1
|
Cusick JK, Alcaide J, Shi Y. The RELT Family of Proteins: An Increasing Awareness of Their Importance for Cancer, the Immune System, and Development. Biomedicines 2023; 11:2695. [PMID: 37893069 PMCID: PMC10603948 DOI: 10.3390/biomedicines11102695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
This review highlights Receptor Expressed in Lymphoid Tissues (RELT), a Tumor Necrosis Factor Superfamily member, and its two paralogs, RELL1 and RELL2. Collectively, these three proteins are referred to as RELTfms and have gained much interest in recent years due to their association with cancer and other human diseases. A thorough knowledge of their physiological functions, including the ligand for RELT, is lacking, yet emerging evidence implicates RELTfms in a variety of processes including cytokine signaling and pathways that either promote cell death or survival. T cells from mice lacking RELT exhibit increased responses against tumors and increased inflammatory cytokine production, and multiple lines of evidence indicate that RELT may promote an immunosuppressive environment for tumors. The relationship of individual RELTfms in different cancers is not universal however, as evidence indicates that individual RELTfms may be risk factors in certain cancers yet appear to be protective in other cancers. RELTfms are important for a variety of additional processes related to human health including microbial pathogenesis, inflammation, behavior, reproduction, and development. All three proteins have been strongly conserved in all vertebrates, and this review aims to provide a clearer understanding of the current knowledge regarding these interesting proteins.
Collapse
Affiliation(s)
- John K. Cusick
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Jessa Alcaide
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Yihui Shi
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
- California Pacific Medical Center Research Institute, Sutter Bay Hospitals, San Francisco, CA 94107, USA
| |
Collapse
|
2
|
Raspin K, Marthick JR, Donovan S, Blizzard L, Malley RC, Jung CH, Banks A, Redwig F, Skala M, Dickinson JL, FitzGerald LM. Identification of a novel recurrent EEF2 gene amplification in familial prostate tumors. Genes Chromosomes Cancer 2023; 62:247-255. [PMID: 36520140 DOI: 10.1002/gcc.23117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Recurrent tumor copy number variations (CNVs) in prostate cancer (PrCa) have predominantly been discovered in sporadic tumor cohorts. Here, we examined familial prostate tumors for novel CNVs as prior studies suggest these harbor distinct CNVs. Array comparative genomic hybridization of 12 tumors from an Australian PrCa family, PcTas9, highlighted multiple recurrent CNVs, including amplification of EEF2 (19p13.3) in 100% of tumors. The EEF2 CNV was examined in a further 26 familial and seven sporadic tumors from the Australian cohort and in 494 tumors unselected for family history from The Cancer Genome Atlas (TCGA). EEF2 overexpression was observed in seven PcTas9 tumors, in addition to seven other predominantly familial tumors (ntotal = 34%). EEF2 amplification was only observed in 1.4% of TCGA tumors, however 7.5% harbored an EEF2 deletion. Analysis of genes co-expressed with EEF2 revealed significant upregulation of two genes, ZNF74 and ADSL, and downregulation of PLSCR1 in both EEF2 amplified familial tumors and EEF2 deleted TCGA tumors. Furthermore, in TCGA tumors, EEF2 amplification and deletion were significantly associated with a higher Gleason score. In summary, we identified a novel PrCa CNV that was predominantly amplified in familial tumors and deleted in unselected tumors. Our results provide further evidence that familial tumors harbor distinct CNVs, potentially due to an inherited predisposition, but also suggest that regardless of how EEF2 is dysregulated, a similar set of genes involved in key cancer pathways are impacted. Given the current lack of gene-based biomarkers and clinical targets in PrCa, further investigation of EEF2 is warranted.
Collapse
Affiliation(s)
- Kelsie Raspin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - James R Marthick
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Shaun Donovan
- Diagnostic Services, Sonic Healthcare, Hobart, Tasmania, Australia
| | - Leigh Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Roslyn C Malley
- Diagnostic Services, Sonic Healthcare, Hobart, Tasmania, Australia.,Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Chol-Hee Jung
- Melbourne Bioinformatics, University of Melbourne, Parkville, Victoria, Australia
| | - Annette Banks
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Frank Redwig
- Department of Urology, Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Marketa Skala
- WP Holman Clinic, Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Liesel M FitzGerald
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
3
|
Dal Col J, Lamberti MJ, Nigro A, Casolaro V, Fratta E, Steffan A, Montico B. Phospholipid scramblase 1: a protein with multiple functions via multiple molecular interactors. Cell Commun Signal 2022; 20:78. [PMID: 35650588 PMCID: PMC9158361 DOI: 10.1186/s12964-022-00895-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/30/2022] [Indexed: 01/18/2023] Open
Abstract
Phospholipid scramblase 1 (PLSCR1) is the most studied protein of the scramblase family. Originally, it was identified as a membrane protein involved in maintaining plasma membrane asymmetry. However, studies conducted over the past few years have shown the involvement of PLSCR1 in several other cellular pathways. Indeed, PLSCR1 is not only embedded in the plasma membrane but is also expressed in several intracellular compartments where it interacts with a diverse repertoire of effectors, mediators, and regulators contributing to distinct cellular processes. Although most PLSCR1 interactors are thought to be cell-type specific, PLSCR1 often exerts its regulatory functions through shared mechanisms, including the trafficking of different molecules within intracellular vesicles such as endosomes, liposomes, and phagosomes. Intriguingly, besides endogenous proteins, PLSCR1 was also reported to interact with exogenous viral proteins, thereby regulating viral uptake and spread. This review aims to summarize the current knowledge about the multiple roles of PLSCR1 in distinct cellular pathways. Video Abstract
Collapse
Affiliation(s)
- Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy.
| | - Marìa Julia Lamberti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy.,INBIAS, CONICET-UNRC, Río Cuarto, Córdoba, Argentina
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Elisabetta Fratta
- Division of Immunopathology and Cancer Biomarkers, Centro Di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Agostino Steffan
- Division of Immunopathology and Cancer Biomarkers, Centro Di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Barbara Montico
- Division of Immunopathology and Cancer Biomarkers, Centro Di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| |
Collapse
|
4
|
Behuria HG, Dash S, Sahu SK. Phospholipid Scramblases: Role in Cancer Progression and Anticancer Therapeutics. Front Genet 2022; 13:875894. [PMID: 35422844 PMCID: PMC9002267 DOI: 10.3389/fgene.2022.875894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Phospholipid scramblases (PLSCRs) that catalyze rapid mixing of plasma membrane lipids result in surface exposure of phosphatidyl serine (PS), a lipid normally residing to the inner plasma membrane leaflet. PS exposure provides a chemotactic eat-me signal for phagocytes resulting in non-inflammatory clearance of apoptotic cells by efferocytosis. However, metastatic tumor cells escape efferocytosis through alteration of tumor microenvironment and apoptotic signaling. Tumor cells exhibit altered membrane features, high constitutive PS exposure, low drug permeability and increased multidrug resistance through clonal evolution. PLSCRs are transcriptionally up-regulated in tumor cells leading to plasma membrane remodeling and aberrant PS exposure on cell surface. In addition, PLSCRs interact with multiple cellular components to modulate cancer progression and survival. While PLSCRs and PS exposed on tumor cells are novel drug targets, many exogenous molecules that catalyze lipid scrambling on tumor plasma membrane are potent anticancer therapeutic molecules. In this review, we provide a comprehensive analysis of scramblase mediated signaling events, membrane alteration specific to tumor development and possible therapeutic implications of scramblases and PS exposure.
Collapse
Affiliation(s)
- Himadri Gourav Behuria
- Laboratory of Molecular Membrane Biology, Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, Baripada, India
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Santosh Kumar Sahu
- Laboratory of Molecular Membrane Biology, Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, Baripada, India
| |
Collapse
|
5
|
Moon JH, Lee SH, Lim YC. Wnt/β-catenin/Slug pathway contributes to tumor invasion and lymph node metastasis in head and neck squamous cell carcinoma. Clin Exp Metastasis 2021; 38:163-174. [PMID: 33630219 DOI: 10.1007/s10585-021-10081-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
The canonical Wnt/β-catenin pathway is involved in diverse cancer development mechanisms, such as proliferation, migration, and invasion. However, its role in head and neck squamous cell carcinoma (HNSCC) remains largely unknown. We investigated whether the canonical Wnt/β-catenin signaling pathway acts as a controller of invasion and lymph node metastasis (LNM) in HNSCC. Loss of function experiments against the canonical Wnt/β-catenin pathway were conducted to evaluate its invasive and metastatic role in HNSCC cells. Slug was evaluated as a downstream protein in canonical Wnt/β-catenin-mediated invasion. In addition, canonical Wnt/β-catenin and Slug expression levels were examined in 119 HNSCC tissue samples to study the relevance of these proteins in LNM and prognosis of patients post-treatment. In vitro suppression of β-catenin expression led to decreased migration and invasion of HNSCC cells. Using an in vivo mouse orthotopic LNM model, a decrease in LNM was observed with mitigated β-catenin expression. Slug expression upregulation mediates invasion and LNM by the canonical Wnt/β-catenin pathway. Simultaneous expression of β-catenin and Slug is the major predictive factor of LNM and survival rate in patients with HNSCC. In conclusion, the canonical Wnt/β-catenin/Slug signaling axis significantly contributes to cancer cell invasion and LNM. Its blockade may be a treatment strategy for LNM and tumor recurrence in HNSCC.
Collapse
Affiliation(s)
- Jung Hwa Moon
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, #1, Hwayang-dong, Gwangin-gu, Seoul, 143-752, Korea
| | - Sang Hyuk Lee
- Department of Otorhinolaryngology - Head & Neck Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Chang Lim
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, #1, Hwayang-dong, Gwangin-gu, Seoul, 143-752, Korea.
| |
Collapse
|
6
|
Gui L, Zhu YW, Xu Q, Huang JJ, Hua P, Wu GJ, Lu J, Ni JB, Tang H, Zhang LL. RNA interference-mediated downregulation of phospholipid scramblase 1 expression in primary liver cancer in vitro. Oncol Lett 2020; 20:361. [PMID: 33133261 PMCID: PMC7590428 DOI: 10.3892/ol.2020.12225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/05/2020] [Indexed: 01/12/2023] Open
Abstract
Phospholipid scramblase 1 (PLSCR1) serves a function in the pathogenesis and progression of various types of cancer. However, the role of PLSCR1 in human primary liver cancer remains unknown. The aim of the present study was to evaluate the expression of PLSCR1 in primary liver cancer and analyse the clinical significance. In addition, the present study detected and compared the biological behaviours of HepG2 cells with different levels of activated PLSCR1 or silenced PLSCR1. PLSCR1 expression in primary liver cancer tissue samples was examined using immunohistochemistry. Cultured HepG2 cells were infected with lentiviruses to suppress or activate PLSCR1 expression. Reverse transcription-quantitative PCR and western blotting were performed to analyse the effects of silencing or activating PLSCR1 in cell lines at the mRNA and protein levels, respectively. The effects of PLSCR1 expression on cell proliferation, adhesion, migration and invasion were subsequently determined using Cell Counting Kit 8, adhesion, and Transwell migration and invasion assays. PLSCR1 expression in primary liver cancer tissue samples was higher compared with that in adjacent non-cancerous liver tissue samples and normal tissue samples, and positively correlated with the clinical stage. PLSCR1 was effectively downregulated or overexpressed in HepG2 cells using small interfering RNA and lentivirus techniques, respectively. PLSCR1 upregulation promoted cell proliferation, invasion and migration, while PLSCR1 downregulation inhibited these effects. PLSCR1 is highly expressed in primary liver cancer and associated with the clinical stage. Downregulating the expression of PLSCR1 significantly inhibited the proliferation, adhesion, migration and invasion of cancer cells, suggesting that PLSCR1 may be a potential therapeutic target for preventing the progression of primary liver cancer.
Collapse
Affiliation(s)
- Liang Gui
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Ying-Wei Zhu
- Department of Gastroenterology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Qiang Xu
- Department of Intervention, Wujin Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu 213002, P.R. China
| | - Ju-Ju Huang
- Department of Gastroenterology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Ping Hua
- Department of Gastroenterology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Gao-Jue Wu
- Department of Gastroenterology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Jian Lu
- Department of Gastroenterology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Jing-Bin Ni
- Department of Gastroenterology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Hong Tang
- Department of Pathology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Li-Li Zhang
- Department of Gastroenterology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| |
Collapse
|
7
|
Transient Receptor Potential Canonical 5-Scramblase Signaling Complex Mediates Neuronal Phosphatidylserine Externalization and Apoptosis. Cells 2020; 9:cells9030547. [PMID: 32110987 PMCID: PMC7140530 DOI: 10.3390/cells9030547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/24/2022] Open
Abstract
Phospholipid scramblase 1 (PLSCR1), a lipid-binding and Ca2+-sensitive protein located on plasma membranes, is critically involved in phosphatidylserine (PS) externalization, an important process in cell apoptosis. Transient receptor potential canonical 5 (TRPC5), is a nonselective Ca2+ channel in neurons that interacts with many downstream molecules, participating in diverse physiological functions including temperature or mechanical sensation. The interaction between TRPC5 and PLSCR1 has never been reported. Here, we showed that PLSCR1 interacts with TRPC5 through their C-termini in HEK293 cells and mouse cortical neurons. Formation of TRPC5-PLSCR1 complex stimulates PS externalization and promotes cell apoptosis in HEK293 cells and mouse cerebral neurons. Furthermore, in vivo studies showed that PS externalization in cortical neurons induced by artificial cerebral ischemia-reperfusion was reduced in TRPC5 knockout mice compared to wild-type mice, and that the percentage of apoptotic neurons was also lower in TRPC5 knockout mice than in wild-type mice. Collectively, the present study suggested that TRPC5-PLSCR1 is a signaling complex mediating PS externalization and apoptosis in neurons and that TRPC5 plays a pathological role in cerebral-ischemia reperfusion injury.
Collapse
|
8
|
Zhou L, Jiao X, Peng X, Yao X, Liu L, Zhang L. MicroRNA-628-5p inhibits invasion and migration of human pancreatic ductal adenocarcinoma via suppression of the AKT/NF-kappa B pathway. J Cell Physiol 2020; 235:8141-8154. [PMID: 31957029 DOI: 10.1002/jcp.29468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022]
Abstract
The biological function and underlying mechanism of microRNA-628-5p (miR-628-5p) remains to be clarified in the growth and progression of pancreatic ductal adenocarcinoma (PDAC). Here, the expression levels of miR-628-5p in PDAC tissues and cells were detected by quantitative reverse transcriptase polymerase chain reaction and in situ hybridization. The relationship between miR-628-5p expression and clinicopathologic characteristics was examined in human PDAC tissue samples. Gain- and loss-of-function and the putative targets of miR-628-5p were evaluated in PDAC cell lines. The upstream and downstream signals of miR-628-5p in PDAC were also examined. MiR-628-5p was lowly expressed in PDAC tissues and cell lines, and low miR-628-5p expression in PDAC tissues was associated with poor clinicopathological characteristics and shorter overall survival. Functionally, restoration of miR-628-5p expression decreased PDAC cell proliferation, migration, invasion, and promoted cell apoptosis, whereas miR-628-5p silencing abolished these biological behaviors. MiR-628-5p was found to target and negatively regulate phospholipid scramblase 1 and insulin receptor substrate 1 expression, which resulted in the inhibition of the AKT/NF-κB signaling pathway. MYC knockdown led to miR-628-5p upregulation, whereas MYC overexpression repressed miR-628-5p expression. These findings indicate that miR-628-5p functions as a tumor-suppressive microRNA in PDAC and implicate miR-628-5p as a potential therapeutic target for PDAC patients.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoxiao Jiao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoqian Peng
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaomeng Yao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Liu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lianfeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Xuan ZB, Wang YJ, Xie J. ANO6 promotes cell proliferation and invasion in glioma through regulating the ERK signaling pathway. Onco Targets Ther 2019; 12:6721-6731. [PMID: 31692479 PMCID: PMC6708391 DOI: 10.2147/ott.s211725] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose Anoctamin6 (ANO6) plays a crucial role in several cancers, whereas the specific role of ANO6 in glioblastoma is unclear. Methods Kaplan-Meier survival analysis was used to analysis the correlation between ANO6 and survival rate of patients with glioblastoma. Univariate Cox regression analysis was used to analysis the correlation among ANO6 expression level,and age, gender, WHO and overall survival rate. Immunohistocemical technique, RT-PCR and western blot were used to dected the ANO6 expression. CCK8, colony formation and transwell were used to detected cell viability, cell proliferation and cell invasion in glioblastoma cells transfected with sh-ANO6 and ANO6 overexpression. In addition, after SHG-44 cells trasfected with ANO6 overexpression were ERK inhibitor (PD98059), CCK8, colony formation and transwell were used to detected cell viability, cell proliferation and cell invasion. Western blot was used to detected ERK protein level and the phosphorylation level of ERK in T89G and U87MG cells tranfected wih sh-ANO6. Results The results indicated that the ANO6 expression level was significantly associated with patients' age and tumor stage. Univariate Cox regression analysis showed that the ANO6 expression level, age, gender and tumor stage were not related to the overall survival rate. ANO6 inhibition significantly suppressed the viability, invasion and the ability of colony formation in glioma cells, while ANO6 overexpression led to the opposite results in SHG-44 cells. ANO6 knockdown strongly inhibits the phosphorylation level and nuclear translocation of extracellular signal-regulated kinase (ERK) protein to inhibit ERK signaling. ERK inhibitor significantly decreased the cell proliferation and invasion in SHG-44 cells transfected with sh-ANO6. Conclusion This study revealed that ANO6 activited ERK signaling pathway through promoting the nuclear translocation of ERK to increase the proliferation and invasion of glioblastoma cells.
Collapse
Affiliation(s)
- Zhao-Bo Xuan
- Department of Neurosurgery, The First Hospital Affiliated to Jiamusi University, Jiamusi City, Heilongjiang Province 154002, People's Republic of China
| | - Ye-Ji Wang
- Department of Neurosurgery, Shanxian Haijiya Hospital, Heze City, Shandong Province 274300, People's Republic of China
| | - Jun Xie
- Department of Neurosurgery, Tongchuan People's Hospital, Tongchuan City, Shaanxi Province 727000, People's Republic of China
| |
Collapse
|
10
|
Irigoyen A, Jimenez-Luna C, Benavides M, Caba O, Gallego J, Ortuño FM, Guillen-Ponce C, Rojas I, Aranda E, Torres C, Prados J. Integrative multi-platform meta-analysis of gene expression profiles in pancreatic ductal adenocarcinoma patients for identifying novel diagnostic biomarkers. PLoS One 2018; 13:e0194844. [PMID: 29617451 PMCID: PMC5884535 DOI: 10.1371/journal.pone.0194844] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/09/2018] [Indexed: 01/16/2023] Open
Abstract
Applying differentially expressed genes (DEGs) to identify feasible biomarkers in diseases can be a hard task when working with heterogeneous datasets. Expression data are strongly influenced by technology, sample preparation processes, and/or labeling methods. The proliferation of different microarray platforms for measuring gene expression increases the need to develop models able to compare their results, especially when different technologies can lead to signal values that vary greatly. Integrative meta-analysis can significantly improve the reliability and robustness of DEG detection. The objective of this work was to develop an integrative approach for identifying potential cancer biomarkers by integrating gene expression data from two different platforms. Pancreatic ductal adenocarcinoma (PDAC), where there is an urgent need to find new biomarkers due its late diagnosis, is an ideal candidate for testing this technology. Expression data from two different datasets, namely Affymetrix and Illumina (18 and 36 PDAC patients, respectively), as well as from 18 healthy controls, was used for this study. A meta-analysis based on an empirical Bayesian methodology (ComBat) was then proposed to integrate these datasets. DEGs were finally identified from the integrated data by using the statistical programming language R. After our integrative meta-analysis, 5 genes were commonly identified within the individual analyses of the independent datasets. Also, 28 novel genes that were not reported by the individual analyses ('gained' genes) were also discovered. Several of these gained genes have been already related to other gastroenterological tumors. The proposed integrative meta-analysis has revealed novel DEGs that may play an important role in PDAC and could be potential biomarkers for diagnosing the disease.
Collapse
Affiliation(s)
- Antonio Irigoyen
- Department of Medical Oncology, Virgen de la Salud Hospital, Toledo, Spain
| | - Cristina Jimenez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Manuel Benavides
- Department of Medical Oncology, Virgen de la Victoria Hospital, Malaga, Spain
| | - Octavio Caba
- Department of Health Sciences, University of Jaen, Jaen, Spain
| | - Javier Gallego
- Department of Medical Oncology, University General Hospital of Elche, Alicante, Spain
| | - Francisco Manuel Ortuño
- Department of Computer Architecture and Computer Technology, Research Center for Information and Communications Technologies, University of Granada, Granada, Spain
| | | | - Ignacio Rojas
- Department of Computer Architecture and Computer Technology, Research Center for Information and Communications Technologies, University of Granada, Granada, Spain
| | - Enrique Aranda
- Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| | - Carolina Torres
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| |
Collapse
|
11
|
Qadir AS, Ceppi P, Brockway S, Law C, Mu L, Khodarev NN, Kim J, Zhao JC, Putzbach W, Murmann AE, Chen Z, Chen W, Liu X, Salomon AR, Liu H, Weichselbaum RR, Yu J, Peter ME. CD95/Fas Increases Stemness in Cancer Cells by Inducing a STAT1-Dependent Type I Interferon Response. Cell Rep 2017; 18:2373-2386. [PMID: 28273453 DOI: 10.1016/j.celrep.2017.02.037] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/22/2016] [Accepted: 02/11/2017] [Indexed: 01/07/2023] Open
Abstract
Stimulation of CD95/Fas drives and maintains cancer stem cells (CSCs). We now report that this involves activation of signal transducer and activator of transcription 1 (STAT1) and induction of STAT1-regulated genes and that this process is inhibited by active caspases. STAT1 is enriched in CSCs in cancer cell lines, patient-derived human breast cancer, and CD95high-expressing glioblastoma neurospheres. CD95 stimulation of cancer cells induced secretion of type I interferons (IFNs) that bind to type I IFN receptors, resulting in activation of Janus-activated kinases, activation of STAT1, and induction of a number of STAT1-regulated genes that are part of a gene signature recently linked to therapy resistance in five primary human cancers. Consequently, we identified type I IFNs as drivers of cancer stemness. Knockdown or knockout of STAT1 resulted in a strongly reduced ability of CD95L or type I IFN to increase cancer stemness. This identifies STAT1 as a key regulator of the CSC-inducing activity of CD95.
Collapse
Affiliation(s)
- Abdul S Qadir
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Paolo Ceppi
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sonia Brockway
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Calvin Law
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Liang Mu
- Division of Neurological Surgery, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nikolai N Khodarev
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| | - Jung Kim
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jonathan C Zhao
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - William Putzbach
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrea E Murmann
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zhuo Chen
- Center for Cancer Research and Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI 02903, USA; Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Wenjing Chen
- Department of Pathology, School of Medicine, Case Western Reserve University and Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Xia Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Arthur R Salomon
- Center for Cancer Research and Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI 02903, USA; Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Huiping Liu
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Pathology, School of Medicine, Case Western Reserve University and Case Comprehensive Cancer Center, Cleveland, OH 44106, USA; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637, USA
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Marcus E Peter
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
12
|
Sivagnanam U, Palanirajan SK, Gummadi SN. The role of human phospholipid scramblases in apoptosis: An overview. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2261-2271. [PMID: 28844836 DOI: 10.1016/j.bbamcr.2017.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/03/2017] [Accepted: 08/10/2017] [Indexed: 02/08/2023]
Abstract
Human phospholipid scramblases (hPLSCRs) are a family of four homologous single pass transmembrane proteins (hPLSCR1-4) initially identified as the proteins responsible for Ca2+ mediated bidirectional phospholipid translocation in plasma membrane. Though in-vitro assays had provided evidence, the role of hPLSCRs in phospholipid translocation is still debated. Recent reports revealed a new class of proteins, TMEM16 and Xkr8 to exhibit scramblase activity challenging the function of hPLSCRs. Apart from phospholipid scrambling, numerous reports have emphasized the multifunctional roles of hPLSCRs in key cellular processes including tumorigenesis, antiviral defense, protein and DNA interactions, transcriptional regulation and apoptosis. In this review, the role of hPLSCRs in mediating cell death through phosphatidylserine exposure, interaction with death receptors, cardiolipin exposure, heavy metal and radiation induced apoptosis and pathological apoptosis followed by their involvement in cancer cells are discussed. This review aims to connect the multifunctional characteristics of hPLSCRs to their decisive involvement in apoptotic pathways.
Collapse
Affiliation(s)
- Ulaganathan Sivagnanam
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Santosh Kumar Palanirajan
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
13
|
Tufail Y, Cook D, Fourgeaud L, Powers CJ, Merten K, Clark CL, Hoffman E, Ngo A, Sekiguchi KJ, O'Shea CC, Lemke G, Nimmerjahn A. Phosphatidylserine Exposure Controls Viral Innate Immune Responses by Microglia. Neuron 2017; 93:574-586.e8. [PMID: 28111081 DOI: 10.1016/j.neuron.2016.12.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/17/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023]
Abstract
Microglia are the intrinsic immune sentinels of the central nervous system. Their activation restricts tissue injury and pathogen spread, but in some settings, including viral infection, this response can contribute to cell death and disease. Identifying mechanisms that control microglial responses is therefore an important objective. Using replication-incompetent adenovirus 5 (Ad5)-based vectors as a model, we investigated the mechanisms through which microglia recognize and respond to viral uptake. Transgenic, immunohistochemical, molecular-genetic, and fluorescence imaging approaches revealed that phosphatidylserine (PtdSer) exposure on the outer leaflet of transduced cells triggers their engulfment by microglia through TAM receptor-dependent mechanisms. We show that inhibition of phospholipid scramblase 1 (PLSCR1) activity reduces intracellular calcium dysregulation, prevents PtdSer externalization, and enables months-long protection of vector-transduced, transgene-expressing cells from microglial phagocytosis. Our study identifies PLSCR1 as a potent target through which the innate immune response to viral vectors, and potentially other stimuli, may be controlled.
Collapse
Affiliation(s)
- Yusuf Tufail
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Daniela Cook
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lawrence Fourgeaud
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Colin J Powers
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Katharina Merten
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Charles L Clark
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Elizabeth Hoffman
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alexander Ngo
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kohei J Sekiguchi
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Clodagh C O'Shea
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
Kim SE, Hinoue T, Kim MS, Sohn KJ, Cho RC, Weisenberger DJ, Laird PW, Kim YI. Effects of folylpolyglutamate synthase modulation on global and gene-specific DNA methylation and gene expression in human colon and breast cancer cells. J Nutr Biochem 2015; 29:27-35. [PMID: 26895662 DOI: 10.1016/j.jnutbio.2015.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/10/2015] [Accepted: 10/27/2015] [Indexed: 12/22/2022]
Abstract
Folylpolyglutamate synthase (FPGS) plays a critical role in intracellular folate homeostasis. FPGS-induced polyglutamylated folates are better substrates for several enzymes involved in the generation of S-adenosylmethionine, the primary methyl group donor, and hence FPGS modulation may affect DNA methylation. DNA methylation is an important epigenetic determinant in gene expression and aberrant DNA methylation is mechanistically linked cancer development. We investigated whether FPGS modulation would affect global and gene-specific promoter DNA methylation with consequent functional effects on gene expression profiles in HCT116 colon and MDA-MB-435 breast cancer cells. Although FPGS modulation altered global DNA methylation and DNA methyltransferases (DNMT) activity, the effects of FPGS modulation on global DNA methylation and DNMT activity could not be solely explained by intracellular folate concentrations and content of long-chain folylpolyglutamates, and it may be cell-specific. FPGS modulation influenced differential gene expression and promoter cytosine-guanine dinucleotide sequences (CpG) DNA methylation involved in cellular development, cell cycle, cell death and molecular transport. Some of the altered gene expression was associated with promoter CpG DNA methylation changes. In both the FPGS-overexpressed HCT116 and MDA-MB-435 cell lines, we identified several differentially expressed genes involved in folate biosynthesis and one-carbon metabolism, which might in part have contributed to the observed increased efficacy of 5-fluorouracil in response to FPGS overexpression. Our data suggest that FPGS modulation affects global and promoter CpG DNA methylation and expression of several genes involved in important biological pathways. The potential role of FPGS modulation in DNA methylation and its associated downstream functional effects warrants further studies.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada M5S 1A8; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada M5B 1T8.
| | - Toshinori Hinoue
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503-2518, USA
| | - Michael S Kim
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada M5B 1T8
| | - Kyoung-Jin Sohn
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada M5B 1T8; Department of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Robert C Cho
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Daniel J Weisenberger
- USC Epigenome Center, University of Southern California, Los Angeles, CA 90089-9601, USA; Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90089-9601, USA
| | - Peter W Laird
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503-2518, USA
| | - Young-In Kim
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada M5S 1A8; Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada M5B 1T8; Department of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8; Division of Gastroenterology, St. Michael's Hospital, Toronto, ON, Canada M5B 1W8
| |
Collapse
|
15
|
Kodigepalli KM, Nanjundan M. Induction of PLSCR1 in a STING/IRF3-dependent manner upon vector transfection in ovarian epithelial cells. PLoS One 2015; 10:e0117464. [PMID: 25658875 PMCID: PMC4320088 DOI: 10.1371/journal.pone.0117464] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/23/2014] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptors (TLRs) are the primary sensors of the innate immune system that recognize pathogenic nucleic acids including double-stranded plasmid DNA (dsDNA). TLR signaling activates multiple pathways including IRF3 which is involved in transcriptional induction of inflammatory cytokines (i.e. interferons (IFNs)). Phospholipid scramblase 1, PLSCR1, is a highly inducible IFN-regulated gene mediating anti-viral properties of IFNs. Herein, we report a novel finding that dsDNA transfection in T80 immortalized normal ovarian surface epithelial cell line leads to a marked increase in PLSCR1 mRNA and protein. We also noted a comparable response in primary mammary epithelial cells (HMECs). Similar to IFN-2α treated cells, de novo synthesized PLSCR1 was localized predominantly to the plasma membrane. dsDNA transfection, in T80 and HMEC cells, led to activation of MAPK and IRF3. Although inhibition of MAPK (using U0126) did not modulate PLSCR1 mRNA and protein, IRF3 knockdown (using siRNA) significantly ablated the PLSCR1 induction. In prior studies, the activation of IRF3 was shown to be mediated by cGAS-STING pathway. To investigate the contribution of STING to PLSCR1 induction, we utilized siRNA to reduce STING expression and observed that PLSCR1 protein was markedly reduced. In contrast to normal T80/HMECs, the phosphorylation of IRF3 as well as induction of STING and PLSCR1 were absent in ovarian cancer cells (serous, clear cell, and endometrioid) suggesting that the STING/IRF3 pathway may be dysregulated in these cancer cells. However, we also noted induction of different TLR and IFN mRNAs between the T80 and HEY (serous epithelial ovarian carcinoma) cell lines upon dsDNA transfection. Collectively, these results indicate that the STING/IRF3 pathway, activated following dsDNA transfection, contributes to upregulation of PLSCR1 in ovarian epithelial cells.
Collapse
Affiliation(s)
- Karthik M. Kodigepalli
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, 33620, United States of America
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, 33620, United States of America
- * E-mail:
| |
Collapse
|
16
|
Kodigepalli KM, Bowers K, Sharp A, Nanjundan M. Roles and regulation of phospholipid scramblases. FEBS Lett 2014; 589:3-14. [PMID: 25479087 DOI: 10.1016/j.febslet.2014.11.036] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/22/2014] [Accepted: 11/24/2014] [Indexed: 02/06/2023]
Abstract
Phospholipid scramblase activity is involved in the collapse of phospholipid (PL) asymmetry at the plasma membrane leading to externalization of phosphatidylserine. This activity is crucial for initiation of the blood coagulation cascade and for recognition/elimination of apoptotic cells by macrophages. Efforts to identify gene products associated with this activity led to the characterization of PL scramblase (PLSCR) and XKR family members which contribute to phosphatidylserine exposure in response to apoptotic stimuli. Meanwhile, TMEM16 family members were identified to externalize phosphatidylserine in response to elevated calcium in Scott syndrome platelets, which is critical for activation of the coagulation cascade. Herein, we report their mechanisms of gene regulation, molecular functions independent of their scrambling activity, and their potential roles in pathogenic conditions.
Collapse
Affiliation(s)
- Karthik M Kodigepalli
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, United States
| | - Kiah Bowers
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, United States
| | - Arielle Sharp
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, United States
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, United States.
| |
Collapse
|
17
|
Chen CY, Chen JS, Chou YP, Kuo YB, Fan CW, Chan EC. Antibody against N-terminal domain of phospholipid scramblase 1 induces apoptosis in colorectal cancer cells through the intrinsic apoptotic pathway. Chem Biol Drug Des 2014; 84:36-43. [PMID: 24766818 DOI: 10.1111/cbdd.12347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/03/2014] [Accepted: 04/15/2014] [Indexed: 01/09/2023]
Abstract
Phospholipid scramblase 1 involve in biological processes including phospholipid movement, proliferation, and apoptosis. Treatment with an antiphospholipid scramblase 1 antibody (NP1) has been demonstrated to inhibit cell proliferation in colorectal cancer. This study aimed to explore the role of NP1 treatment in the apoptosis of colorectal cancer cells. Results showed that NP1 treatment significantly increases the apoptosis of colorectal cancer cells via the activation of caspase 8, caspase 9, and caspase 3. Moreover, pretreatment with a caspase 8 inhibitor did not fully prevent the apoptotic effects of NP1. Taken together, these data indicate NP1 induces cell apoptosis primary through the intrinsic apoptotic pathway. NP1 may serve as a potential therapeutic agent.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Graduate Institute of Biomedical Sciences, Chang Gung University, 259 Wen-Hua 1st Road, Kwei-shan, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
18
|
Rayala S, Francis VG, Sivagnanam U, Gummadi SN. N-terminal proline-rich domain is required for scrambling activity of human phospholipid scramblases. J Biol Chem 2014; 289:13206-18. [PMID: 24648509 DOI: 10.1074/jbc.m113.522953] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human phospholipid scramblase 1 (hPLSCR1), a type II integral class membrane protein, is known to mediate bidirectional scrambling of phospholipids in a Ca(2+)-dependent manner. hPLSCR2, a homolog of hPLSCR1 that lacks N-terminal proline-rich domain (PRD), did not show scramblase activity. We attribute this absence of scramblase activity of hPLSCR2 to the lack of N-terminal PRD. Hence to investigate the above hypothesis, we added the PRD of hPLSCR1 to hPLSCR2 (PRD-hPLSCR2) and checked whether scramblase activity was restored. Functional assays showed that the addition of PRD to hPLSCR2 restored scrambling activity, and deletion of PRD in hPLSCR1 (ΔPRD-hPLSCR1) resulted in a lack of activity. These results suggest that PRD is crucial for the function of the protein. The effects of the PRD deletion in hPLSCR1 and the addition of PRD to hPLSCR2 were characterized using various spectroscopic techniques. Our results clearly showed that hPLSCR1 and PRD-hPLSCR2 showed Ca(2+)-dependent aggregation and scrambling activity, whereas hPLSCR2 and ΔPRD-hPLSCR1 did not show aggregation and activity. Thus we conclude that scramblases exhibit Ca(2+)-dependent scrambling activity by aggregation of protein. Our results provide a possible mechanism for phospholipid scrambling mediated by PLSCRs and the importance of PRD in its function and cellular localization.
Collapse
Affiliation(s)
- Sarika Rayala
- From the Applied and Industrial Microbiology Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India
| | | | | | | |
Collapse
|
19
|
Jacobsen KS, Zeeberg K, Sauter DRP, Poulsen KA, Hoffmann EK, Schwab A. The role of TMEM16A (ANO1) and TMEM16F (ANO6) in cell migration. Pflugers Arch 2013; 465:1753-62. [PMID: 23832500 PMCID: PMC3898376 DOI: 10.1007/s00424-013-1315-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/14/2013] [Accepted: 06/15/2013] [Indexed: 12/30/2022]
Abstract
Members of the TMEM16 family have recently been described as Ca2+-activated Cl− channels. They have been implicated in cancer and appear to be associated with poor patient prognosis. Here, we investigate the role of TMEM16 channels in cell migration, which is largely unknown. We focused on TMEM16A and TMEM16F channels that have the highest expression of TMEM16 channels in Ehrlich Lettre ascites (ELA) cells. Due to the lack of specific pharmacological modulators, we employed a miRNA approach and stably knocked down the expression of TMEM16A and TMEM16F channels, respectively. Migration analysis shows that TMEM16A KD clones are affected in their directional migration, whereas TMEM16F KD clones show a 40 % reduced rate of cell migration. Moreover, TMEM16A KD clones have a smaller projected cell area, and they are rounder than TMEM16F KD clones. The morphological changes are linearly correlated with the directionality of cells. TMEM16A and TMEM16F, thus, have an important function in cell migration—TMEM16A in directional migration, TMEM16F in determination of the speed of migration. We conclude that TMEM16A and TMEM16F channels have a distinct impact on the steering and motor mechanisms of migrating ELA cells.
Collapse
Affiliation(s)
- K S Jacobsen
- Department of Biology, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Ø, Denmark
| | | | | | | | | | | |
Collapse
|