1
|
Wei K, Jiang K, Chen SX. Prostaglandin E₂ activates the brain-pituitary axis via olfactory pathways in male Bostrychus sinensis. J Steroid Biochem Mol Biol 2025; 249:106703. [PMID: 40020940 DOI: 10.1016/j.jsbmb.2025.106703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/03/2025]
Abstract
Prostaglandin E₂ (PGE₂) has been identified as a key sex pheromone in male Bostrychus sinensis, yet its molecular and neural mechanisms remain unclear. Here, we performed transcriptome sequencing on male B. sinensis brains following exposure to 50 nM PGE₂ to uncover genes and pathways involved in reproductive regulation. RNA-seq analysis revealed significant upregulation of key genes associated with the activation of the brain-pituitary axis. RT-PCR validation further confirmed the significant upregulation the expression of gnrh1 and kiss2 in the brain, as well as lhβ mRNA levels in the pituitary, supporting activation of the reproductive axis. To further elucidate the role of kiss2 in this regulatory pathway, we synthesized the core peptide of BsKiss2-12 and examined its functional effects. Administration of BsKiss2-12 (1μg/g) significantly increased the gnrh1 and kiss1ra mRNA levels in the brain, along with lhβ expression in the pituitary. Additionally, c-fos induction and DiI tracing experiments demonstrated that PGE₂ activated olfactory sensory neurons, relaying signals from the olfactory epithelium to the olfactory bulb and higher brain centers implicated in reproductive behavior. Collectively, our findings reveal that key molecular and neural mechanisms by which the sex pheromone PGE₂ modulates the reproductive axis in male B. sinensis.
Collapse
Affiliation(s)
- Ke Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Ke Jiang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China; Fisheries College, Jimei University, Xiamen, Fujian 361021, China.
| |
Collapse
|
2
|
Ohga H. Puberty regulation in chub mackerel Scomber japonicus, an important aquaculture fish species, via reproductive endocrine mechanism. Gen Comp Endocrinol 2025:114735. [PMID: 40254037 DOI: 10.1016/j.ygcen.2025.114735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
The vertebrate reproductive system is controlled by the brain-pituitary-gonadal reproductive endocrine axis (BPG axis). Gonadotropin-releasing hormone (GnRH) secreted from the hypothalamus regulates the secretion of two gonadotropic hormones (GTHs), follicle-stimulating hormone (FSH) and luteinizing hormone (LH), in the pituitary gland. Steroid hormones, such as androgens and estrogens, secreted in response to GTH stimulation, regulate the development of male and female gametes. Recently, various neuropeptides have been identified in mammals as factors that regulate the BPG axis from the upstream, demonstrating their importance. The author's main research theme is "Understanding the mechanism underlying puberty control in aquaculturally important species." They have been actively investigating the regulatory mechanism of the BPG axis in the puberty of chub mackerel Scomber japonicus, an important fishery species. With this species, researchers can systematically collect target organs, cells, and other organs from individuals at each developmental stage, from fertilized eggs to adult fish after spawning. A highly reproducible rearing experimental system has been established, enabling verification of the knowledge gained through feedback to reared individuals. Furthermore, it has recently become possible to quickly and efficiently produce gene knockout lines using genome editing. This article introduces the mechanism of puberty control in chub mackerel by fully leveraging this experimental platform. Focus will be directed to the functions of kisspeptin, which triggers puberty by regulating GnRH secretion in mammals, and leptin, which transmits nutritional information to the reproductive axis.
Collapse
Affiliation(s)
- Hirofumi Ohga
- Regional Fish Institute, Ltd., Fish Breeding Group, Aqua-plant Miyazu, 1001, Odashukuno, Miyazu-shi, Kyoto 626-0052, Japan
| |
Collapse
|
3
|
Singh A, Lal B, Kumar P, Parhar IS, Millar RP. Nitric oxide mediated kisspeptin regulation of steroidogenesis and gametogenesis in the catfish, Clarias batrachus. Cell Tissue Res 2024; 397:111-124. [PMID: 38829397 DOI: 10.1007/s00441-024-03899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
Nitric oxide (NO) is a gaseous molecule that regulates various reproductive functions. It is a well-recognized regulator of GnRH-FSH/LH-sex steroid secretion in vertebrates including fish. Kisspeptin is a recently discovered neuropeptide which also regulates GnRH secretion. Nitrergic and kisspeptin neurons are reported in close physical contact in the mammalian brain suggesting their interactive role in the release of GnRH. The existence of kisspeptin and NOS is also demonstrated in vertebrate gonads, but information on their reciprocal relation in gonads, if any, is obscure. Therefore, attempts were made to evaluate the functional reciprocal relation between nitric oxide and kisspeptin in the catfish gonads, if any, by administering the nitric oxide synthase (NOS) inhibitor, L-NAME {N(G)-nitro-L-arginine methyl ester}, which reduces NO production, and kisspeptin agonist (KP-10) and assessing their impacts on the expressions of kisspeptin1, different NOS isoforms, NO and steroid production in the gonadal tissue. The results revealed that L-NAME suppressed the expression of kiss1 in gonads of the catfish establishing the role of NO in kisspeptin expression. However, KP-10 increased the expression of all the isoforms of NOSs (iNOS, eNOS, nNOS) and concurrently NO and steroids in the ovary and testis. In vitro studies also indicate that kisspeptin stimulates the production of NO and estradiol and testosterone levels in the gonadal explants and medium. Thus, in vivo results clearly suggest a reciprocal interaction between kisspeptin and NO to regulate the gonadal activity of the catfish. The in vitro findings further substantiate our contention regarding the interactive role of kisspeptin and NO in gonadal steroidogenesis.
Collapse
Affiliation(s)
- Ankur Singh
- Fish Endocrinology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Bechan Lal
- Fish Endocrinology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Pankaj Kumar
- Department of Zoology, University of Jammu, Jammu, UT of Jammu and Kashmir, India
| | - Ishwar S Parhar
- Center Initiative for Training International Researches, University of Toyama, Toyama, Japan
| | - Robert P Millar
- Centre for Neuroendocrinology, Department of Immunology, University of Pretoria, Pretoria, South Africa
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Kumar TP, Gireesh-Babu P, Vasudevan D, Pavan-Kumar A, Chaudhari A. Characterization of Kiss/Kissr system and expression profiling through developmental stages indicate kiss1 to be the active isotype in Clarias magur. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1353-1373. [PMID: 38647980 DOI: 10.1007/s10695-024-01343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Kisspeptin (Kiss) and kisspeptin receptor (Kissr) system is a key regulator of GnRH expression in several vertebrates. The Indian catfish, Clarias magur, is popular in the Indian sub-continent, and a neo-type of the Asian catfish, C. batrachus. Catfish breeding is constrained as males do not release milt captivity with/without stimulation. Magur Kiss/Kissr system comprising of kiss1, kiss2, kissr1, and kissr2 genes was characterized for the first time. Full-length mRNA was sequenced using RACE PCR. Neighbor-joining tree of predicted proteins shows one clade of teleost orthologs. Magur whole genome (NCBI GenBank) has single copies of each gene, though yet unannotated/misannotated. Anomalies in the nomenclature of earlier sequences in GenBank were noted. Relative gene expression was profiled during various ontogenic stages, in six tissues including brain and gonads at maturity, and also in brains and gonads of premature and spent fish. Expression of gnrh1, gnrhr1, and gnrhr2 was estimated concomitantly. The kiss1 was the first to be twofold upregulated (P < 0.05) at 12 h post fertilization. Kiss/Kissr genes expressed primarily in the brain, ovary, and testis. Though kiss2 was 10 times higher than kiss1, only kiss1 showed significant modulation across stages and appears to be the active isotype that regulates GnRH in magur.
Collapse
Affiliation(s)
- Thushar P Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | | | - Dileep Vasudevan
- RGCB-Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Annam Pavan-Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Aparna Chaudhari
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India.
| |
Collapse
|
5
|
Kumar S, Das D, Sarbajna A, Chakraborty SB. Zinc modulates hypothalamo-pituitary-gonadal-liver axis to impair reproduction in female Mystus vittatus (Bloch, 1794). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42212-42229. [PMID: 38862804 DOI: 10.1007/s11356-024-33884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
The present study investigated the effects of zinc on the hypothalamo-pituitary-gonadal-liver (HPGL) axis of the bagrid catfish Mystus vittatus. Female fish (pre-ovulatory and ovulatory phases) were exposed to zinc sulphate at 1/10th of LC50 (5.62 mg/L) for 60 days and sacrificed at every 15-day interval to collect tissues. Zinc concentration in all tissues was significantly higher in the metal-exposed group at all exposure durations compared to control for both phases. Metallothionein (MT) levels increased in the brain, liver and ovary of fish from both phases with exposure duration. Reactive oxygen species (ROS) generation in the brain, liver and ovary tissues increased with exposure duration at both reproductive phases while serum cortisol levels in ovulatory fish increased significantly compared to pre-ovulatory. Condition factor, gonadosomatic index and hepatosomatic index decreased in Zn-exposed fish. Brain GnRH and kisspeptin levels decreased significantly in the Zn-exposed group for both phases. GnIH was significantly higher in Zn-exposed fish. Serum FSH levels in pre-ovulatory and LH levels in ovulatory fish decreased gradually with an increase in the duration of exposure. Zn exposure reduced vitellogenin (Vtg) and estradiol (E2) in the liver and ovary with an increase in duration from both phases. Ovary maturation-inducing hormone (MIH) levels showed a decrease with exposure duration in ovulatory fish. Moreover, Zn-exposed ovulatory fish showed a degenerated oocyte nucleus due to the disintegration of the nuclear membrane. It might be inferred that Zn altered the HPGL regulatory system of M. vittatus reproduction at both the pre-ovulatory and ovulatory phases.
Collapse
Affiliation(s)
- Saheli Kumar
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Debjit Das
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
- Department of Zoology, Gobardanga Hindu College, 24-Parganas (North), Gobardanga, India
| | - Adity Sarbajna
- Department of Zoology, Surendranath College, Kolkata, India
| | - Suman Bhusan Chakraborty
- Fish Endocrinology Research Unit, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
6
|
Hatef A, Rajeswari JJ, Unniappan S. Kisspeptin stimulates oocyte maturation, and food deprivation modulates the abundance of kisspeptin system in zebrafish gonads. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Lyu L, Wen H, Li Y, Li J, Wang X, Yao Y, Qi X. Brain Transcriptomic Dataset During Parturition in Ovoviviparous Sebastes schlegelii. Front Genet 2022; 13:840067. [PMID: 35186048 PMCID: PMC8854175 DOI: 10.3389/fgene.2022.840067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/14/2022] [Indexed: 12/05/2022] Open
|
8
|
Hypothalamic kisspeptin and kisspeptin receptors: Species variation in reproduction and reproductive behaviours. Front Neuroendocrinol 2022; 64:100951. [PMID: 34757093 DOI: 10.1016/j.yfrne.2021.100951] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023]
Abstract
Kisspeptin, encoded by the KISS1 gene, was first discovered as a potential metastasis suppressor gene. The prepro-kisspeptin precursor is cleaved into shorter mature bioactive peptides of varying sizes that bind to the G protein-coupled receptor GPR54 (=KISS1R). Over the last two decades, multiple types of Kiss and KissR genes have been discovered in mammalian and non-mammalian vertebrate species, but they are remarkably absent in birds. Kiss neuronal populations are distributed mainly in the hypothalamus. The KissRs are widely distributed in the brain, including the hypothalamic and non-hypothalamic regions, such as the hippocampus, amygdala, and habenula. The role of KISS1-KISS1R in humans and Kiss1-Kiss1R in rodents is associated with puberty, gonadal maturation, and the reproductive axis. However, recent gene deletion studies in zebrafish and medaka have provided controversial results, suggesting that the reproductive role of kiss is dispensable. This review highlights the evolutionary history, localisation, and significance of Kiss-KissR in reproduction and reproductive behaviours in mammalian and non-mammalian vertebrates.
Collapse
|
9
|
Seasonal expression and distribution of kisspeptin1 (kiss1) in the ovary and testis of freshwater catfish, Clarias batrachus: A putative role in steroidogenesis. Acta Histochem 2021; 123:151766. [PMID: 34384940 DOI: 10.1016/j.acthis.2021.151766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022]
Abstract
The central role of kisspeptin (kiss) in mammalian reproduction is well established; however, its intra-gonadal role is poorly addressed. Moreover, studies investigating intra-gonadal role of kiss in fish reproduction are scanty, contradictory and inconclusive. The expression of kiss1 mRNA has been detected in the fish brain, and functionally attributed to the regulation of reproduction, feeding and behavior. The kiss1 mRNA has also been demonstrated in tissues other than the brain in some studies, but its cellular distribution and role at the tissue level have not been adequately addressed in fish. Therefore, an attempt was made in the present study to localize kiss1 in gonadal cells of the freshwater catfish, Clarias batrachus. This study reports the presence of kiss1 in the theca cells and granulosa cells of the ovarian oocytes and interstitial cells in the testis of the catfish. The role of kiss1 in the ovary and testis of the catfish was also investigated using kiss1 receptor (kiss1r) antagonist (p234). The p234 treatment decreased the production of 17β-estradiol in ovary and testosterone in the testis by lowering the activities of 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase under both, in vivo as well as in vitro conditions. The p234 treatment also arrested the progression of oogenesis, as evident from the low number of advancing/advanced oocytes in the treated ovary in comparison to the control ovary. It also reduced the area and perimeter of the seminiferous tubules in the treated catfish testis. Thus, our findings suggest that kiss is involved in the regulation of gonadal steroidogenesis, independent of known endocrine/ autocrine/ paracine regulators, and thereby it accelerates gametogenic processes in the freshwater catfish.
Collapse
|
10
|
Zahangir MM, Matsubara H, Ogiso S, Suzuki N, Ueda H, Ando H. Expression dynamics of the genes for the hypothalamo-pituitary-gonadal axis in tiger puffer (Takifugu rubripes) at different reproductive stages. Gen Comp Endocrinol 2021; 301:113660. [PMID: 33189658 DOI: 10.1016/j.ygcen.2020.113660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 12/27/2022]
Abstract
Tiger puffer, Takifugu rubripes, a commercially important long-distance migratory fish, return to specific spawning grounds for reproduction. To clarify reproductive neuroendocrine system of the tiger puffer, the changes in the expression levels of the genes encoding three gonadotropin-releasing hormones (GnRHs), gonadotropin-inhibitory hormone (GnIH), GnIH receptor (GnIH-R), kisspeptin and kisspeptin receptor in the brain and gonadotropin (GTH) subunits, growth hormone (GH) and prolactin (PRL) in the pituitary were examined in the tiger puffer captured in the wild at different reproductive stages, namely immature and mature fish of both sexes, and post-ovulatory females that were obtained by hormonal treatment. The amounts of three gnrh mRNAs, gnih, gnih-r, fshb and lhb were substantially increased in the mature fish compared to the immature fish, especially in the females, and these augmented expressions were drastically decreased in the post-ovulatory females. gh expression showed a slight increase in the mature males. In contrast, kiss2, kiss2r and prl did not show significant changes in the males but significantly decreased in the post-ovulatory females. The present results demonstrate the expression dynamics of the hypothalamo-pituitary-gonadal axis genes associated with the reproductive conditions and the possible involvement of the GnRH/GnIH/GTH system in the regulation of the sexual maturation and spawning in the wild tiger puffer.
Collapse
Affiliation(s)
- Md Mahiuddin Zahangir
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan
| | - Hajime Matsubara
- Noto Center for Fisheries Science and Technology, Kanazawa University, Noto-cho, Ishikawa 927-0552, Japan
| | - Shouzo Ogiso
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Ishikawa 927-0553, Japan
| | - Hiroshi Ueda
- Hokkaido University and Hokkaido Aquaculture Promotion Corporation, Sapporo 003-0874, Japan
| | - Hironori Ando
- Marine Biological Station, Sado Island Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan.
| |
Collapse
|
11
|
Kumari P, Kumar M, Sehgal N, Aggarwal N. In silico analysis of kiss2, expression studies and protein-protein interaction with gonadotropin-releasing hormone 2 (GnRH2) and luteinizing hormone beta (LHβ) in Heteropneustes fossilis. J Biomol Struct Dyn 2020; 40:4543-4557. [PMID: 33345697 DOI: 10.1080/07391102.2020.1860820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Kisspeptins, encoded by the kiss genes, are neuropeptides that regulate the onset of puberty, maturation of gonads, and fertility in higher vertebrates including fishes. The gene ontology suggests that kisspeptin plays an important role not only in reproduction but also in cell signaling, immune response and metabolic processes, and to decipher protein-protein interactions, computational approach has been favored. The present investigation focuses on the detailed structural analysis and molecular docking of kiss2 gene using in silico tools. A putative kiss2 protein of 113 amino acids was encoded by an open reading frame of 342 bp kiss2 gene. The protein is of 13.12 kDa with isoelectric point of 9.45. The secondary structure of the protein indicates more than 50% random coils, followed by 34% of alpha helix and 13% extended strand. The protein was found to be extracellular and secretory in nature. Since, protein-protein interactions play a very crucial role in every cellular process and due to unavailability of crystal structure of our protein of interest in fishes computational approach has been employed. The 3D PDB modeling and the molecular docking of kiss2, Gonadotropin-releasing hormone 2 (GnRH2) and luteinizing hormone beta (LHβ) proteins in fishes have been demonstrated applying protein-docking approach. Molecular interactions of kiss2 protein were the highest with kisspeptin receptor 2 and lowest for the neuropeptide FF-amide peptide precursor protein. Expression of kiss2 transcripts, mainly in the brain and ovary of H. fossilis, supports its hypothalamic-pituitary-gonadal axis signaling and reproductive function. Further, changes in expression patterns of kiss2 mRNA during different developmental stages, indicate its potential role in embryonic development also. The present study conclusively reveals interaction of kiss2 with other neuropeptides. Prediction of binding structures and identification of key residues in protein-protein interaction illustrate direct interaction among these proteins, playing a cardinal role in neuroendocrine regulation of reproduction in catfish. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Zoology, University of Delhi, Delhi, India
| | - Mohit Kumar
- Department of Zoology, University of Delhi, Delhi, India
| | - Neeta Sehgal
- Department of Zoology, University of Delhi, Delhi, India
| | | |
Collapse
|
12
|
Chaube R, Sharma S, Senthilkumaran B, Bhat SG, Joy KP. Identification of kisspeptin2 cDNA in the catfish Heteropneustes fossilis: Expression profile, in situ localization and steroid modulation. Gen Comp Endocrinol 2020; 294:113472. [PMID: 32243956 DOI: 10.1016/j.ygcen.2020.113472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/22/2020] [Accepted: 03/28/2020] [Indexed: 01/02/2023]
Abstract
Kisspeptin (Kiss) is considered an upstream regulator of gonadotropin-releasing hormone in mammals but its role in non-mammalian vertebrates is not unequivocally established. In the catfish Heteropneustes fossilis, a 605 bp long cDNA was identified from the brain by cloning as well as by retrieving from the catfish transcriptome database. The open reading frame (ORF, 93-405 bp) codes for a 113 amino acids long precursor protein. Homology and phylogenetic analyses showed that the predicted protein belongs to the vertebrate Kiss2 type with a high degree of conservation in the Kiss2-10 region (FNFNPFGLRF). The kiss2 transcripts were expressed highly in the brain and gonads in a dimorphic manner with a female bias. In the brain, kiss2 transcripts showed regional differences with higher expression in the medulla oblongata and forebrain regions. The kiss2 transcripts showed significant seasonal variations with the highest expression in the brain in spawning phase and in the gonads in prespawning phase. The kiss2 transcripts were localized in the brain (nucleus preopticus, habenular nucleus, nucleus recessus posterioris, nucleus recessus lateralis) and stratum periventriculare (radial glial cells) of optic tectum, pituitary and ovary (follicular layer and germinal vesicle). Ovariectomy (1, 2, 3 and 4 weeks) decreased brain kiss2 mRNA levels and a single injection of estradiol-17β (E2; 0.5 μg/g body weight) in 3- week ovariectomized (OVX) and sham operated fish resulted in an increase in the transcript levels after 24 h. The E2 receptor antagonist Tamoxifen (TMX) produced biphasic effects on the kiss2 expression in the dose- response study. TMX inhibited the expression in the OVX fish, but elicited a stimulatory effect in the OVX + E2-treated fish. Testosterone (T) decreased, and progesterone (P4) inhibited (resting phase) or stimulated (prespawning phase) the transcript level in 3-week OVX fish. In the 3-week sham groups, E2 increased, and TMX, T and P4 inhibited the kiss2 transcript levels. The results suggest that Kiss2 is an important regulator of the brain- pituitary- gonadal- endocrine axis, and in habenular and optic tectum functions.
Collapse
Affiliation(s)
- R Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - S Sharma
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - B Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - S G Bhat
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi 682022, India
| | - K P Joy
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi 682022, India.
| |
Collapse
|
13
|
Xiong S, Tian J, Ge S, Li Z, Long Z, Guo W, Huang P, He Y, Xiao T, Gui JF, Mei J. The microRNA-200 cluster on chromosome 23 is required for oocyte maturation and ovulation in zebrafish†. Biol Reprod 2020; 103:769-778. [PMID: 32697314 DOI: 10.1093/biolre/ioaa125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/24/2022] Open
Abstract
The reproductive process is usually controlled by the hypothalamic-pituitary-gonad axis in vertebrates, while Kiss/gonadotropin-releasing hormone (GnRH) system in the hypothalamus is required for mammalian reproduction but dispensable for fish reproduction. The regulation of follicle stimulating hormone/luteinizing hormone (LH) expression in fish species is still unknown. Here, we identified miR-200s on chromosome 23 (chr23-miR-200s) as important regulators for female zebrafish reproduction. Knockout of chr23-miR-200s (chr23-miR-200s-KO) resulted in dysregulated expression of luteinizing hormone beta lhb (luteinizing hormone beta) and some hormone genes in the pituitary as revealed by comparative transcriptome profiling, leading to failure of oocyte maturation and ovulation as well as defects in reproductive duct development. Chr23-miR-200s mainly expressed in the pituitary and regulated lhb expression by targeting the transcription repressor wt1a. Injection of human chorionic gonadotropin (hCG) could rescue the defects of oocyte maturation in chr23-miR-200s-KO zebrafish, whereas GnRH or LHRH-A2 could not, suggesting that Chr23-miR-200s regulated lhb expression in a GnRH-independent pathway. It was remarkable that either injection of carp pituitary extraction, or co-injection of hCG with synthetic oxytocin and vasotocin could greatly rescue the defects of both oocyte maturation and ovulation in chr23-miR-200s-KO zebrafish. Altogether, our findings highlight an important function of chr23-miR-200s in controlling oocyte maturation by regulation LH expression, and oxytocin and vasotocin are potentially responsible for the ovulation in fish species.
Collapse
Affiliation(s)
- Shuting Xiong
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China
| | - Jinsong Tian
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Si Ge
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China
| | - Zhe Long
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China
| | - Wenjie Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Peipei Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yan He
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, China
| | - Jian-Fang Gui
- College of Fisheries, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Wu H, Saito Y, Yoshiura Y, Ohnuki H, Endo H. Development of an enzyme-functionalized immunosensor for measuring maturation-inducing hormone in fish. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Su S, Li Q, Li X, Rong C, Xie Q. Expression of the kisspeptin/gonadotropin-releasing hormone (GnRH) system in the brain of female Chinese sucker (Myxocyprinus asiaticus) at the onset of puberty. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:293-303. [PMID: 31701283 DOI: 10.1007/s10695-019-00717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
The kisspeptin-kisspeptin receptor (kissr)-gonadotropin-releasing hormone (GnRH) system plays a key role in regulating the onset of puberty in mammals. However, the role of this system in fish is still unclear. We examined the relative gene expression patterns for kiss1, kiss2, kissr2, sGnRH, and pjGnRH in all parts of the brains of Chinese sucker (Myxocyprinus asiaticus) females at the prepubertal and pubertal stages by using real-time PCR. We also analyzed the expression of kiss1 and GnRH1 via immunofluorescence. Two variants of kisspeptin; a variant of kissr (kissr2); and two variants of GnRH, pjGnRH (GnRH1), and sGnRH (GnRH3), were expressed in all parts of the brain. The mRNA expression of kiss1 was higher in the telencephalon, mesencephalon, and diencephalon at the pubertal stage than at the prepubertal stage, and the expression of kiss2 was higher in only the telencephalon. The expression of kissr2 was higher in all parts of the brain, except the medulla, at the pubertal stage than at the prepubertal stage. pjGnRH was highly expressed in all parts of the brain at the pubertal stage, whereas sGnRH expression showed no distinct changes, except in the epencephalon. Strong kiss1 and weak GnRH-1 immunoreactivity was observed in the pineal gland, lateral tuberal nucleus (NLT), and ventral part of the NLT in the diencephalon of the Chinese sucker females at the pubertal stage. Our results suggest that the kiss1-kissr2-pjGnRH system was expressed highly at the onset of pubertal female Chinese sucker.
Collapse
Affiliation(s)
- Shiping Su
- College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, People's Republic of China.
| | - Qingqing Li
- College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, People's Republic of China
| | - Xilei Li
- College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, People's Republic of China
| | - Chaozhen Rong
- Hefei Animal Husbandry and Aquatic Extension Technology Center, Fuyang Road, Hefei, Anhui, 230001, People's Republic of China
| | - Qiming Xie
- College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, People's Republic of China
| |
Collapse
|
16
|
Sahoo L, Sahoo S, Mohanty M, Sankar M, Dixit S, Das P, Rasal KD, Rather MA, Sundaray JK. Molecular characterization, computational analysis and expression profiling of Dmrt1 gene in Indian major carp, Labeo rohita (Hamilton 1822). Anim Biotechnol 2019; 32:413-426. [PMID: 31880491 DOI: 10.1080/10495398.2019.1707683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sexual dimorphism of fish morphology, physiology and behavior is diverse and complex in nature. Doublesex and mab-3 related transcription factor (Dmrt) is a large protein family whose function is sexual development and differentiation in vertebrates. Here, we report a full-length cDNA sequence of Labeo rohita (rohu) Dmrt1 of 907 bp length having 798 bp of open reading frame encoding 265 amino acids. The molecular weight of rohu DMRT1 protein was found to be 28.74 KDa and isoelectric point was 7.53. DMRT1 protein contains 23 positively and 24 negatively charged amino acids with a GRAVY score of -0.618. A characteristic DM domain was found in DMRT1 protein, which is a novel DNA-binding domain. Phylogenetic analysis showed maximum similarity with Cyprinus carpio when compared with DMRT1 of other vertebrates. Molecular docking study identified active sites to be targeted for drug designing. Rohu DMRT1 was observed to interact with other proteins such as FOXL2, CYP19a1a, AMH and SOX9a. Differential expression study revealed higher expression in testis tissue implying its role in male sex differentiation and testicular development. The information generated in the present work could facilitate further research to resolve the issues related to gonadal maturation and reproduction of commercially important aquaculture species.
Collapse
Affiliation(s)
- L Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - S Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - M Mohanty
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - M Sankar
- ICAR-Central Marine Research Institute, Mandapam Regional Centre, Tamil Nadu, India
| | - S Dixit
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - P Das
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - K D Rasal
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - M A Rather
- Division of Fish genetics and Biotechnology, Faculty of Fisheries, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - J K Sundaray
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| |
Collapse
|
17
|
Yi TL, Pei MT, Yang DQ. Expression patterns of kiss2 and gpr54-2 in Monopterus albus suggest these genes may play a role in sex reversal in fish. FEBS Open Bio 2019; 9:1835-1844. [PMID: 31446680 PMCID: PMC6768111 DOI: 10.1002/2211-5463.12727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/04/2019] [Accepted: 08/23/2019] [Indexed: 01/08/2023] Open
Abstract
Due to its exceptionally small genome size and protogynous hermaphroditism, Monopterus albus has been proposed as a model for vertebrate sexual development. The Kiss/GPR54 system is a central regulator of sexual development in most vertebrates, but its role in sex reversal remains hypothetical. In contrast to mammals, fishes often possess more than one copy of the kiss and gpr54 genes. Our objectives were to identify all kiss/gpr54 genes in the genome of M. albus and to assess their involvement in sex reversal via their expression patterns (qPCR) in females, males, and intersex specimens. We identified only two genes: kiss2 and gpr54‐2. kiss2 expression was extremely high in the gonads of males, intermediate in females, and low in intersex; and reduced in all tissues of intersex. gpr54 expression was also extremely high in the gonads of males, high in intersex, but low in females. gpr54 expression in brain was high in all three sexes. In conclusion, (a) kiss1 has been functionally replaced in M. albus; (b) the functions of gpr54‐2 in brain are not sex‐specific; (c) kiss2 appears to undergo a ‘reset’ in the expression during the sex change; and (d) sex‐specific expression patterns in the gonads indicate that these two genes may play a role in sex reversal in fish.
Collapse
Affiliation(s)
- Ti-Lin Yi
- Yangtze University Engineering Research Center for Ecology and Agriculture Use of Wetland, Ministry of Education, Jingzhou, China.,School of Animal Science, Yangtze University, Jingzhou, China
| | - Meng-Ting Pei
- Hubei Provincial Engineering and Technology Research Center for Monopterus albus, Jingzhou, China.,Hubei Zhongqing Aquaculture Industry Technology Research Institute and limited company, Jingzhou, 434026, China
| | - Dai-Qin Yang
- Yangtze University Engineering Research Center for Ecology and Agriculture Use of Wetland, Ministry of Education, Jingzhou, China.,School of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
18
|
Ma XL, Yuan BL, Zhou LB. The Kiss2/GPR54 system stimulates the reproductive axis in male black porgy, Acanthopagrus schlegelii. Gen Comp Endocrinol 2019; 280:158-167. [PMID: 31026424 DOI: 10.1016/j.ygcen.2019.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 04/17/2019] [Accepted: 04/21/2019] [Indexed: 01/09/2023]
Abstract
Although it is well established that the Kiss1/GPR54 system stimulates the reproductive axis in mammals, its functional roles, especially in male reproduction of non-mammalian species, is less clear. In this study, we have isolated the full-length kiss2 and gpr54 cDNAs from black porgy (Acanthopagrus schlegelii). The Kiss2 precursor expressed from kiss2 comprises 124 amino acids and contains a highly conserved 10-amino acid sequence, Kiss2-10 (FNFNPFGLRF). GPR54 comprises 375 amino acid residues and contains distinct characteristics of G protein-coupled receptors. Real-time PCR analysis indicated that kiss2 and gpr54 were expressed highly in the brain regions. Moreover, intraperitoneal injection of porgy Kiss2-10 could stimulate genes expression of the gpr54, gnrh1, gnrh3, fshβ, lhβ, p450c17, star, and ar, and the serum testerone level in male black porgy. Our findings demonstrate that the Kisspeptin stimulates the male reproductive axis in black porgy.
Collapse
Affiliation(s)
- Xi-Lan Ma
- Department of Life Science, Huizhou University, Huizhou 516007, PR China.
| | - Bao-Lei Yuan
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Li-Bin Zhou
- Department of Life Science, Huizhou University, Huizhou 516007, PR China
| |
Collapse
|
19
|
Ohga H, Selvaraj S, Matsuyama M. The Roles of Kisspeptin System in the Reproductive Physiology of Fish With Special Reference to Chub Mackerel Studies as Main Axis. Front Endocrinol (Lausanne) 2018; 9:147. [PMID: 29670580 PMCID: PMC5894438 DOI: 10.3389/fendo.2018.00147] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 12/27/2022] Open
Abstract
Kisspeptin, a novel neuropeptide product of the Kiss1 gene, activates the G protein-coupled membrane receptor G protein-coupled receptor 54 (now termed Kiss1r). Over the last 15 years, the importance of the kisspeptin system has been the subject of much debate in the mammalian research field. At the heart of the debate is whether kisspeptin is an absolute upstream regulator of gonadotropin-releasing hormone secretion, as it has been proposed to be the master molecule in reproductive events and plays a special role not only during puberty but also in adulthood. The teleostean kisspeptin system was first documented in 2004. Although there have been a number of kisspeptin studies in various fish species, the role of kisspeptin in reproduction remains a subject of controversy and has not been widely recognized. There is an extensive literature on the physiological and endocrinological bases of gametogenesis in fish, largely derived from studying small, model fish species, and reports on non-model species are limited. The reason for this discrepancy is the technical difficulty inherent in developing rigorous experimental systems in many farmed fish species. We have already established methods for the full life-cycle breeding of a commercially important marine fish, the chub mackerel (cm), and are interested in understanding the reproductive function of kisspeptins from various perspectives. Based on a series of experiments clarifying the role of the brain-pituitary-gonad axis in modulating reproduction in cm, we theorize that the kisspeptin system plays an important role in the reproduction of this scombroid species. In this review article, we provide an overview of kisspeptin studies in cm, which substantially aids in elucidating the role of kisspeptins in fish reproduction.
Collapse
|
20
|
Transcriptome profiling of the hypothalamus and pituitary at gonadal maturation and regression phases in marbled flounder (Pseudopleuronectes yokohamae). Genes Genomics 2017. [DOI: 10.1007/s13258-016-0479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Zhai J, Ding L, Zhao S, Li W, Sun Y, Su S, Zhang J, Zhao H, Chen ZJ. Kisspeptin: a new marker for human pre-ovulation. Gynecol Endocrinol 2017; 33:560-563. [PMID: 28266227 DOI: 10.1080/09513590.2017.1296129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Kisspeptin is a polypeptide that plays an important role in reproductive endocrine regulation. The aim of present study was to investigate the dynamic trend of kisspeptin levels during the menstrual cycle and to elucidate the relationship between kisspeptin ovulation. First, 15 female volunteers with regular menstrual cycles were recruited to detect the change in serum and urine kisspeptin levels over one menstrual cycle within each individual. Subsequently, 114 serum samples and 79 urine samples from 114 individuals were randomly collected at the outpatient department to better ascertain the results. Kisspeptin levels showed a distinctive stage-specific pattern during the normal menstrual cycle in both serum and urine. It was low during the first 5 days, while the first surge appeared on the 11th day (the diameter of the dominant follicle was approximately 1.2 cm). Later, a second smaller surge appeared around the 14th day and the same changes were identified in serum and urine. Furthermore, serum kisspeptin levels were positively related to 17-β estradiol (E2) level increase. Thus, kisspeptin surge in serum and urine may be used as a marker for dominant follicle development and pre-ovulation. Moreover, kisspeptin may also play a vital role in female reproduction through regulating hormonal state.
Collapse
Affiliation(s)
- Junyu Zhai
- a Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
- b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , China
| | - Lingling Ding
- c Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Shigang Zhao
- c Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Weiping Li
- a Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
- b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , China
| | - Yinhua Sun
- c Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Shizhen Su
- c Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Jiangtao Zhang
- c Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Han Zhao
- c Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Zi-Jiang Chen
- a Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , China
- b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , China
- c Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University , Jinan , China
- d National Research Center for Assisted Reproductive Technology and Reproductive Genetics , Jinan , China
- e The Key Laboratory for Reproductive Endocrinology of Ministry of Education , Jinan , China , and
- f Shandong Provincial Key Laboratory of Reproductive Medicine , Jinan , China
| |
Collapse
|
22
|
Song H, Wang M, Wang Z, Liu J, Qi J, Zhang Q. Characterization of kiss2 and kissr2 genes and the regulation of kisspeptin on the HPG axis in Cynoglossus semilaevis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:731-753. [PMID: 28120214 DOI: 10.1007/s10695-016-0328-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Reproduction allows organisms to produce offspring. Animals shift from immature juveniles into mature adults and become capable of sexual reproduction during puberty, which culminates in the first spermiation and sperm hydration or ovulation. Reproduction is closely related to the precise control of the hypothalamic-pituitary-gonadal (HPG) axis. Kisspeptin peptides are considered as the important regulator of HPG axis in mammalian. However, the current understanding of kisspeptin in flatfish is not comprehensive. In this study, we cloned and analyzed the kiss2 and kissr2 genes in Cynoglossus semilaevis. Interesting alternative splicing in the 5'-untranslated regions (UTR) of the Cskissr2 gene was found. The expression profiles of Cskiss2 and Cskissr2 showed relative high messenger RNA (mRNA) levels at the late gastrula stage during embryonic development, at total length = 40 mm during early gonadal differentiation, and in the brains and gonads of all investigated tissues. These results suggested that the kisspeptin system participated in embryogenesis and in the regulation of gonadal differentiation and development. Considering that the control and regulatory mechanisms of kisspeptin in the central reproductive axis are still unclear, we documented that the intramuscular injection of kisspeptin caused different sGnRH and cGnRH mRNA levels in a dose- and tissue-dependent manner. The mRNA expressions of FSH and LH were stimulated in the ovary and were inhibited in the testis under the kisspeptin treatments. These results provided foundations for understanding the roles of kisspeptin in the neuroendocrine system in fish. The manipulation of the kisspeptin system may provide new opportunities to control the gonadal development and even reproduction in fish.
Collapse
Affiliation(s)
- Huayu Song
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Mengxun Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Zhongkai Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
23
|
Shahi N, Singh AK, Sahoo M, Mallik SK, Thakuria D. Molecular cloning, characterization and expression profile of kisspeptin1 and kisspeptin1 receptor at brain-pituitary-gonad (BPG) axis of golden mahseer, Tor putitora (Hamilton, 1822) during gonadal development. Comp Biochem Physiol B Biochem Mol Biol 2017; 205:13-29. [DOI: 10.1016/j.cbpb.2016.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/14/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
|
24
|
Jamil Z, Fatima SS, Arif S, Alam F, Rehman R. Kisspeptin and embryo implantation after ICSI. Reprod Biomed Online 2017; 34:147-153. [DOI: 10.1016/j.rbmo.2016.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 10/27/2016] [Accepted: 11/02/2016] [Indexed: 11/28/2022]
|
25
|
Song H, Wang M, Wang Z, Yu H, Wang Z, Zhang Q. Identification and characterization of kiss2 and kissr2 homologs in Paralichthys olivaceus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1073-1092. [PMID: 26905261 DOI: 10.1007/s10695-016-0199-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/09/2016] [Indexed: 06/05/2023]
Abstract
The role of kisspeptin in puberty onset has been extensively investigated by neuroendocrinologists in the past decade. In the present study, we first cloned and analyzed Pokiss2 and Pokissr2 genes in Paralichthys olivaceus, a Pleuronectiformes fish. By 5'/3' rapid amplification of cDNA ends (RACE), the P. olivaceus kiss2 gene (Pokiss2) and two isoforms of the P. olivaceus kissr2 gene (Pokissr2) transcripts were cloned. During development, Pokissr2 was maternally inherited but Pokiss2 was not, and their expression reached maximum and minimum levels, respectively, when the gonads began to develop. Analysis of tissue distribution revealed that Pokiss2 and Pokissr2 transcripts were predominantly expressed in the brain and gonads, with expression levels in females higher than those in males. Moreover, Pokiss2 and Pokissr2 both showed significantly higher expression in brains and gonads during puberty. In situ hybridization of the ovary at pre-vitellogenesis stage and testis at spermatogonial proliferation stage revealed that both Pokiss2 and Pokissr2 were expressed in spermatocyte, oocytes, and some somatic cells. Our results also showed significantly stronger Pokiss2 expression in the area of the third ventricle of females than males and no Pokissr2 expression in this region in both sexes. These results lay a strong foundation for understanding the role of kisspeptin in neuroendocrine system in teleosts, in particular in Pleuronectiformes.
Collapse
Affiliation(s)
- Huayu Song
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Mengxun Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Zhongkai Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Zhigang Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
26
|
Selvaraj S, Kitano H, Ohga H, Yamaguchi A, Matsuyama M. Expression changes of mRNAs encoding kisspeptins and their receptors and gonadotropin-releasing hormones during early development and gonadal sex differentiation periods in the brain of chub mackerel (Scomber japonicus). Gen Comp Endocrinol 2015; 222:20-32. [PMID: 25304825 DOI: 10.1016/j.ygcen.2014.09.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 01/15/2023]
Abstract
In recent years, brain kisspeptin system has been shown to be involved in diverse reproductive function, including sexual differentiation in vertebrates. Our previous reports demonstrated that the chub mackerel (Scomber japonicus) brain expresses two kisspeptin (kiss1, kiss2), two kisspeptin receptor (kissr1, kissr2) and three gonadotropin-releasing hormone (gnrh1, gnrh2, gnrh3) genes. In the present study, using quantitative real-time PCR (qRT-PCR) assays, we analysed expression changes of these genes during early development (0-30dphs) and gonadal sex differentiation periods (37-60dphs). Absolute expression level of kiss-kissr-gnrh in the whole head was higher between 0 and 15dphs, in comparison to later developmental periods. Histological analyses revealed presence of sexually differentiated males and females with testicular and ovarian features at 37, 45, and 60dphs. In both males and females, kiss2, kissr1, and kissr2 levels were higher at 37dph, in comparison to 45 and 60dphs, with kiss1 showing no significant differences. Levels of all three gnrh mRNAs were higher at 45dph, in comparison to 60dph. Changes in the expression level of kiss-kissr-gnrh mRNAs in different brain regions of sexually differentiated males and females indicated differences in their regional distribution. These results suggest possible involvement of Kiss-KissR-GnRH systems during early development and gonadal sex differentiation in the chub mackerel.
Collapse
Affiliation(s)
- Sethu Selvaraj
- Laboratory of Marine Biology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Hajime Kitano
- Fisheries Research Institute of Karatsu, Department of Joint Research, Faculty of Agriculture, Kyushu University, Saga 847-0132, Japan
| | - Hirofumi Ohga
- Laboratory of Marine Biology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Akihiko Yamaguchi
- Laboratory of Marine Biology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Michiya Matsuyama
- Laboratory of Marine Biology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan.
| |
Collapse
|
27
|
Polymorphism and DNA methylation in the promoter modulate KISS1 gene expression and are associated with litter size in goats. Anim Reprod Sci 2015; 155:36-41. [DOI: 10.1016/j.anireprosci.2015.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/26/2015] [Accepted: 01/30/2015] [Indexed: 12/22/2022]
|
28
|
Song H, He Y, Ma L, Zhou X, Liu X, Qi J, Zhang Q. Characterisation of kisspeptin system genes in an ovoviviparous teleost: Sebastes schlegeli. Gen Comp Endocrinol 2015; 214:114-25. [PMID: 24955882 DOI: 10.1016/j.ygcen.2014.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/08/2014] [Accepted: 06/12/2014] [Indexed: 11/27/2022]
Abstract
Kisspeptins are neuropeptides that play important roles in the reproduction and the onset of puberty in vertebrate by activating their receptor, Kissr. In the present study, we first isolated kiss1 and kissr4 genes from an ovoviviparous fish, the black rockfish (Sebastes schlegeli) by homologue cloning. Phylogenetic analysis indicated that the kiss and kissr of S. schlegeli belonged to kiss1 and kissr4 respectively. Quantitative real-time PCR analysis showed that the kissr4 was expressed mainly in the brain and testis, while the kiss1 was expressed predominantly in the heart of both sexes. As for the different gonadal maturation stages the kiss1 showed different expression patterns in different tissues. During the early development stage, expression levels of the ligand and receptor genes showed similar increasing trends. The promoter region of kissr4 contained several putative transcription factor (TF) binding sites which may have the function of regulating kisspeptin system gene expression, providing potential targets for future in-depth investigation. These results together confirmed that the kisspeptin system in S. schlegeli may be involved in reproduction and other activities. Furthermore, our study laid the groundwork for further learning about the evolution and function of kisspeptin system in fish even vertebrate.
Collapse
Affiliation(s)
- Huayu Song
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yan He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Liman Ma
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiaosu Zhou
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiumei Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
29
|
Sukhan ZP, Kitano H, Selvaraj S, Yoneda M, Yamaguchi A, Matsuyama M. Identification and distribution of three gonadotropin-releasing hormone (GnRH) isoforms in the brain of a clupeiform fish, Engraulis japonicus. Zoolog Sci 2014; 30:1081-91. [PMID: 24320187 DOI: 10.2108/zsj.30.1081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To gain a better understanding of the reproductive endocrinology of a primitive order clupeiform fish (Japanese anchovy, Engraulis japonicus), cDNAs encoding three gonadotropin-releasing hormone (GnRH) isoforms were isolated from the brain, and their distribution was analyzed using insitu hybridization (ISH). The three GnRH isoforms include GnRH1 (herring GnRH), GnRH2 (chicken GnRH-ll) and GnRH3 (salmon GnRH), and their full-length cDNAs encode 88, 86, and 89 deduced amino acids (aa), respectively. Alignment analysis of Japanese anchovy GnRH isoforms showed lower identities with other teleost fish. The major population of GnRH1 neurons was localized in the ventral telencephalon (VT) and nucleus preopticus (NPO) of the preoptic area (POA) with minor population in the anterior olfactory bulb (OB). GnRH2 neurons were restricted to the midbrain tegmentum (MT), specific to the nucleus of the medial longitudinal fasciculus (nMLF). GnRH3 neurons were localized in the olfactory nerve (ON), ventral OB, and transitional area between OB and ON. Interestingly, GnRH1 neurons were also localized in the olfactory bulb, in addition to its major population in the preoptic area. These results indicate the differential distribution of three GnRH isoforms expressed in the brain of the Japanese anchovy.
Collapse
Affiliation(s)
- Zahid Parvez Sukhan
- 1 Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Ohga H, Fujinaga Y, Selvaraj S, Kitano H, Nyuji M, Yamaguchi A, Matsuyama M. Identification, characterization, and expression profiles of two subtypes of kisspeptin receptors in a scombroid fish (chub mackerel). Gen Comp Endocrinol 2013; 193:130-40. [PMID: 23932907 DOI: 10.1016/j.ygcen.2013.07.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 07/12/2013] [Accepted: 07/19/2013] [Indexed: 11/21/2022]
Abstract
The kisspeptin receptor (Kiss1R) is a cognate receptor for kisspeptin (Kiss), and this Kiss-Kiss1R system has been shown to regulate seasonal reproduction in vertebrates. Our previous study found the chub mackerel (Scomber japonicus) brain expresses both kiss1 and kiss2 and exhibits sexually dimorphic changes during the seasonal reproductive cycle. The present study cloned two subtypes of kissr from the chub mackerel brain, and their signal transduction pathways to Kiss1 and Kiss2 were characterized in a mammalian cell line. Results of identification showed that kissr1 and kissr2 mRNAs encode 369 and 378 deduced amino acids, respectively, and share 52% similarity in amino acid sequences. In vitro functional analysis revealed that chub mackerel Kiss receptor signals are also preferentially transduced via the protein kinase C (PKC) rather than protein kinase A (PKA) pathway. Synthetic chub mackerel Kiss1-15 and Kiss2-12 peptides showed the highest potency for the activation of KissR1 and KissR2, respectively, stronger than their corresponding Kiss-10 peptides. Tissue distribution analyses indicated that both genes are highly expressed in the brain and that only kissr2 mRNA is expressed in the pituitary of both sexes. Unexpectedly, both kissr1 and kissr2 mRNAs were detected only in the testes. Seasonal expression changes showed higher expression levels of both kissr1 and kissr2 mRNAs in the brain of females during the early vitellogenic period; however, no significant differences were found in the brain of males. Pituitary kissr2 mRNA levels showed no significant variations. In the testes, the kissr1 mRNA expression level increased dramatically at spermiation compared with the immature and post-spawning periods. However, kissr2 mRNA levels in the testes did not vary significantly at different testicular stages. These results suggest that both kissr1 and kissr2 likely participate in the seasonal ovarian development of females, and thus in males, we propose a paracrine or autocrine role for kissr1 in testicular development.
Collapse
Affiliation(s)
- Hirofumi Ohga
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Subcutaneous administration of Kiss1 pentadecapeptide accelerates spermatogenesis in prepubertal male chub mackerel (Scomber japonicus). Comp Biochem Physiol A Mol Integr Physiol 2013; 166:228-36. [DOI: 10.1016/j.cbpa.2013.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 01/14/2023]
|
32
|
Fukaya K, Amano M, Ueda H. Diurnal changes in salmon GnRH secretion in the brain of masu salmon (Oncorhynchus masou). Gen Comp Endocrinol 2013; 192:77-80. [PMID: 23500009 DOI: 10.1016/j.ygcen.2013.02.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 11/23/2022]
Abstract
The day-night changes of salmon GnRH (sGnRH), which is secreted from various brain regions, were analyzed in maturing and matured masu salmon (Oncorhynchus masou). In maturing males, the levels of sGnRH secreted from the olfactory bulb (OB), terminal nerve (TN), and ventral telencephalon and preoptic area (VT+POA) were all significantly higher during midnight than daytime. However, the contents of sGnRH in the pituitary gland during midnight were not higher than those during daytime. In maturing females, the levels of sGnRH secreted from the VT+POA were higher during midnight than daytime, and the contents of sGnRH in the pituitary gland were also higher during midnight. In matured fish, the levels of sGnRH secreted from the OB, TN and VT+POA during midnight were significantly higher than those during daytime. There were also no significant differences in the contents of sGnRH in the pituitary gland. These results suggest that a short photoperiod may be involved in diurnal secretion rhythms of sGnRH in various brain regions and the pituitary gland.
Collapse
Affiliation(s)
- Kosuke Fukaya
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, North 9 West 9, Kita-ku, Sapporo, Hokkaido, Japan.
| | | | | |
Collapse
|
33
|
Mechaly AS, Viñas J, Piferrer F. The kisspeptin system genes in teleost fish, their structure and regulation, with particular attention to the situation in Pleuronectiformes. Gen Comp Endocrinol 2013; 188:258-68. [PMID: 23624122 DOI: 10.1016/j.ygcen.2013.04.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
It is well established that Kisspeptin regulates the onset of puberty in vertebrates through stimulation of the secretion of gonadotropin-releasing hormones. However, the function of kisspeptin in peripheral tissues and in other functions is still poorly understood. Recently, the evolution and distribution of kisspeptin genes in vertebrates has been clarified. In contrast to placental mammals, which have a single gene for the ligand (Kiss) and for the receptor (Kissr), fish may have up to three Kiss genes and up to four Kissr genes because of genome duplications. However, information on the genomic structure of the piscine kiss and kissr genes is still scarce. Furthermore, when data from several species is taken together, interspecific differences in the expression of kiss and kissr during the reproductive cycle are found. Here, we discuss data gathered from several fish species, but mainly from two flatfishes, the Senegalese sole and the Atlantic halibut, to address general questions on kiss gene structure, regulation and function. Flatfish are among the most derived fish species and the two species referred to above have only one ligand and one receptor, probably because of the genome reduction observed in Pleuronectiformes. However, gene analysis shows that both species have an alternative splicing mechanism based on intron retention, but the functions of the alternative isoforms are unclear. In the Senegalese sole, sex-related differences in the temporal and spatial expression of kiss and kissr were observed during a whole reproductive cycle. In addition, recent studies suggested that kisspeptin system gene expression is correlated to energy balance and reproduction. This suggests that kisspeptin signaling may involve different sources of information to synchronize important biological functions in vertebrates, including reproduction. We propose a set of criteria to facilitate the comparison of kiss and kissr gene expression data across species.
Collapse
Affiliation(s)
- Alejandro S Mechaly
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| | | | | |
Collapse
|
34
|
Selvaraj S, Ohga H, Kitano H, Nyuji M, Yamaguchi A, Matsuyama M. Peripheral Administration of Kiss1 Pentadecapeptide Induces Gonadal Development in Sexually Immature Adult Scombroid Fish. Zoolog Sci 2013; 30:446-54. [DOI: 10.2108/zsj.30.446] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Sethu Selvaraj
- Laboratory of Marine Biology, Kyushu University, Fukuoka 812-8581, Japan
| | - Hirofumi Ohga
- Laboratory of Marine Biology, Kyushu University, Fukuoka 812-8581, Japan
| | - Hajime Kitano
- Laboratory of Marine Biology, Kyushu University, Fukuoka 812-8581, Japan
| | - Mitsuo Nyuji
- Laboratory of Marine Biology, Kyushu University, Fukuoka 812-8581, Japan
| | - Akihiko Yamaguchi
- Laboratory of Marine Biology, Kyushu University, Fukuoka 812-8581, Japan
| | - Michiya Matsuyama
- Laboratory of Marine Biology, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
35
|
Ohga H, Kaneko K, Shimizu A, Kitano H, Selvaraj S, Nyuji M, Adachi H, Yamaguchi A, Matsuyama M. Steroidogenic and maturation-inducing potency of native gonadotropic hormones in female chub mackerel, Scomber japonicus. Reprod Biol Endocrinol 2012; 10:71. [PMID: 22950645 PMCID: PMC3495025 DOI: 10.1186/1477-7827-10-71] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 08/30/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The gonadotropins (GtHs), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are produced in the pituitary gland and regulates gametogenesis through production of gonadal steroids. However, respective roles of two GtHs in the teleosts are still incompletely characterized due to technical difficulties in the purification of native GtHs. METHODS Native FSH and LH were purified from the pituitaries of adult chub mackerel, Scomber japonicus by anion-exchange chromatography and immunoblotting using specific antisera. The steroidogenic potency of the intact chub mackerel FSH (cmFSH) and LH (cmLH) were evaluated in mid- and late-vitellogenic stage follicles by measuring the level of gonadal steroids, estradiol-17beta (Ε2) and 17,20beta-dihydroxy-4-pregnen-3-one (17,20beta-P). In addition, we evaluated the maturation-inducing potency of the GtHs on same stage follicles. RESULTS Both cmFSH and cmLH significantly stimulated E2 production in mid-vitellogenic stage follicles. In contrast, only LH significantly stimulated the production of 17,20beta-P in late-vitellogenic stage follicles. Similarly, cmLH induced final oocyte maturation (FOM) in late-vitellogenic stage follicles. CONCLUSIONS Present results indicate that both FSH and LH may regulate vitellogenic processes, whereas only LH initiates FOM in chub mackerel.
Collapse
Affiliation(s)
- Hirofumi Ohga
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Kensuke Kaneko
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Akio Shimizu
- National Research Institute of Fisheries Science, Fisheries Research Agency, Kanazawa, Yokohama 236-8648, Japan
| | - Hajime Kitano
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Sethu Selvaraj
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Mitsuo Nyuji
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Hayato Adachi
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Akihiko Yamaguchi
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Michiya Matsuyama
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|