1
|
Abstract
As the HIV pandemic rapidly spread worldwide in the 1980s and 1990s, a new approach to treat cancer, genetic diseases, and infectious diseases was also emerging. Cell and gene therapy strategies are connected with human pathologies at a fundamental level, by delivering DNA and RNA molecules that could correct and/or ameliorate the underlying genetic factors of any illness. The history of HIV gene therapy is especially intriguing, in that the virus that was targeted was soon co-opted to become part of the targeting strategy. Today, HIV-based lentiviral vectors, along with many other gene delivery strategies, have been used to evaluate HIV cure approaches in cell culture, small and large animal models, and in patients. Here, we trace HIV cell and gene therapy from the earliest clinical trials, using genetically unmodified cell products from the patient or from matched donors, through current state-of-the-art strategies. These include engineering HIV-specific immunity in T-cells, gene editing approaches to render all blood cells in the body HIV-resistant, and most importantly, combination therapies that draw from both of these respective "offensive" and "defensive" approaches. It is widely agreed upon that combinatorial approaches are the most promising route to functional cure/remission of HIV infection. This chapter outlines cell and gene therapy strategies that are poised to play an essential role in eradicating HIV-infected cells in vivo.
Collapse
|
2
|
Vermeire K, Bell TW, Van Puyenbroeck V, Giraut A, Noppen S, Liekens S, Schols D, Hartmann E, Kalies KU, Marsh M. Signal peptide-binding drug as a selective inhibitor of co-translational protein translocation. PLoS Biol 2014; 12:e1002011. [PMID: 25460167 PMCID: PMC4251836 DOI: 10.1371/journal.pbio.1002011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/21/2014] [Indexed: 11/24/2022] Open
Abstract
In eukaryotic cells, surface expression of most type I transmembrane proteins requires translation and simultaneous insertion of the precursor protein into the endoplasmic reticulum (ER) membrane for subsequent routing to the cell surface. This co-translational translocation pathway is initiated when a hydrophobic N-terminal signal peptide (SP) on the nascent protein emerges from the ribosome, binds the cytosolic signal recognition particle (SRP), and targets the ribosome-nascent chain complex to the Sec61 translocon, a universally conserved protein-conducting channel in the ER-membrane. Despite their common function in Sec61 targeting and ER translocation, SPs have diverse but unique primary sequences. Thus, drugs that recognise SPs could be exploited to inhibit translocation of specific proteins into the ER. Here, through flow cytometric analysis the small-molecule macrocycle cyclotriazadisulfonamide (CADA) is identified as a highly selective human CD4 (hCD4) down-modulator. We show that CADA inhibits CD4 biogenesis and that this is due to its ability to inhibit co-translational translocation of CD4 into the lumen of the ER, both in cells as in a cell-free in vitro translation/translocation system. The activity of CADA maps to the cleavable N-terminal SP of hCD4. Moreover, through surface plasmon resonance analysis we were able to show direct binding of CADA to the SP of hCD4 and identify this SP as the target of our drug. Furthermore, CADA locks the SP in the translocon during a post-targeting step, possibly in a folded state, and prevents the translocation of the associated protein into the ER lumen. Instead, the precursor protein is routed to the cytosol for degradation. These findings demonstrate that a synthetic, cell-permeable small-molecule can be developed as a SP-binding drug to selectively inhibit protein translocation and to reversibly regulate the expression of specific target proteins.
Collapse
Affiliation(s)
- Kurt Vermeire
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
- Institute of Biology, CSCM, University of Lübeck, Lübeck, Germany
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Thomas W. Bell
- Department of Chemistry, University of Nevada, Reno, Nevada, United States of America
| | - Victor Van Puyenbroeck
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Anne Giraut
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Sam Noppen
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Sandra Liekens
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Dominique Schols
- KU Leuven – University of Leuven, Department of Microbiology and Immunology, Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Enno Hartmann
- Institute of Biology, CSCM, University of Lübeck, Lübeck, Germany
| | - Kai-Uwe Kalies
- Institute of Biology, CSCM, University of Lübeck, Lübeck, Germany
| | - Mark Marsh
- MRC-Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
3
|
Egerer L, Volk A, Kahle J, Kimpel J, Brauer F, Hermann FG, von Laer D. Secreted antiviral entry inhibitory (SAVE) peptides for gene therapy of HIV infection. Mol Ther 2011; 19:1236-44. [PMID: 21364540 DOI: 10.1038/mt.2011.30] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gene therapeutic strategies for human immunodeficiency virus type 1 (HIV-1) infection could potentially overcome the limitations of standard antiretroviral drug therapy (ART). However, in none of the clinical gene therapy trials published to date, therapeutic levels of genetic protection have been achieved in the target cell population for HIV-1. To improve systemic antiviral efficacy, C peptides, which are efficient inhibitors of HIV-1 entry, were engineered for high-level secretion by genetically modified cells. The size restrictions for efficient peptide export through the secretory pathway were overcome by expressing the C peptides as concatemers, which were processed into monomers by furin protease cleavage. These secreted antiviral entry inhibitory (SAVE) peptides mediated a substantial protective bystander effect on neighboring nonmodified cells, thus suppressing virus replication even if only a small fraction of cells was genetically modified. Accordingly, these SAVE peptides may provide a strong benefit to AIDS patients in future, and, if applied by direct in vivo gene delivery, could present an effective alternative to antiretroviral drug regimen.
Collapse
Affiliation(s)
- Lisa Egerer
- Department of Hygiene, Microbiology and Social Medicine, Division of Virology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
This chapter describes the major gene therapeutic approaches for viral infections. The vast majority of published approaches target severe chronic viral infections such as hepatitis B or C and HIV infection. Two basic gene therapy strategies are introduced here. The first involves the expression of a protein or an RNA that inhibits viral replication by targeting crucial steps of the viral life cycle or by interfering with a cellular factor required for virus replication. The major limitation of this approach is that primary levels of gene modification have generally not been sufficient to reduce the availability of target cells permissive for virus replication to a level that significantly decreases overall viral load. Thus, investigators have banked on the expectation that gene-protected cells have a sufficient selective advantage to accumulate and gain prevalence over time, a prediction that so far could not be confirmed in clinical trials. In vivo levels of gene modification can be improved, however, by introducing an additional selectable marker. In addition, a secreted antiviral gene product that exerts a bystander effect could significantly reduce overall virus replication despite relatively low levels of gene modification. In addition to these direct antiviral approaches, several strategies have been developed that employ or aim to enhance host immune responses. The innate immune response has been enhanced, for example, by the in vivo expression of interferons. Alternatively, T cells can be grafted with recombinant receptors to boost adaptive virus-specific immunity. These approaches are especially promising for chronic virus infection, where natural immune responses are evidently not sufficient to effectively control virus replication.
Collapse
|
5
|
Brule F, Khatissian E, Benani A, Bodeux A, Montagnier L, Piette J, Lauret E, Ravet E. Inhibition of HIV replication: A powerful antiviral strategy by IFN-β gene delivery in CD4+ cells. Biochem Pharmacol 2007; 74:898-910. [PMID: 17662695 DOI: 10.1016/j.bcp.2007.06.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 06/15/2007] [Accepted: 06/20/2007] [Indexed: 12/30/2022]
Abstract
In this study, we demonstrated the efficiency and feasibility of a gene therapy protocol against HIV infection using the antiviral effects of IFN-beta expression. Lentiviral vectors containing the human or the simian IFN-beta sequences under the influence of the murine moderate H2-kb promoter were constructed. To examine the capacity of IFN-beta to inhibit the replication of HIV in human CD4(+) cells, a transduction protocol permitting to efficiently transduce CD4(+) cells or PBMC (85+/-12% of CD4(+)-transduced cells) with a moderate expression of IFN-beta was developed. Results indicate that enforced expression of IFN-beta has no negative effects in terms of apoptosis and proliferation. In human CD4(+) cells, it drastically inhibits (up to 99.9%) replication after challenging with different strains of HIV-1. The expression of exogenous IFN-beta leads to an amplification of the CD4(+) cells (11-fold) and to a drastic decrease of the p24 protein. Micro-array analyses indicated that antiviral effect of IFN-beta could be due to a major regulation of the inflammatory response. These results are encouraging for the development of a clinical study of gene therapy against AIDS using IFN-beta.
Collapse
Affiliation(s)
- Fabienne Brule
- Laboratory of Virology & Immunology, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|