in lymphatic metastasis of non-small cell lung cancer. Cell Commun Signal 2024; 22:201. [PMID: 38566083 PMCID: PMC10986052 DOI: 10.1186/s12964-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Lung cancer is a deeply malignant tumor with high incidence and mortality. Despite the rapid development of diagnosis and treatment technology, abundant patients with lung cancer are still inevitably faced with recurrence and metastasis, contributing to death. Lymphatic metastasis is the first step of distant metastasis and an important prognostic indicator of non-small cell lung cancer. Tumor-induced lymphangiogenesis is involved in the construction of the tumor microenvironment, except promoting malignant proliferation and metastasis of tumor cells, it also plays a crucial role in individual response to treatment, especially immunotherapy. Thus, this article reviews the current research status of lymphatic metastasis in non-small cell lung cancer, in order to provide some insights for the basic research and clinical and translational application in this field.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Li Ma
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Man Xue
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yanning Sun
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
2
|
Wang X, Song R, Li X, He K, Ma L, Li Y. Bioinformatics analysis of the genes associated with co-occurrence of heart failure and lung cancer. Exp Biol Med (Maywood) 2023; 248:843-857. [PMID: 37073135 PMCID: PMC10484198 DOI: 10.1177/15353702231162081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/03/2023] [Indexed: 04/20/2023] Open
Abstract
Deaths of non-cardiac causes in patients with heart failure (HF) are on the rise, including lung cancer (LC). However, the common mechanisms behind the two diseases need to be further explored. This study aimed to improve understanding on the co-occurrence of LC and HF. In this study, gene expression profiles of HF (GSE57338) and LC (GSE151101) were comprehensively analyzed using the Gene Expression Omnibus database. Functional annotation, protein-protein interaction network, hub gene identification, and co-expression analysis were proceeded when the co-differentially expressed genes in HF and LC were identified. Among 44 common differentially expressed genes, 17 hub genes were identified to be associated with the co-occurrence of LC and HF; the hub genes were verified in 2 other data sets. Nine genes, including ALOX5, FPR1, ADAMTS15, ALOX5AP, ANPEP, SULF1, C1orf162, VSIG4, and LYVE1 were selected after screening. Functional analysis was performed with particular emphasis on extracellular matrix organization and regulation of leukocyte activation. Our findings suggest that disorders of the immune system could cause the co-occurrence of HF and LC. They also suggest that abnormal activation of extracellular matrix organization, inflammatory response, and other immune signaling pathways are essential in disorders of the immune system. The validated genes provide new perspectives on the common underlying pathophysiology of HF and LC, and may aid further investigation in this field.
Collapse
Affiliation(s)
- Xiaoying Wang
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui Song
- Xuhui District Center for Disease Prevention and Control, Shanghai 200237, China
| | - Xin Li
- Cardiovascular Medicine Department, East Hospital Affiliated to Tongji University, Shanghai 200120, China
| | - Kai He
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linlin Ma
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Yanfei Li
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
3
|
Gli1 promotes epithelial–mesenchymal transition and metastasis of non-small cell lung carcinoma by regulating Snail transcriptional activity and stability. Acta Pharm Sin B 2022; 12:3877-3890. [PMID: 36213531 PMCID: PMC9532560 DOI: 10.1016/j.apsb.2022.05.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/18/2022] [Accepted: 03/31/2022] [Indexed: 11/23/2022] Open
Abstract
Metastasis is crucial for the mortality of non-small cell lung carcinoma (NSCLC) patients. The epithelial–mesenchymal transition (EMT) plays a critical role in regulating tumor metastasis. Glioma-associated oncogene 1 (Gli1) is aberrantly active in a series of tumor tissues. However, the molecular regulatory relationships between Gli1 and NSCLC metastasis have not yet been identified. Herein, we reported Gli1 promoted NSCLC metastasis. High Gli1 expression was associated with poor survival of NSCLC patients. Ectopic expression of Gli1 in low metastatic A549 and NCI-H460 cells enhanced their migration, invasion abilities and facilitated EMT process, whereas knock-down of Gli1 in high metastatic NCI-H1299 and NCI-H1703 cells showed an opposite effect. Notably, Gli1 overexpression accelerated the lung and liver metastasis of NSCLC in the intravenously injected metastasis model. Further research showed that Gli1 positively regulated Snail expression by binding to its promoter and enhancing its protein stability, thereby facilitating the migration, invasion and EMT of NSCLC. In addition, administration of GANT-61, a Gli1 inhibitor, obviously suppressed the metastasis of NSCLC. Collectively, our study reveals that Gli1 is a critical regulator for NSCLC metastasis and suggests that targeting Gli1 is a prospective therapy strategy for metastatic NSCLC.
Collapse
|
4
|
Ma C, Hu K, Ullah I, Zheng QK, Zhang N, Sun ZG. Molecular Mechanisms Involving the Sonic Hedgehog Pathway in Lung Cancer Therapy: Recent Advances. Front Oncol 2022; 12:729088. [PMID: 35433472 PMCID: PMC9010822 DOI: 10.3389/fonc.2022.729088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/03/2022] [Indexed: 12/09/2022] Open
Abstract
According to the latest statistics from the International Agency for Research on Cancer (IARC), lung cancer is one of the most lethal malignancies in the world, accounting for approximately 18% of all cancer-associated deaths. Yet, even with aggressive interventions for advanced lung cancer, the five-year survival rate remains low, at around 15%. The hedgehog signaling pathway is highly conserved during embryonic development and is involved in tissue homeostasis as well as organ development. However, studies have documented an increasing prevalence of aberrant activation of HH signaling in lung cancer patients, promoting malignant lung cancer progression with poor prognostic outcomes. Inhibitors targeting the HH pathway have been widely used in tumor therapy, however, they still cannot avoid the occurrence of drug resistance. Interestingly, natural products, either alone or in combination with chemotherapy, have greatly improved overall survival outcomes for lung cancer patients by acting on the HH signaling pathway because of its unique and excellent pharmacological properties. In this review, we elucidate on the underlying molecular mechanisms through which the HH pathway promotes malignant biological behaviors in lung cancer, as well as the potential of inhibitors or natural compounds in targeting HH signaling for clinical applications in lung cancer therapy.
Collapse
Affiliation(s)
- Chao Ma
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Kang Hu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Irfan Ullah
- Department of Surgery, Khyber Medical University Peshawar, Peshawar, Pakistan
| | - Qing-Kang Zheng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Nan Zhang
- Breast Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
5
|
Karinen S, Hujanen R, Salo T, Salem A. The prognostic influence of lymphatic endothelium-specific hyaluronan receptor 1 in cancer: A systematic review. Cancer Sci 2021; 113:17-27. [PMID: 34775672 PMCID: PMC8748220 DOI: 10.1111/cas.15199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/18/2021] [Accepted: 10/31/2021] [Indexed: 12/02/2022] Open
Abstract
Lymphangiogenesis is a key process in cancer development and metastasis. Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE‐1) is a widely used marker for lymphatic endothelial cells (LEC), which also mediates immune and cancer cell migration. Recently, LYVE‐1–positive tumor cells were shown to acquire LEC‐like phenotype and exploit this receptor for lymphatic dissemination. Furthermore, selective targeting of LYVE‐1 impaired the growth of cancer‐related vasculature and reduced metastasis in vivo, signifying its role in therapeutic and prognostic applications. Although numerous studies have investigated the role of LYVE‐1 in cancer, a unifying detailed review of its prognostic utility is lacking to date. Thus, we compiled and critically appraised evidence from clinical studies comprising a total of 2352 patients diagnosed with different types of cancer and using a variety of experimental approaches. Collectively, most studies revealed a significant association between LYVE‐1 overexpression and dismal outcome of at least one survival estimate. Furthermore, the importance of vasculature location, intra‐ or peritumoral, and the influence of various lymphangiogenesis‐related parameters, such as lymphatic vessel density and invasion, were discussed. However, the specificity of LYVE‐1 staining is challenged by its expression in non‐LEC cells, implying the need for double labelling to better estimate its prognostic significance. In conclusion, this is to our knowledge the first comprehensive systematic review on the prognostic value of LYVE‐1 in cancer. More well‐designed studies across different populations and the development of standardized protocols would be paramount for the consistency of LYVE‐1 findings and for its potential transferability to clinical practice in future.
Collapse
Affiliation(s)
- Sini Karinen
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Roosa Hujanen
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland.,Helsinki University Hospital (HUS), Helsinki, Finland
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, Helsinki, Finland.,Helsinki University Hospital (HUS), Helsinki, Finland
| |
Collapse
|
6
|
HEDGEHOG/GLI Modulates the PRR11-SKA2 Bidirectional Transcription Unit in Lung Squamous Cell Carcinomas. Genes (Basel) 2021; 12:genes12010120. [PMID: 33477943 PMCID: PMC7833434 DOI: 10.3390/genes12010120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/20/2022] Open
Abstract
We previously demonstrated that proline-rich protein 11 (PRR11) and spindle and kinetochore associated 2 (SKA2) constituted a head-to-head gene pair driven by a prototypical bidirectional promoter. This gene pair synergistically promoted the development of non-small cell lung cancer. However, the signaling pathways leading to the ectopic expression of this gene pair remains obscure. In the present study, we first analyzed the lung squamous cell carcinoma (LSCC) relevant RNA sequencing data from The Cancer Genome Atlas (TCGA) database using the correlation analysis of gene expression and gene set enrichment analysis (GSEA), which revealed that the PRR11-SKA2 correlated gene list highly resembled the Hedgehog (Hh) pathway activation-related gene set. Subsequently, GLI1/2 inhibitor GANT-61 or GLI1/2-siRNA inhibited the Hh pathway of LSCC cells, concomitantly decreasing the expression levels of PRR11 and SKA2. Furthermore, the mRNA expression profile of LSCC cells treated with GANT-61 was detected using RNA sequencing, displaying 397 differentially expressed genes (203 upregulated genes and 194 downregulated genes). Out of them, one gene set, including BIRC5, NCAPG, CCNB2, and BUB1, was involved in cell division and interacted with both PRR11 and SKA2. These genes were verified as the downregulated genes via RT-PCR and their high expression significantly correlated with the shorter overall survival of LSCC patients. Taken together, our results indicate that GLI1/2 mediates the expression of the PRR11-SKA2-centric gene set that serves as an unfavorable prognostic indicator for LSCC patients, potentializing new combinatorial diagnostic and therapeutic strategies in LSCC.
Collapse
|
7
|
Lim S, Lim SM, Kim MJ, Park SY, Kim JH. Sonic Hedgehog Pathway as the Prognostic Marker in Patients with Extensive Stage Small Cell Lung Cancer. Yonsei Med J 2019; 60:898-904. [PMID: 31538424 PMCID: PMC6753348 DOI: 10.3349/ymj.2019.60.10.898] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Sonic hedgehog (Shh) signaling pathway is known to play a crucial role in carcinogenesis in various malignancies, including lung cancer regarding tumorigenesis, angiogenesis, and cellular differentiation. The aim of this study was to investigate the value of components of Shh pathway as a prognostic marker in extensive stage small cell lung cancer (ES-SCLC) patients. MATERIALS AND METHODS We retrospectively analyzed data of 36 patients who were diagnosed with ES-SCLC between 2008 and 2012 at a single center. We performed immuo-histochemistry for glioma-associated oncogene homolog zinc finger protein 1 (Gli1), patched, Shh, and Ptch-mediated repression of smoothened (Smo) proteins using formalin-fixed, paraffin-embedded tissue derived from primary tumors. We then conducted survival analysis to evaluate the prognostic impact of these markers. RESULTS All 36 patients received platinum-based doublet chemotherapy. The median progression free survival and median overall survival were 6.9 months [95% confidence interval (CI), 6.5-7.3] and 11.7 months (95% CI, 9.1-14.3), respectively. The overall response rate was 84%. Of the 36 tissue specimens examined, over-expression of Gli1, Patched, Shh, and Smo was found in 12 (33.3%), five (13.9%), five (13.9%), and six (16.7%) cases, respectively. We found that high expression of Shh was associated with worse progression free survival (6.3 vs. 7.6 months, p=0.005) and overall survival (9.2 vs. 12.0 months, p=0.039) by both univariate and multivariate analyses, whereas other markers were not related to patient prognosis. CONCLUSION A high proportion of small cell lung cancer tumors express proteins related to Shh pathway, and over-expression of Shh is correlated with poor prognosis.
Collapse
Affiliation(s)
- Seungtaek Lim
- Department of Hemato-Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
- Konyang University Myunggok Medical Research Institute, Daejeon, Korea
| | - Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | | | - Shin Young Park
- Department of Pathology, Daejeon Son Hospital, Daejeon, Korea
| | - Joo Hang Kim
- Division of Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea.
| |
Collapse
|
8
|
Regulating autophagy facilitated therapeutic efficacy of the sonic Hedgehog pathway inhibition on lung adenocarcinoma through GLI2 suppression and ROS production. Cell Death Dis 2019; 10:626. [PMID: 31427566 PMCID: PMC6700102 DOI: 10.1038/s41419-019-1840-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 06/12/2019] [Accepted: 06/26/2019] [Indexed: 12/23/2022]
Abstract
Lung adenocarcinoma (LUAD), which comprises over 50% of all cases of non-small-cell lung cancer, has a poor prognosis and requires novel therapeutic approaches. The sonic Hedgehog (Shh) pathway, which plays a crucial role in differentiation, proliferation, and survival of cancer cells, is likely to be activated in LUADs, suggesting the Shh pathway as a potential therapeutic target for LUAD treatment. In this study, we reported that vismodegib, an inhibitor of the Shh pathway, only elicited minor antitumor efficacy in A549 and NCI-H1975 LUAD cells as well as in the xenograft tumors, with overexpressed GLI2 and increased autophagic activity. The aberrant autophagy in LUAD cells was further confirmed by the three main stages of autophagic flux, including the formation of autophagosomes, the fusion of autophagosomes with lysosomes, and degradation of autophagosomes in lysosomes. Furthermore, inhibition of autophagy by siRNA against ATG5 or ATG7 rescued the sensitivity of A549 and NCI-H1975 LUAD cells to vismodegib in vitro. Meanwhile, administration of the pharmaceutical inhibitor of autophagy, chloroquine, contributed to the enhanced anti-LUAD efficacy of vismodegib in vivo, probably through overproduction of ROS, acceleration of apoptosis, and suppression of GLI2 in LUAD tissues. In summary, our research revealed that downregulating autophagy facilitated the anti-LUAD efficacy of the Shh pathway suppression, thus highlighting a potential approach for LUAD therapy via simultaneously targeting the Shh signaling and autophagy pathway.
Collapse
|
9
|
Zhang M, Tan S, Yu D, Zhao Z, Zhang B, Zhang P, Lv C, Zhou Q, Cao Z. Triptonide inhibits lung cancer cell tumorigenicity by selectively attenuating the Shh-Gli1 signaling pathway. Toxicol Appl Pharmacol 2019; 365:1-8. [PMID: 30610878 DOI: 10.1016/j.taap.2019.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/20/2018] [Accepted: 01/01/2019] [Indexed: 12/16/2022]
Abstract
Lung cancer is a leading lethal disease with a 5-year survival rate of only 16%. Inadequate potent anti-cancer drugs appear to be a bottleneck in the treatment of lung cancer; hence, how to develop effective anti-lung cancer therapeutics is an urgent problem. In this study, we aim to explore a novel compound with potent anti-lung cancer effect and study its anti-cancer mechanisms. We found that triptonide at very low concentrations of 5-10 nM caused a marked suppression of cell proliferation and colony formation of lung cancer cells. More interestingly, triptonide also robustly inhibited the lung cancer cell formation of tumor spheres, and reduced the stemness and tumorigenicity of the sphere-forming cells. In vivo studies showed that administration of triptonide significantly inhibited the tumor growth with low toxicity. Molecular mechanistic studies revealed that triptonide significantly decreased expression of the Gli1 at both mRNA and protein levels by repressing Gli1 gene promoter activity. Additionally, triptonide reduced the levels of cancer stem cell key signaling protein sonic hedgehog (Shh), but increased the amount of Ptch1, a protein binding to SMO to diminish the Shh signal transduction, thus inhibition of the Shh-Gli1 signaling pathway. Together, our findings show that triptonide effectively inhibits lung cancer cell growth, stemness, and tumorigenicity, and support the notion that triptonide is a new Shh-Gli1 signaling inhibitor and a novel anti-lung cancer drug candidate for further developing effective lung cancer therapeutics.
Collapse
Affiliation(s)
- Mengli Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China
| | - Shijie Tan
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China
| | - Di Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Zhe Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China
| | - Bin Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China
| | - Pan Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China
| | - Chunping Lv
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China.
| | - Zhifei Cao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
10
|
Ding M, Wang X. Antagonism between Hedgehog and Wnt signaling pathways regulates tumorigenicity. Oncol Lett 2017; 14:6327-6333. [PMID: 29391876 DOI: 10.3892/ol.2017.7030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/30/2017] [Indexed: 01/16/2023] Open
Abstract
The crosstalk of multiple cellular signaling pathways is crucial in animal development and tissue homeostasis, and its dysregulation may result in tumor formation and metastasis. The Hedgehog (Hh) and Wnt signaling pathways are both considered to be essential regulators of cell proliferation, differentiation and oncogenesis. Recent studies have indicated that the Hh and Wnt signaling pathways are closely associated and involved in regulating embryogenesis and cellular differentiation. Hh signaling acts upstream of the Wnt signaling pathway, and negative regulates Wnt activity via secreted frizzled-related protein 1 (SFRP1), and the Wnt/β-catenin pathway downregulates Hh activity through glioma-associated oncogene homolog 3 transcriptional regulation. This evidence suggests that the imbalance of Hh and Wnt regulation serves a crucial role in cancer-associated processes. The activation of SFRP1, which inhibits Wnt, has been demonstrated to be an important cross-point between the two signaling pathways. The present study reviews the complex interaction between the Hh and Wnt signaling pathways in embryogenesis and tumorigenicity, and the role of SFRP1 as an important mediator associated with the dysregulation of the Hh and Wnt signaling pathways.
Collapse
Affiliation(s)
- Mei Ding
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
11
|
Du J, Chen W, Yang L, Dai J, Guo J, Wu Y, Gong K, Zhang J, Yu N, Xie Z, Xi S. Disruption of SHH signaling cascade by SBE attenuates lung cancer progression and sensitizes DDP treatment. Sci Rep 2017; 7:1899. [PMID: 28507311 PMCID: PMC5432500 DOI: 10.1038/s41598-017-02063-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/04/2017] [Indexed: 12/24/2022] Open
Abstract
Deregulated Sonic Hedgehog (SHH) pathway facilitates the initiation, progression, and metastasis of Non-small cell lung cancer (NSCLC), confers drug resistance and renders a therapeutic interference option to lung cancer patients with poor prognosis. In this study, we screened and evaluated the specificity of a Chinese herb Scutellariabarbata D. Don extraction (SBE) in repressing SHH signaling pathway to block NSCLC progression. Our study confirmed that aberrant activation of the SHH signal pathway conferred more proliferative and invasive phenotypes to human lung cancer cells. This study revealed that SBE specifically repressed SHH signaling pathway to interfere the SHH-mediated NSCLC progression and metastasis via arresting cell cycle progression. We also found that SBE significantly sensitized lung cancer cells to chemotherapeutic agent DDP via repressing SHH components in vitro and in vivo. Mechanistic investigations indicated that SBE transcriptionally and specifically downregulated SMO and consequently attenuated the activities of GLI1 and its downstream targets in SHH signaling pathway, which interacted with cell cycle checkpoint enzymes to arrest cell cycle progression and lead to cellular growth inhibition and migration blockade. Collectively, our results suggest SBE as a novel drug candidate for NSCLC which specifically and sensitively targets SHH signaling pathway.
Collapse
Affiliation(s)
- Jing Du
- Cancer Research Institute, Binzhou Medical University hospital, 256600, Binzhou, P.R. China
| | - Weiwei Chen
- Cancer Research Institute, Binzhou Medical University hospital, 256600, Binzhou, P.R. China
| | - Lijuan Yang
- Cancer Research Institute, Binzhou Medical University hospital, 256600, Binzhou, P.R. China
| | - Juanjuan Dai
- Cancer Research Institute, Binzhou Medical University hospital, 256600, Binzhou, P.R. China
| | - Jiwei Guo
- Cancer Research Institute, Binzhou Medical University hospital, 256600, Binzhou, P.R. China
| | - Yan Wu
- Cancer Research Institute, Binzhou Medical University hospital, 256600, Binzhou, P.R. China
| | - Kaikai Gong
- Cancer Research Institute, Binzhou Medical University hospital, 256600, Binzhou, P.R. China
| | - Jian Zhang
- Department of Pathology, Binzhou City People's Hospital, 256610, Binzhou, P.R. China
| | - Ning Yu
- Department of Pathology, Binzhou Medical University Hospital, 256600, Binzhou, P.R. China
| | - Zhen Xie
- Department of Thoracic Surgery, Binzhou Medical University Hospital, 256600, Binzhou, P.R. China
| | - Sichuan Xi
- Cancer Research Institute, Binzhou Medical University hospital, 256600, Binzhou, P.R. China.
| |
Collapse
|
12
|
Noncanonical GLI1 signaling promotes stemness features and in vivo growth in lung adenocarcinoma. Oncogene 2017; 36:4641-4652. [PMID: 28368412 PMCID: PMC5558095 DOI: 10.1038/onc.2017.91] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/04/2017] [Accepted: 02/26/2017] [Indexed: 02/07/2023]
Abstract
Aberrant Hedgehog/GLI signaling has been implicated in a diverse spectrum of human cancers, but its role in lung adenocarcinoma (LAC) is still under debate. We show that the downstream effector of the Hedgehog pathway, GLI1, is expressed in 76% of LACs, but in roughly half of these tumors, the canonical pathway activator, Smoothened, is expressed at low levels, possibly owing to epigenetic silencing. In LAC cells including the cancer stem cell compartment, we show that GLI1 is activated noncanonically by MAPK/ERK signaling. Different mechanisms can trigger the MAPK/ERK/GLI1 cascade including KRAS mutation and stimulation of NRP2 by VEGF produced by the cancer cells themselves in an autocrine loop or by stromal cells as paracrine cross talk. Suppression of GLI1, by silencing or drug-mediated, inhibits LAC cells proliferation, attenuates their stemness and increases their susceptibility to apoptosis in vitro and in vivo. These findings provide insight into the growth of LACs and point to GLI1 as a downstream effector for oncogenic pathways. Thus, strategies involving direct inhibition of GLI1 may be useful in the treatment of LACs.
Collapse
|
13
|
Chen H, Wang J, Yang H, Chen D, Li P. Association between FOXM1 and hedgehog signaling pathway in human cervical carcinoma by tissue microarray analysis. Oncol Lett 2016; 12:2664-2673. [PMID: 27698840 DOI: 10.3892/ol.2016.4932] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/19/2016] [Indexed: 12/22/2022] Open
Abstract
Forkhead box M1 (FOXM1) and hedgehog (Hh) signaling pathway are implicated in the formation and development of human tumors, including cervical cancer. Previous studies have indicated that FOXM1 may be a downstream target gene of the Hh signaling pathway, but their association in cervical cancer is largely unknown. In the present study, the expression of FOXM1 and Hh signaling molecules was evaluated by immunohistochemical analysis in a tissue microarray that contained 70 cervical cancer tissues and 10 normal cervical tissues. In addition, the association of these molecules with clinicopathological parameters, and the association between FOXM1 and various molecules involved in the Hh signaling pathway was investigated. The results indicated that FOXM1 and Hh signaling molecules were overexpressed in cervical cancer tissues. The protein expression levels of FOXM1, glioma-associated oncogene 1 (GLI1) and smoothened (SMO) correlated with the clinical stage of the tumors, while the protein expression levels of Sonic Hh (SHh), patched 1 (PTCH1) and GLI1 correlated with the pathological grade of the tumors. The expression levels of GLI1 were lower in tissues without lymph node metastasis than in tissues with lymph node metastasis. In addition, FOXM1 expression correlated with GLI1, SHh and PTCH1 expression in cancer tissues. These findings confirmed the participation of FOXM1 and the Hh signaling pathway in cervical cancer. Furthermore, the finding that FOXM1 may be a downstream target gene of the Hh signaling pathway in cervical cancer provides a potential novel diagnostic and therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Hong Chen
- Department of Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jingjing Wang
- Department of Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hong Yang
- Department of Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Dan Chen
- Department of Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Panpan Li
- Department of Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
14
|
Lin EH, Kao YR, Lin CA, Kuo TY, Yang SP, Hsu CF, Chou TY, Ho CC, Wu CW. Hedgehog pathway maintains cell survival under stress conditions, and drives drug resistance in lung adenocarcinoma. Oncotarget 2016; 7:24179-93. [PMID: 27015549 PMCID: PMC5029693 DOI: 10.18632/oncotarget.8253] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 03/02/2016] [Indexed: 01/06/2023] Open
Abstract
Hedgehog (HH) pathway plays an important role in embryonic development, but is largely inactive in adult except for tissue repair. Aberrant activation of HH pathway has been found in a variety of cancer types. In non-small cell lung cancer, however, the role and importance of HH pathway remain controversial. In the current study, we found that HH pathway was maintained in low activity in lung adenocarcinoma (LAC) cells under normal culture condition, but was highly induced in response to stress conditions. Activation of HH pathway promoted cell survival, growth, and invasion partially through HGF and MET signaling. Hedgehog-Interacting Protein (HHIP), a cell-surface negative regulator of HH pathway, was epigenetically silenced in LAC. Overexpression of HHIP blocked the activation of HH and HGF/MET pathways, and made cells significantly more susceptible to stress conditions. In LAC cells with acquired resistance to Epidermal Growth Factor Receptor Tyrosin Kinase Inhibitor (EGFR-TKI), we found that a part of tumor cells were much more sensitive to HH or HGF/MET inhibitors, suggesting an oncogenic addiction shift from EGFR to HH and HGF/MET pathways. In conclusion, this study showed that HH pathway is a survival signaling that drives LAC cell growth under stress conditions, and HHIP is a key regulator to block the induction of HH pathway. Targeting the HH pathway through inhibitors or HHIP thus holds promise to address EGFR-TKI resistance in LAC in clinic.
Collapse
Affiliation(s)
- Erh-Hsuan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Microbiology and Immunology, National Yang Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, Taiwan
| | - Yu-Rung Kao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-An Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University Medical College, Taipei, Taiwan
| | - Ting-Yu Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, Taiwan
| | - Sheng-Ping Yang
- Institute of Microbiology and Immunology, National Yang Ming University, Taipei, Taiwan
| | - Chiung-Fang Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Teh-Ying Chou
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Cheng-Wen Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Microbiology and Immunology, National Yang Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, Taiwan
| |
Collapse
|
15
|
HPIP promotes non-small cell lung cancer cell proliferation, migration and invasion through regulation of the Sonic hedgehog signaling pathway. Biomed Pharmacother 2016; 77:176-81. [DOI: 10.1016/j.biopha.2015.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/02/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022] Open
|
16
|
Macrophages and endothelial cells orchestrate tumor-associated angiogenesis in oral cancer via hedgehog pathway activation. Tumour Biol 2016; 37:9233-41. [DOI: 10.1007/s13277-015-4763-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/29/2015] [Indexed: 12/16/2022] Open
|
17
|
David M, Lamas-Pinheiro R, Henriques-Coelho T. Prenatal and Postnatal Management of Congenital Pulmonary Airway Malformation. Neonatology 2016; 110:101-15. [PMID: 27070354 DOI: 10.1159/000440894] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/06/2015] [Indexed: 11/19/2022]
Abstract
Congenital pulmonary airway malformation (CPAM) is one of the most common lung lesions detected prenatally. Despite the research efforts made in the past few years, controversy and lack of clarity in the literature still exist regarding nomenclature, classification, pathogenesis and the management of CPAM. Therefore, it is of greatest importance to delineate the natural history of CPAMs and to create a consensus to guide the management and follow-up of these lesions. This review will focus on classification systems, highlighting the most recent advancements in pathogenesis, and current practice in the prenatal diagnosis of CPAM. Strategies of prenatal management and postnatal management will be reviewed. Long-term follow-up, including lung cancer risk, is discussed and an outcome perspective is presented.
Collapse
Affiliation(s)
- Mafalda David
- Pediatric Surgery Department, Centro Hospitalar Sx00E3;o Jox00E3;o, Porto, Portugal
| | | | | |
Collapse
|
18
|
Leon G, MacDonagh L, Finn SP, Cuffe S, Barr MP. Cancer stem cells in drug resistant lung cancer: Targeting cell surface markers and signaling pathways. Pharmacol Ther 2015; 158:71-90. [PMID: 26706243 DOI: 10.1016/j.pharmthera.2015.12.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. Despite advances in anti-cancer therapies such as chemotherapy, radiotherapy and targeted therapies, five-year survival rates remain poor (<15%). Inherent and acquired resistance has been identified as a key factor in reducing the efficacy of current cytotoxic therapies in the management of non-small cell lung cancer (NSCLC). There is growing evidence suggesting that cancer stem cells (CSCs) play a critical role in tumor progression, metastasis and drug resistance. Similar to normal tissue stem cells, CSCs exhibit significant phenotypic and functional heterogeneity. While CSCs have been reported in a wide spectrum of human tumors, the biology of CSCs in NSCLC remain elusive. Current anti-cancer therapies fail to eradicate CSC clones and instead, favor the expansion of the CSC pool and select for resistant CSC clones thereby resulting in treatment resistance and subsequent relapse in these patients. The identification of CSC-specific marker subsets and the targeted therapeutic destruction of CSCs remains a significant challenge. Strategies aimed at efficient targeting of CSCs are becoming increasingly important for monitoring the progress of cancer therapy and for evaluating new therapeutic approaches. This review focuses on the current knowledge of cancer stem cell markers in treatment-resistant lung cancer cells and the signaling cascades activated by these cells to maintain their stem-like properties. Recent progress in CSC-targeted drug development and the current status of novel agents in clinical trials are also reviewed.
Collapse
Affiliation(s)
- Gemma Leon
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland
| | - Lauren MacDonagh
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland
| | - Stephen P Finn
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland; Department of Histopathology, St James's Hospital, Dublin 8, Ireland
| | - Sinead Cuffe
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland
| | - Martin P Barr
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland.
| |
Collapse
|
19
|
Gonzalez AC, Ferreira M, Ariel T, Reis SR, Andrade Z, Peixoto Medrado A. Immunohistochemical evaluation of hedgehog signalling in epithelial/mesenchymal interactions in squamous cell carcinoma transformation: a pilot study. J Oral Pathol Med 2015; 45:173-9. [PMID: 26947270 DOI: 10.1111/jop.12346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2015] [Indexed: 11/28/2022]
Abstract
Precancerous lesions have been studied because of their carcinogenic potential and their association with squamous cell carcinoma (SCC) has been reported. In the tumour microenvironment, the processes of angiogenesis and tissue remodelling are regulated by a family of proteins (Hedgehog) described as being able to modulate epithelial/mesenchymal interactions. The objective of this study was to perform a comparative study of precancerous lesions and SCCs by immunohistochemistry for the presence of Sonic, Gli2, SMO and Patched proteins, members of the Hedgehog pathway. Sixteen cases diagnosed as actinic cheilitis associated with SCC were compared to normal oral mucosa. The sections were subjected to immunohistochemistry and the positively stained cells were counted by morphometric analysis. There was a significant progressive increase in expression of all proteins of the Hedgehog pathway, both in the epithelium and in the connective tissue, when sections of normal mucosa, dysplasia and carcinoma were compared (P < 0.05). Thus, one may suggest that the Hedgehog pathway in tumour transformation influences SCC, and more studies should be conducted to expand the understanding of the role of these proteins in neoplastic transformation.
Collapse
Affiliation(s)
- Ana Cristina Gonzalez
- Laboratory of Experimental Pathology, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Maira Ferreira
- Basic Science, Bahiana Schoool of Medicine and Public Health, Salvador, Bahia, Brazil
| | - Tamires Ariel
- Laboratory of Experimental Pathology, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Sílvia Regina Reis
- Basic Science, Bahiana Schoool of Medicine and Public Health, Salvador, Bahia, Brazil
| | - Zilton Andrade
- Laboratory of Experimental Pathology, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Alena Peixoto Medrado
- Basic Science, Bahiana Schoool of Medicine and Public Health, Salvador, Bahia, Brazil
| |
Collapse
|
20
|
Mirzapoiazova T, Mambetsariev N, Lennon FE, Mambetsariev B, Berlind JE, Salgia R, Singleton PA. HABP2 is a Novel Regulator of Hyaluronan-Mediated Human Lung Cancer Progression. Front Oncol 2015; 5:164. [PMID: 26258071 PMCID: PMC4508840 DOI: 10.3389/fonc.2015.00164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/06/2015] [Indexed: 01/08/2023] Open
Abstract
Background Lung cancer is a devastating disease with limited treatment options. Many lung cancers have changes in their microenvironment including upregulation of the extracellular matrix glycosaminoglycan, hyaluronan (HA), which we have previously demonstrated can regulate the activity of the extracellular serine protease, hyaluronan binding protein 2 (HABP2). This study examined the functional role of HABP2 on HA-mediated human lung cancer dynamics. Methods Immunohistochemical analysis was performed on lung cancer patient samples using anti-HABP2 antibody. Stable control, shRNA, and HABP2 overexpressing human lung adenocarcinoma cells were evaluated using immunoblot analysis, migration, extravasation, and urokinase plasminogen activator (uPA) activation assays with or without high-molecular weight HA or low-molecular weight HA (LMW-HA). In human lung cancer xenograft models, primary tumor growth rates and lung metastasis were analyzed using consecutive tumor volume measurements and nestin immunoreactivity in nude mouse lungs. Results We provide evidence that HABP2 is an important regulator of lung cancer progression. HABP2 expression was increased in several subtypes of patient non-small cell lung cancer samples. Further, HABP2 overexpression increased LMW-HA-induced uPA activation, migration, and extravasation in human lung adenocarcinoma cells. In vivo, overexpression of HABP2 in human lung adenocarcinoma cells increased primary tumor growth rates in nude mice by ~2-fold and lung metastasis by ~10-fold compared to vector control cells (n = 5/condition). Conclusion Our data suggest a possible direct effect of HABP2 on uPA activation and lung cancer progression. Our observations suggest that exploration of HABP2 in non-small cell lung carcinoma merits further study both as a diagnostic and therapeutic option.
Collapse
Affiliation(s)
- Tamara Mirzapoiazova
- Section of Pulmonary and Critical Care, Department of Medicine, Pritzker School of Medicine, The University of Chicago , Chicago, IL , USA
| | - Nurbek Mambetsariev
- Section of Pulmonary and Critical Care, Department of Medicine, Pritzker School of Medicine, The University of Chicago , Chicago, IL , USA
| | - Frances E Lennon
- Section of Pulmonary and Critical Care, Department of Medicine, Pritzker School of Medicine, The University of Chicago , Chicago, IL , USA ; Section of Hematology/Oncology, Department of Medicine, Pritzker School of Medicine, The University of Chicago , Chicago, IL , USA
| | - Bolot Mambetsariev
- Section of Pulmonary and Critical Care, Department of Medicine, Pritzker School of Medicine, The University of Chicago , Chicago, IL , USA
| | - Joshua E Berlind
- Section of Pulmonary and Critical Care, Department of Medicine, Pritzker School of Medicine, The University of Chicago , Chicago, IL , USA
| | - Ravi Salgia
- Section of Hematology/Oncology, Department of Medicine, Pritzker School of Medicine, The University of Chicago , Chicago, IL , USA
| | - Patrick A Singleton
- Section of Pulmonary and Critical Care, Department of Medicine, Pritzker School of Medicine, The University of Chicago , Chicago, IL , USA ; Department of Anesthesia and Critical Care, Pritzker School of Medicine, The University of Chicago , Chicago, IL , USA
| |
Collapse
|