1
|
Ghadimi S, Abdi M, Epstein FH. Improved computation of Lagrangian tissue displacement and strain for cine DENSE MRI using a regularized spatiotemporal least squares method. Front Cardiovasc Med 2023; 10:1095159. [PMID: 37008315 PMCID: PMC10061004 DOI: 10.3389/fcvm.2023.1095159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/06/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionIn displacement encoding with stimulated echoes (DENSE), tissue displacement is encoded in the signal phase such that the phase of each pixel in space and time provides an independent measurement of absolute tissue displacement. Previously for DENSE, estimation of Lagrangian displacement used two steps: first a spatial interpolation and, second, least squares fitting through time to a Fourier or polynomial model. However, there is no strong rationale for such a through-time model,MethodsTo compute the Lagrangian displacement field from DENSE phase data, a minimization problem is introduced to enforce fidelity with the acquired Eulerian displacement data while simultaneously providing model-independent regularization in space and time, enforcing only spatiotemporal smoothness. A regularized spatiotemporal least squares (RSTLS) method is used to solve the minimization problem, and RSTLS was tested using two-dimensional DENSE data from 71 healthy volunteers.ResultsThe mean absolute percent error (MAPE) between the Lagrangian displacements and the corresponding Eulerian displacements was significantly lower for the RSTLS method vs. the two-step method for both x- and y-directions (0.73±0.59 vs 0.83 ±0.1, p < 0.05) and (0.75±0.66 vs 0.82 ±0.1, p < 0.05), respectively. Also, peak early diastolic strain rate (PEDSR) was higher (1.81±0.58 (s-1) vs. 1.56±0. 63 (s-1), p<0.05) and the strain rate during diastasis was lower (0.14±0.18 (s-1) vs 0.35±0.2 (s-1), p < 0.05) for the RSTLS vs. the two-step method, with the former suggesting that the two-step method was over-regularized.DiscussionThe proposed RSTLS method provides more realistic measurements of Lagrangian displacement and strain from DENSE images without imposing arbitrary motion models.
Collapse
|
2
|
Abstract
Aortic valve stenosis has become the most common valvular heart disease on account of aging population and increasing life expectancy. Echocardiography is the primary diagnosis tool for this, but it still has many flaws. Therefore, advanced cardiovascular multimodal imaging techniques are continuously being developed in order to overcome these limitations. Cardiac magnetic resonance imaging (CMR) allows a comprehensive morphological and functional evaluation of the aortic valve and provides important data for the diagnosis and risk stratification in patients with aortic stenosis. CMR can functionally assess the aortic flow using two-dimensional and time-resolved three-dimensional velocity-encoded phase-contrast techniques. Furthermore, by late gadolinium enhancement and T1-mapping, CMR can reveal the presence of both irreversible replacement and diffuse interstitial myocardial fibrosis. Moreover, its role in guiding aortic valve replacement procedures is beginning to take shape. Recent studies have rendered the importance of active and passive biomechanics in risk stratification and prognosis prediction in patients with aortic stenosis, but more work is required is just in its infancy, but data are promising. In addition, cardiac computed tomography is particularly useful for the diagnosis of aortic valve stenosis, and in preprocedural evaluation of the aorta, while positron emission tomography can be also used to assess valvular inflammation and active calcification. The purpose of this review is to provide a comprehensive overview of current available data regarding advanced cardiovascular multimodal imaging in aortic stenosis.
Collapse
|
3
|
Kheirkhah N, Sadeghi-Naini A, Samani A. Analytical Estimation of Out-of-plane Strain in Ultrasound Elastography to Improve Axial and Lateral Displacement Fields . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2055-2058. [PMID: 33018409 DOI: 10.1109/embc44109.2020.9176086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many types of cancers are associated with changes in tissue mechanical properties. This has led to the development of elastography as a clinically viable method where tissue mechanical properties are mapped and visualized for cancer detection and staging. In quasi-static ultrasound elastography, a mechanical stimulation is applied to the tissue using ultrasound probe. Using ultrasound radiofrequency (RF) data acquired before and after the stimulation, the tissue displacement field can be estimated. Elasticity image reconstruction algorithms use this displacement data to generate images of the tissue elasticity properties. The accuracy of the generated elasticity images depends highly on the accuracy of the tissue displacement estimation. Tissue incompressibility can be used as a constraint to improve the estimation of axial and, more importantly, the lateral displacements in 2D ultrasound elastography. Especially in clinical applications, this requires accurate estimation of the out-of-plane strain. Here, we propose a method for providing an accurate estimate of the out-of-plane strain which is incorporated in the incompressibility equation to improve the axial and lateral displacements estimation before elastography image reconstruction. The method was validated using in silico and tissue mimicking phantom studies, leading to significant improvement in the estimated displacement.
Collapse
|
4
|
Perotti LE, Magrath P, Verzhbinsky IA, Aliotta E, Moulin K, Ennis DB. Microstructurally Anchored Cardiac Kinematics by Combining In Vivo DENSE MRI and cDTI. FUNCTIONAL IMAGING AND MODELING OF THE HEART : ... INTERNATIONAL WORKSHOP, FIMH ..., PROCEEDINGS. FIMH 2017; 10263:381-391. [PMID: 29450409 DOI: 10.1007/978-3-319-59448-4_36] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metrics of regional myocardial function can detect the onset of cardiovascular disease, evaluate the response to therapy, and provide mechanistic insight into cardiac dysfunction. Knowledge of local myocardial microstructure is necessary to distinguish between isotropic and anisotropic contributions of local deformation and to quantify myofiber kinematics, a microstructurally anchored measure of cardiac function. Using a computational model we combine in vivo cardiac displacement and diffusion tensor data to evaluate pointwise the deformation gradient tensor and isotropic and anisotropic deformation invariants. In discussing the imaging methods and the model construction, we identify potential improvements to increase measurement accuracy. We conclude by demonstrating the applicability of our method to compute myofiber strain in five healthy volunteers.
Collapse
Affiliation(s)
- Luigi E Perotti
- Department of Radiological Sciences, University of California, Los Angeles, USA.,Department of Bioengineering, University of California, Los Angeles, USA
| | - Patrick Magrath
- Department of Radiological Sciences, University of California, Los Angeles, USA.,Department of Bioengineering, University of California, Los Angeles, USA
| | - Ilya A Verzhbinsky
- Department of Radiological Sciences, University of California, Los Angeles, USA
| | - Eric Aliotta
- Department of Radiological Sciences, University of California, Los Angeles, USA.,Department of Biomedical Physics IDP, University of California, Los Angeles, USA
| | - Kévin Moulin
- Department of Radiological Sciences, University of California, Los Angeles, USA
| | - Daniel B Ennis
- Department of Radiological Sciences, University of California, Los Angeles, USA.,Department of Bioengineering, University of California, Los Angeles, USA.,Department of Biomedical Physics IDP, University of California, Los Angeles, USA
| |
Collapse
|
5
|
Garcia J, Barker AJ, Collins JD, Carr JC, Markl M. Volumetric quantification of absolute local normalized helicity in patients with bicuspid aortic valve and aortic dilatation. Magn Reson Med 2016; 78:689-701. [PMID: 27539068 DOI: 10.1002/mrm.26387] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 12/29/2022]
Abstract
PURPOSE Absolute local normalized helicity (LNH) can differentiate flow alterations in the aorta between healthy controls and bicuspid aortic valve (BAV) patients. METHODS A total of 65 controls and 50 subjects with BAV underwent in vivo four-dimensional (4D) flow MRI. Data analysis included the three-dimensional (3D) segmentation of the thoracic aorta (ascending aorta, aortic arch, and descending aorta) and calculation of absolute LNH. The mean velocity in the entire aorta was used to identify peak systole, systolic deceleration, and middiastole. A sensitivity analysis was performed to identify the optimal absolute LNH threshold, comparing control and BAV groups. A reproducibility test was performed for 3D segmentation and absolute LNH. RESULTS Absolute LNH above 0.6 was significantly higher (P < 0.001) in BAV in comparison to controls for all aortic segments and cardiac time frames. Absolute LNH in the ascending aorta correlated with maximal aortic diameter (R = 0.83, P < 0.001, at peak systole; r = 0.84, P < 0.001, at systolic deceleration; R = 0.88, P < 0.001, at middiastole) and significantly increased (P < 0.001) with aortic stenosis severity. Intra- and interobserver errors were 5 ± 2% and 12 ± 6% for 3D segmentation and 7 ± 6% and 12 ± 7% for absolute LNH. CONCLUSION Absolute LNH can differentiate between controls and subjects with aortic dilatation, and was associated with maximal aortic diameter and aortic stenosis severity. Magn Reson Med 78:689-701, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Julio Garcia
- Department of Radiology, Northwestern University, Chicago, IL, USA.,Department of Cardiac Sciences, Stephenson Cardiac Imaging Centre, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alex J Barker
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Jeremy D Collins
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - James C Carr
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Michael Markl
- Department of Radiology, Northwestern University, Chicago, IL, USA.,Biomedical Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
6
|
Gao H, Allan A, McComb C, Luo X, Berry C. Left ventricular strain and its pattern estimated from cine CMR and validation with DENSE. Phys Med Biol 2014; 59:3637-56. [PMID: 24922458 DOI: 10.1088/0031-9155/59/13/3637] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Measurement of local strain provides insight into the biomechanical significance of viable myocardium. We attempted to estimate myocardial strain from cine cardiovascular magnetic resonance (CMR) images by using a b-spline deformable image registration method. Three healthy volunteers and 41 patients with either recent or chronic myocardial infarction (MI) were studied at 1.5 Tesla with both cine and DENSE CMR. Regional circumferential and radial left ventricular strains were estimated from cine and DENSE acquisitions. In all healthy volunteers, there was no difference for peak circumferential strain (- 0.18 ± 0.04 versus - 0.18 ± 0.03, p = 0.76) between cine and DENSE CMR, however peak radial strain was overestimated from cine (0.84 ± 0.37 versus 0.49 ± 0.2, p < 0.01). In the patient study, the peak strain patterns predicted by cine were similar to the patterns from DENSE, including the strain evolution related to recovery time and strain patterns related to MI scar extent. Furthermore, cine-derived strain disclosed different strain patterns in MI and non-MI regions, and regions with transmural and non-transmural MI as DENSE. Although there were large variations with radial strain measurements from cine CMR images, useful circumferential strain information can be obtained from routine clinical CMR imaging. Cine strain analysis has potential to improve the diagnostic yield from routine CMR imaging in clinical practice.
Collapse
Affiliation(s)
- Hao Gao
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QW, UK
| | | | | | | | | |
Collapse
|
7
|
Pennell DJ, Carpenter JP, Firmin DN, Kilner PJ, Mohiaddin RH, Prasad SK. Review of Journal of Cardiovascular Magnetic Resonance 2011. J Cardiovasc Magn Reson 2012; 14:78. [PMID: 23158097 PMCID: PMC3519784 DOI: 10.1186/1532-429x-14-78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 12/15/2022] Open
Abstract
There were 83 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2011, which is an 11% increase in the number of articles since 2010. The quality of the submissions continues to increase. The editors had been delighted with the 2010 JCMR Impact Factor of 4.33, although this fell modestly to 3.72 for 2011. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, we remain very pleased with the progress of the journal's impact over the last 5 years. Our acceptance rate is approximately 25%, and has been falling as the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors feel it is useful to summarize the papers for the readership into broad areas of interest or theme, which we feel would be useful, so that areas of interest from the previous year can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality manuscripts to JCMR for publication.
Collapse
Affiliation(s)
- Dudley J Pennell
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - John Paul Carpenter
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - David N Firmin
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - Philip J Kilner
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - Raad H Mohiaddin
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - Sanjay K Prasad
- CMR Unit Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| |
Collapse
|
8
|
Young AA, Cowan BR. Evaluation of left ventricular torsion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012; 14:49. [PMID: 22827856 PMCID: PMC3461493 DOI: 10.1186/1532-429x-14-49] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 07/24/2012] [Indexed: 12/15/2022] Open
Abstract
Recently there has been considerable interest in LV torsion and its relationship with symptomatic and pre-symptomatic disease processes. Torsion gives useful additional information about myocardial tissue performance in both systolic and diastolic function. CMR assessment of LV torsion is simply and efficiently performed. However, there is currently a wide variation in the reporting of torsional motion and the procedures used for its calculation. For example, torsion has been presented as twist (degrees), twist per length (degrees/mm), shear angle (degrees), and shear strain (dimensionless). This paper reviews current clinical applications and shows how torsion can give insights into LV mechanics and the influence of LV geometry and myocyte fiber architecture on cardiac function. Finally, it provides recommendations for CMR measurement protocols, attempts to stimulate standardization of torsion calculation, and suggests areas of useful future research.
Collapse
Affiliation(s)
- Alistair A Young
- Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
| | - Brett R Cowan
- Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Latus H, Hussain T, Krasemann T, Greil GF. Cyanosis in a 9-month-old child after repair of total anomalous pulmonary venous return. Pediatr Radiol 2012; 42:758-60. [PMID: 22042091 DOI: 10.1007/s00247-011-2244-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/10/2011] [Accepted: 08/01/2011] [Indexed: 10/15/2022]
Abstract
A 9-month-old girl presented with cyanosis after correction of total anomalous pulmonary venous return (TAPVR) to the coronary sinus in the neonatal period. During corrective surgery, the right superior vena cava (RSVC) was damaged and re-anastomosed to the right atrium. Echocardiography showed increased flow velocity in the pulmonary venous confluence. Therefore, pulmonary venous obstruction was suspected. However, subsequent cardiac MRI revealed a stenosed RSVC as well as a dilated left superior vena cava (LSVC) draining from the left innominate vein into the pulmonary venous confluence. The re-recruited LSVC drained deoxygenated blood into the systemic circulation, causing cyanosis. After uncomplicated placement of a stent in the narrowed RSVC and occlusion of the LSVC, transcutaneous saturations normalised immediately.
Collapse
Affiliation(s)
- Heiner Latus
- Department of Paediatric Cardiology, Evelina Children's Hospital, Guys & St Thomas NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, United Kingdom.
| | | | | | | |
Collapse
|
10
|
Liu X, Abd-Elmoniem KZ, Stone M, Murano EZ, Zhuo J, Gullapalli RP, Prince JL. Incompressible deformation estimation algorithm (IDEA) from tagged MR images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:326-40. [PMID: 21937342 PMCID: PMC3683312 DOI: 10.1109/tmi.2011.2168825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Measuring the 3D motion of muscular tissues, e.g., the heart or the tongue, using magnetic resonance (MR) tagging is typically carried out by interpolating the 2D motion information measured on orthogonal stacks of images. The incompressibility of muscle tissue is an important constraint on the reconstructed motion field and can significantly help to counter the sparsity and incompleteness of the available motion information. Previous methods utilizing this fact produced incompressible motions with limited accuracy. In this paper, we present an incompressible deformation estimation algorithm (IDEA) that reconstructs a dense representation of the 3D displacement field from tagged MR images and the estimated motion field is incompressible to high precision. At each imaged time frame, the tagged images are first processed to determine components of the displacement vector at each pixel relative to the reference time. IDEA then applies a smoothing, divergence-free, vector spline to interpolate velocity fields at intermediate discrete times such that the collection of velocity fields integrate over time to match the observed displacement components. Through this process, IDEA yields a dense estimate of a 3D displacement field that matches our observations and also corresponds to an incompressible motion. The method was validated with both numerical simulation and in vivo human experiments on the heart and the tongue.
Collapse
Affiliation(s)
- Xiaofeng Liu
- General Electric Global Research Center, Niskayuna, NY, 12309 ()
| | - Khaled Z. Abd-Elmoniem
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - Maureen Stone
- Departments of Neural and Pain Sciences, and Orthodontics, University of Maryland Dental School, Baltimore, MD, 21201
| | - Emi Z. Murano
- Departments of Otolaryngology, Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, 21205
| | - Jiachen Zhuo
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201
| | - Rao P. Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201
| | - Jerry L. Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218 ()
| |
Collapse
|
11
|
Pennell DJ, Firmin DN, Kilner PJ, Manning WJ, Mohiaddin RH, Prasad SK. Review of journal of cardiovascular magnetic resonance 2010. J Cardiovasc Magn Reson 2011; 13:48. [PMID: 21914185 PMCID: PMC3182946 DOI: 10.1186/1532-429x-13-48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/13/2011] [Indexed: 12/15/2022] Open
Abstract
There were 75 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2010, which is a 34% increase in the number of articles since 2009. The quality of the submissions continues to increase, and the editors were delighted with the recent announcement of the JCMR Impact Factor of 4.33 which showed a 90% increase since last year. Our acceptance rate is approximately 30%, but has been falling as the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. Last year for the first time, the Editors summarized the papers for the readership into broad areas of interest or theme, which we felt would be useful to practitioners of cardiovascular magnetic resonance (CMR) so that you could review areas of interest from the previous year in a single article in relation to each other and other recent JCMR articles 1. This experiment proved very popular with a very high rate of downloading, and therefore we intend to continue this review annually. The papers are presented in themes and comparison is drawn with previously published JCMR papers to identify the continuity of thought and publication in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality manuscripts to JCMR for publication.
Collapse
Affiliation(s)
- Dudley J Pennell
- CMR Unit Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - David N Firmin
- CMR Unit Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - Philip J Kilner
- CMR Unit Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - Warren J Manning
- Department of Medicine (Cardiovascular Division) and Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215 USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115 USA
| | - Raad H Mohiaddin
- CMR Unit Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | - Sanjay K Prasad
- CMR Unit Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| |
Collapse
|