1
|
Zhao H, Wen Z, Xiong S. Activated Lymphocyte-Derived DNA Drives Glucose Metabolic Adaptation for Inducing Macrophage Inflammatory Response in Systemic Lupus Erythematosus. Cells 2023; 12:2093. [PMID: 37626904 PMCID: PMC10453374 DOI: 10.3390/cells12162093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Activated lymphocyte-derived DNA (ALD-DNA) has been reported to drive the polarization of macrophages toward M2b, producing inflammatory cytokines and inducing inflammation, correspondingly playing an essential role in the development of systemic lupus erythematosus (SLE). Recently, accumulating evidence has pinpointed metabolic adaptation as the crucial cell-intrinsic determinant for inflammatory response, in which glucose metabolism is the key event. However, whether and how glucose metabolism was involved in ALD-DNA-induced macrophage inflammatory response and SLE development remains unclear. Herein, we performed glucose metabolomic analyses of ALD-DNA-stimulated macrophages and uncovered increased glycolysis and diminished pentose phosphate pathway (PPP), as well as enhanced glycogenesis. In ALD-DNA-stimulated macrophages, increased glycolysis resulted in higher lactate production, whereas diminished PPP efficiently led to lower levels of nicotinamide adenine dinucleotide phosphate (NADPH) with higher levels of reactive oxygen species (ROS). While blockade of lactate generation exerted no significant effect on macrophage inflammation in response to ALD-DNA, scavenging ROS fundamentally inhibited the inflammatory response of ALD-DNA-stimulated macrophages. Further, cyclic adenosine monophosphate (cAMP), a master for regulating glycogen metabolism, was downregulated by ALD-DNA in macrophages, which subsequently imbalanced glycogen metabolism toward glycogenesis but not glycogenolysis. Administration of cAMP effectively restored glycogenolysis and enhanced PPP, which correspondingly reduced ROS levels and inhibited the inflammatory response of ALD-DNA-stimulated macrophages. Finally, blocking glucose metabolism using 2-deoxy-D-glucose (2-DG) efficiently restricted macrophage inflammatory response and alleviated ALD-DNA-induced lupus disease. Together, our findings demonstrate that ALD-DNA drives the adaptation of glucose metabolism for inducing macrophage inflammatory response in SLE, which might further our understanding of disease pathogenesis and provide clues for interventive explorations.
Collapse
Affiliation(s)
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Wu NS, Lin YF, Ma IC, Ko HJ, Hong YR. Many faces and functions of GSKIP: a temporospatial regulation view. Cell Signal 2022; 97:110391. [PMID: 35728705 DOI: 10.1016/j.cellsig.2022.110391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
Glycogen synthase kinase 3 (GSK3)-β (GSK3β) interaction protein (GSKIP) is one of the smallest A-kinase anchoring proteins that possesses a binding site for GSK3β. Recently, our group identified the protein kinase A (PKA)-GSKIP-GSK3β-X axis; knowledge of this axis may help us decipher the many roles of GSKIP and perhaps help explain the evolutionary reason behind the interaction between GSK3β and PKA. In this review, we highlight the critical and multifaceted role of GSKIP in facilitating PKA kinase activity and its function as a scaffolding protein in signaling pathways. We also highlight how these pivotal PKA and GSK3 kinases can control context-specific functions and interact with multiple target proteins, such as β-catenin, Drp1, Tau, and other proteins. GSKIP is a key regulator of multiple mechanisms because of not only its location at certain subcellular compartments but also its serial changes during the developmental process. Moreover, the involvement of critical upstream regulatory signaling pathways in GSKIP signaling in various cancers, such as miRNA (microRNA) and lncRNA (long noncoding RNA), may help in the identification of therapeutic targets in the era of precision medicine and personalized therapy. Finally, we emphasize on the model of the early stage of pathogenesis of Alzheimer Disease (AD). Although the model requires validation, it can serve as a basis for diagnostic biomarkers development and drug discovery for early-stage AD.
Collapse
Affiliation(s)
- Nian-Siou Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yi-Fan Lin
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| | - I Chu Ma
- China Medical University Hospital, Taichung 404, Taiwan.
| | - Huey-Jiun Ko
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yi-Ren Hong
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan,; Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
3
|
Tomar M, Somvanshi PR, Kareenhalli V. Physiological significance of bistable circuit design in metabolic homeostasis: role of integrated insulin-glucagon signalling network. Mol Biol Rep 2022; 49:5017-5028. [DOI: 10.1007/s11033-022-07175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
|
4
|
Somvanshi PR, Mellon SH, Flory JD, Abu-Amara D, Wolkowitz OM, Yehuda R, Jett M, Hood L, Marmar C, Doyle FJ. Mechanistic inferences on metabolic dysfunction in posttraumatic stress disorder from an integrated model and multiomic analysis: role of glucocorticoid receptor sensitivity. Am J Physiol Endocrinol Metab 2019; 317:E879-E898. [PMID: 31322414 PMCID: PMC6879860 DOI: 10.1152/ajpendo.00065.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 02/08/2023]
Abstract
Posttraumatic stress disorder (PTSD) is associated with neuroendocrine alterations and metabolic abnormalities; however, how metabolism is affected by neuroendocrine disturbances is unclear. The data from combat-exposed veterans with PTSD show increased glycolysis to lactate flux, reduced TCA cycle flux, impaired amino acid and lipid metabolism, insulin resistance, inflammation, and hypersensitive hypothalamic-pituitary-adrenal (HPA) axis. To analyze whether the co-occurrence of multiple metabolic abnormalities is independent or arises from an underlying regulatory defect, we employed a systems biological approach using an integrated mathematical model and multiomic analysis. The models for hepatic metabolism, HPA axis, inflammation, and regulatory signaling were integrated to perform metabolic control analysis (MCA) with respect to the observations from our clinical data. We combined the metabolomics, neuroendocrine, clinical laboratory, and cytokine data from combat-exposed veterans with and without PTSD to characterize the differences in regulatory effects. MCA revealed mechanistic association of the HPA axis and inflammation with metabolic dysfunction consistent with PTSD. This was supported by the data using correlational and causal analysis that revealed significant associations between cortisol suppression, high-sensitivity C-reactive protein, homeostatic model assessment of insulin resistance, γ-glutamyltransferase, hypoxanthine, and several metabolites. Causal mediation analysis indicates that the effects of enhanced glucocorticoid receptor sensitivity (GRS) on glycolytic pathway, gluconeogenic and branched-chain amino acids, triglycerides, and hepatic function are jointly mediated by inflammation, insulin resistance, oxidative stress, and energy deficit. Our analysis suggests that the interventions to normalize GRS and inflammation may help to manage features of metabolic dysfunction in PTSD.
Collapse
Affiliation(s)
- Pramod R Somvanshi
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Synthia H Mellon
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, California
| | - Janine D Flory
- Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Duna Abu-Amara
- Department of Psychiatry, New York Langone Medical School, New York, New York
| | - Owen M Wolkowitz
- Department of Psychiatry, University of California, San Francisco, California
| | - Rachel Yehuda
- Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marti Jett
- Integrative Systems Biology, US Army Medical Research and Materiel Command, US Army Center for Environmental Health Research, Fort Detrick, Frederick, Maryland
| | - Leroy Hood
- Institute for Systems Biology, Seattle, Washington
| | - Charles Marmar
- Department of Psychiatry, New York Langone Medical School, New York, New York
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
5
|
Coggan JS, Keller D, Calì C, Lehväslaiho H, Markram H, Schürmann F, Magistretti PJ. Norepinephrine stimulates glycogenolysis in astrocytes to fuel neurons with lactate. PLoS Comput Biol 2018; 14:e1006392. [PMID: 30161133 PMCID: PMC6160207 DOI: 10.1371/journal.pcbi.1006392] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/27/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
The mechanism of rapid energy supply to the brain, especially to accommodate the heightened metabolic activity of excited states, is not well-understood. We explored the role of glycogen as a fuel source for neuromodulation using the noradrenergic stimulation of glia in a computational model of the neural-glial-vasculature ensemble (NGV). The detection of norepinephrine (NE) by the astrocyte and the coupled cAMP signal are rapid and largely insensitive to the distance of the locus coeruleus projection release sites from the glia, implying a diminished impact for volume transmission in high affinity receptor transduction systems. Glucosyl-conjugated units liberated from glial glycogen by NE-elicited cAMP second messenger transduction winds sequentially through the glycolytic cascade, generating robust increases in NADH and ATP before pyruvate is finally transformed into lactate. This astrocytic lactate is rapidly exported by monocarboxylate transporters to the associated neuron, demonstrating that the astrocyte-to-neuron lactate shuttle activated by glycogenolysis is a likely fuel source for neuromodulation and enhanced neural activity. Altogether, the energy supply for both astrocytes and neurons can be supplied rapidly by glycogenolysis upon neuromodulatory stimulus. Although efficient compared to computers, the human brain utilizes energy at 10-fold the rate of other organs by mass. How the brain is supplied with sufficient on-demand energy to support its activity in the absence of neuronal storage capacity remains unknown. Neurons are not capable of meeting their own energy requirements, instead energy supply in the brain is managed by an oligocellular cartel composed of neurons, glia and the local vasculature (NGV), wherein glia can provide the ergogenic metabolite lactate to the neuron in a process called the astrocyte-to-neuron shuttle (ANLS). The only means of energy storage in the brain is glycogen, a polymerized form of glucose that is localized largely to astrocytes, but its exact role and conditions of use are not clear. In this computational model we show that neuromodulatory stimulation by norepinephrine induces astrocytes to recover glucosyl subunits from glycogen for use in a glycolytic process that favors the production of lactate. The ATP and NADH produced support metabolism in the astrocyte while the lactate is exported to feed the neuron. Thus, rapid energy demands by both neurons and glia in a stimulated brain can be met by glycogen mobilization.
Collapse
Affiliation(s)
- Jay S. Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- * E-mail: (JSC); (PJM)
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Corrado Calì
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Heikki Lehväslaiho
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Felix Schürmann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Pierre J. Magistretti
- Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- * E-mail: (JSC); (PJM)
| |
Collapse
|
6
|
Salas RCD, Mingala CN. Genetic Factors Affecting Pork Quality: Halothane and Rendement Napole Genes. Anim Biotechnol 2017; 28:148-155. [PMID: 27854153 DOI: 10.1080/10495398.2016.1243550] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The most common pork quality problems are pale, soft, and exudative (PSE) and acid pork (AP). PSE is associated with the expression of recessive halothane (Hal) allele Haln. Recessive Hal pigs (Halnn) have defective Ca2+ release channels (CRC) or Ryanodine Receptors (RYR1) within the sarcoplasmic reticulum that allow uncontrolled release of Ca2+ in response to stress. Abnormal lactic acid metabolism caused by stress prior to slaughter leads to the sudden drop in postmortem muscle pH producing the PSE pork. Conversely, AP is caused by the dominant RN- allele of the Rendement Napole gene. RN- pigs have high glycolytic potential that causes the lower ultimate pHu due to excessive lactic acid production postmortem. Poor water holding capacity of muscle cells in PSE and AP causes excessive drip loss leading to low cooking and processing yields. The conventional methods to evaluate Hal and RN genotypes are less effective compared to the more accurate gene marker tests. Selection against the Haln and RN- alleles by genomic selection can potentially reduce the frequencies of the defective genes with high accuracy in less time. As more quantitative trait loci (QTL) are identified, pig breeders are able to select traits more effectively to increase efficiency of pig production and enhance pork quality.
Collapse
Affiliation(s)
- Ramon Cesar D Salas
- a Department of Animal Science , College of Agriculture, Central Luzon State University , Nueva Ecija , Philippines
| | - Claro N Mingala
- a Department of Animal Science , College of Agriculture, Central Luzon State University , Nueva Ecija , Philippines.,b Animal Health Unit , Philippine Carabao Center National Headquarters and Gene Pool , Nueva Ecija , Philippines
| |
Collapse
|
7
|
Somvanshi PR, Patel AK, Bhartiya S, Venkatesh KV. Influence of plasma macronutrient levels on hepatic metabolism: role of regulatory networks in homeostasis and disease states. RSC Adv 2016. [DOI: 10.1039/c5ra18128c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multilevel regulations by metabolic, signaling and transcription pathways form a complex network that works to provide robust metabolic regulation in the liver. This analysis indicates that dietary perturbations in these networks can lead to insulin resistance.
Collapse
Affiliation(s)
- Pramod R. Somvanshi
- Biosystems Engineering Lab
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai
- India 400076
| | - Anilkumar K. Patel
- Biosystems Engineering Lab
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai
- India 400076
| | - Sharad Bhartiya
- Control Systems Engineering Lab
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai
- India 400076
| | - K. V. Venkatesh
- Biosystems Engineering Lab
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai
- India 400076
| |
Collapse
|
8
|
A systems model of phosphorylation for inflammatory signaling events. PLoS One 2014; 9:e110913. [PMID: 25333362 PMCID: PMC4205014 DOI: 10.1371/journal.pone.0110913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/19/2014] [Indexed: 12/24/2022] Open
Abstract
Phosphorylation is a fundamental biochemical reaction that modulates protein activity in cells. While a single phosphorylation event is relatively easy to understand, multisite phosphorylation requires systems approaches for deeper elucidation of the underlying molecular mechanisms. In this paper we develop a mechanistic model for single- and multi-site phosphorylation. The proposed model is compared with previously reported studies. We compare the predictions of our model with experiments published in the literature in the context of inflammatory signaling events in order to provide a mechanistic description of the multisite phosphorylation-mediated regulation of Signal Transducer and Activator of Transcription 3 (STAT3) and Interferon Regulatory Factor 5 (IRF-5) proteins. The presented model makes crucial predictions for transcription factor phosphorylation events in the immune system. The model proposes potential mechanisms for T cell phenotype switching and production of cytokines. This study also provides a generic framework for the better understanding of a large number of multisite phosphorylation-regulated biochemical circuits.
Collapse
|
9
|
Nogales-Gadea G, Consuegra-García I, Rubio JC, Arenas J, Cuadros M, Camara Y, Torres-Torronteras J, Fiuza-Luces C, Lucia A, Martín MA, García-Arumí E, Andreu AL. A transcriptomic approach to search for novel phenotypic regulators in McArdle disease. PLoS One 2012; 7:e31718. [PMID: 22347505 PMCID: PMC3276513 DOI: 10.1371/journal.pone.0031718] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 01/14/2012] [Indexed: 12/20/2022] Open
Abstract
McArdle disease is caused by lack of glycogen phosphorylase (GP) activity in skeletal muscle. Patients experience exercise intolerance, presenting as early fatigue and contractures. In this study, we investigated the effects produced by a lack of GP on several genes and proteins of skeletal muscle in McArdle patients. Muscle tissue of 35 patients and 7 healthy controls were used to identify abnormalities in the patients' transcriptomic profile using low-density arrays. Gene expression was analyzed for the influence of variables such as sex and clinical severity. Differences in protein expression were studied by immunoblotting and 2D electrophoresis analysis, and protein complexes were examined by two-dimensional, blue native gel electrophoresis (BN-PAGE). A number of genes including those encoding acetyl-coA carboxylase beta, m-cadherin, calpain III, creatine kinase, glycogen synthase (GS), and sarcoplasmic reticulum calcium ATPase 1 (SERCA1), were found to be downregulated in patients. Specifically, compared to controls, GS and SERCA1 proteins were reduced by 50% and 75% respectively; also, unphosphorylated GS and SERCA1 were highly downregulated. On BN-PAGE analysis, GP was present with GS in two muscle protein complexes. Our findings revealed some issues that could be important in understanding the physiological consequences of McArdle disease: (i) SERCA1 downregulation in patients could result in impaired calcium transport in type II (fast-twitch) muscle fibers, leading to early fatigability during exercise tasks involving type II fibers (which mostly use glycolytic metabolism), i.e. isometric exercise, lifting weights or intense dynamic exercise (stair climbing, bicycling, walking at a very brisk pace), (ii) GP and GS were found together in two protein complexes, which suggests a new regulatory mechanism in the activity of these glycogen enzymes.
Collapse
Affiliation(s)
- Gisela Nogales-Gadea
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
- Experimental Neurology Laboratory, Institut de Recerca HSCSP, Universitat Autònoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Rare diseases (CIBERER), Instituto de Salud Carlos III, Spain Centro de Investigación, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Inés Consuegra-García
- Spanish Network for Research in Rare diseases (CIBERER), Instituto de Salud Carlos III, Spain Centro de Investigación, Hospital Universitario 12 de Octubre, Madrid, Spain
- Unidad de Proteómica, Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Juan C. Rubio
- Spanish Network for Research in Rare diseases (CIBERER), Instituto de Salud Carlos III, Spain Centro de Investigación, Hospital Universitario 12 de Octubre, Madrid, Spain
- Unidad de Genómica, Instituto de Investigación, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Joaquin Arenas
- Spanish Network for Research in Rare diseases (CIBERER), Instituto de Salud Carlos III, Spain Centro de Investigación, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Marc Cuadros
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Rare diseases (CIBERER), Instituto de Salud Carlos III, Spain Centro de Investigación, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Yolanda Camara
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Rare diseases (CIBERER), Instituto de Salud Carlos III, Spain Centro de Investigación, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Javier Torres-Torronteras
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Rare diseases (CIBERER), Instituto de Salud Carlos III, Spain Centro de Investigación, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | - Miguel A. Martín
- Spanish Network for Research in Rare diseases (CIBERER), Instituto de Salud Carlos III, Spain Centro de Investigación, Hospital Universitario 12 de Octubre, Madrid, Spain
- Centro de Investigación, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Elena García-Arumí
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Rare diseases (CIBERER), Instituto de Salud Carlos III, Spain Centro de Investigación, Hospital Universitario 12 de Octubre, Madrid, Spain
- * E-mail:
| | - Antoni L. Andreu
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Rare diseases (CIBERER), Instituto de Salud Carlos III, Spain Centro de Investigación, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
10
|
Xu K, Morgan KT, Todd Gehris A, Elston TC, Gomez SM. A whole-body model for glycogen regulation reveals a critical role for substrate cycling in maintaining blood glucose homeostasis. PLoS Comput Biol 2011; 7:e1002272. [PMID: 22163177 PMCID: PMC3233304 DOI: 10.1371/journal.pcbi.1002272] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 09/27/2011] [Indexed: 01/08/2023] Open
Abstract
Timely, and sometimes rapid, metabolic adaptation to changes in food supply is critical for survival as an organism moves from the fasted to the fed state, and vice versa. These transitions necessitate major metabolic changes to maintain energy homeostasis as the source of blood glucose moves away from ingested carbohydrates, through hepatic glycogen stores, towards gluconeogenesis. The integration of hepatic glycogen regulation with extra-hepatic energetics is a key aspect of these adaptive mechanisms. Here we use computational modeling to explore hepatic glycogen regulation under fed and fasting conditions in the context of a whole-body model. The model was validated against previous experimental results concerning glycogen phosphorylase a (active) and glycogen synthase a dynamics. The model qualitatively reproduced physiological changes that occur during transition from the fed to the fasted state. Analysis of the model reveals a critical role for the inhibition of glycogen synthase phosphatase by glycogen phosphorylase a. This negative regulation leads to high levels of glycogen synthase activity during fasting conditions, which in turn increases substrate (futile) cycling, priming the system for a rapid response once an external source of glucose is restored. This work demonstrates that a mechanistic understanding of the design principles used by metabolic control circuits to maintain homeostasis can benefit from the incorporation of mathematical descriptions of these networks into “whole-body” contextual models that mimic in vivo conditions. Homeostasis of blood glucose concentrations during circadian shifts in survival-related activities, sleep and food availability is crucial for the survival of mammals. This process depends upon glucose intake, short-term storage as glycogen, and gluconeogenesis. The integration of hepatic glycogen anabolic and catabolic dynamics with whole body energetics is critical for survival. In this paper we use computational modeling to investigate the potential survival advantage of substrate (futile) cycling of glycogen and glycogen precursors. Our simulations, combined with published experimental results of other researchers, indicate that as the body enters a state of fasting, the activity of enzymes involved in the synthesis of glycogen increases leading to increased substrate cycling. This increase in substrate cycling allows the system to respond more rapidly once new external sources of glucose become available. The whole-body computational model developed for this work allows the metabolic control circuitry to be studied under simulated in vivo conditions, providing functional insights that are not evident when individual modules of glycogen regulatory circuitry are examined in isolation.
Collapse
Affiliation(s)
- Ke Xu
- Department of Biomedical Engineering, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Kevin T. Morgan
- Old Dogs in Training, Carrboro, North Carolina, United States of America
| | - Abby Todd Gehris
- Department of Mathematics, Broome Community College, Binghamton, New York, United States of America
| | - Timothy C. Elston
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail: (TCE); (SMG)
| | - Shawn M. Gomez
- Department of Biomedical Engineering, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (TCE); (SMG)
| |
Collapse
|
11
|
Abstract
A kinase anchoring proteins (AKAPs) bind multiple signaling proteins and have subcellular targeting domains that allow them to greatly impact cellular signaling. AKAPs localize, specify, amplify, and accelerate signal transduction within the cell by bringing signaling proteins together in space and time. AKAPs also organize higher-order network motifs such as feed forward and feedback loops that may create complex network responses, including adaptation, oscillation, and ultrasensitivity. Computational models have begun to provide an insight into how AKAPs regulate signaling dynamics and cardiovascular pathophysiology. Models of mitogen-activated protein kinase and epidermal growth factor receptor scaffolds have revealed additional design principles and new methods for representing signaling scaffolds mathematically. Coupling computational modeling with quantitative experimental approaches will be increasingly necessary for dissecting the diverse information processing functions performed by AKAP signaling complexes.
Collapse
Affiliation(s)
- Eric C. Greenwald
- Department of Biomedical Engineering, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
12
|
Abstract
Interest in the kinetics of glycogen phosphorylase has recently been renewed by the hypothesis of a glycogen shunt and by the potential of altering phosphorylase to treat type II diabetes. The wealth of data from studies of this enzyme in vitro and the need for a mathematical representation for use in the study of metabolic control systems make this enzyme an ideal subject for a mathematical model. We applied a two-part approach to the analysis of the kinetics of glycogen phosphorylase b (GPb). First, a continuous state model of enzyme-ligand interactions supported the view that two phosphates and four ATP or AMP molecules can bind to the enzyme, a result that agrees with spectroscopic and crystallographic studies. Second, using minimum error estimates from continuous state model fits to published data (that agreed well with reported error), we used a discrete state model of internal molecular events to show that GPb exists in three discrete states (two of which are inactive) and that state transitions are concerted. The results also show that under certain concentrations of substrate and effector, ATP can activate the enzyme, while under other conditions, it can competetively inhibit or noncompetitively inhibit the enzyme. This result is unexpected but is consistent with spectroscopic, crystallographic, and kinetic experiments and can explain several previously unexplained phenomena regarding GPb activity in vivo and in vitro.
Collapse
Affiliation(s)
- Sam Walcott
- Theoretical and Applied Mechanics, 212 Kimball Hall, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|