1
|
Zheng T, Shen B, Bai Y, Li E, Zhang X, Hu Y, Gao T, Dong Q, Zhu L, Jin R, Shi H, Liu H, Gao Y, Liu X, Cao C. The PKA-CREB1 axis regulates coronavirus proliferation by viral helicase nsp13 association. J Virol 2024; 98:e0156523. [PMID: 38445884 PMCID: PMC11019953 DOI: 10.1128/jvi.01565-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/09/2024] [Indexed: 03/07/2024] Open
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a worldwide threat in the past 3 years. Although it has been widely and intensively investigated, the mechanism underlying the coronavirus-host interaction requires further elucidation, which may contribute to the development of new antiviral strategies. Here, we demonstrated that the host cAMP-responsive element-binding protein (CREB1) interacts with the non-structural protein 13 (nsp13) of SARS-CoV-2, a conserved helicase for coronavirus replication, both in cells and in lung tissues subjected to SARS-CoV-2 infection. The ATPase and helicase activity of viral nsp13 were shown to be potentiated by CREB1 association, as well as by Protein kinase A (PKA)-mediated CREB1 activation. SARS-CoV-2 replication is significantly suppressed by PKA Cα, cAMP-activated protein kinase catalytic subunit alpha (PRKACA), and CREB1 knockdown or inhibition. Consistently, the CREB1 inhibitor 666-15 has shown significant antiviral effects against both the WIV04 strain and the Omicron strain of the SARS-CoV-2. Our findings indicate that the PKA-CREB1 signaling axis may serve as a novel therapeutic target against coronavirus infection. IMPORTANCE In this study, we provide solid evidence that host transcription factor cAMP-responsive element-binding protein (CREB1) interacts directly with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) helicase non-structural protein 13 (nsp13) and potentiate its ATPase and helicase activity. And by live SARS-CoV-2 virus infection, the inhibition of CREB1 dramatically impairs SARS-CoV-2 replication in vivo. Notably, the IC50 of CREB1 inhibitor 666-15 is comparable to that of remdesivir. These results may extend to all highly pathogenic coronaviruses due to the conserved nsp13 sequences in the virus.
Collapse
Affiliation(s)
- Tong Zheng
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Beilei Shen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yu Bai
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Entao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xun Zhang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Yong Hu
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Ting Gao
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Qincai Dong
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Lin Zhu
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Rui Jin
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Hui Shi
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Hainan Liu
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xuan Liu
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| | - Cheng Cao
- Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
2
|
Tian RR, Liu BB, Zhao ML, Cai YJ, Zheng YT. Increased cAMP-PKA signaling pathway activation is involved in up-regulation of CTLA-4 expression in CD4+ T cells in acute SIVmac239-infected Chinese rhesus macaques. Virus Res 2024; 341:199313. [PMID: 38244614 PMCID: PMC10831101 DOI: 10.1016/j.virusres.2024.199313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
Human immunodeficiency virus-1 (HIV-1) infection can cause chronic activation, exhaustion, and anergy of the immune system. Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is an immune checkpoint molecule, which plays an important role in immune homeostasis and disease. CTLA-4 expression is elevated in HIV-1-infected patients and is associated with disease progression. However, the mechanism controlling expression of CTLA-4 in HIV-1 infection is poorly characterized. In this study, we used a SIV-infected Chinese rhesus macaque (ChRM) model to explore CTLA-4 expression in SIV infection. Results showed that SIV infection significantly increased CTLA-4 expression in all T cell subsets, especially central memory T cells. CTLA-4+CD4+ T cell frequency was significantly associated with disease progression markers. Activation of the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling pathway regulated CTLA-4 expression in CD4+T cells, as confirmed by stimulation with dibutyryl cyclic adenosine monophosphate, forskolin, and 3-isobutyl-1-methylxanthine, and inhibition with H-89 ex vivo. Simultaneously, cAMP concentration in PBMCs and PKA activity in both PBMCs and CD4+ T cells were increased in acute SIV-infected ChRMs, accompanied by an increase in adenylate cyclase 6 expression and a decrease in cAMP-phosphodiesterase 3A (PDE3A), PDE4B, and PDE5A expression in PBMCs. In addition, selective inhibition of PDE4B and PDE5A activity enhanced CTLA-4 expression in CD4+ T cells. These results suggest that SIV infection alters cAMP metabolism and increases cAMP-PKA signaling pathway activation, which up-regulates the expression of CTLA-4 in acute SIVmac239-infected ChRMs. Thus, regulation of the cAMP-PKA signaling pathway may be a potential strategy for the restoration of T cell function and therapy for AIDS.
Collapse
Affiliation(s)
- Ren-Rong Tian
- Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Ben-Bo Liu
- Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Ming-Liang Zhao
- Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yu-Jun Cai
- Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; College of Pharmacy, Dali University, Dali, Yunnan, 671000, China
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
3
|
Insight into the mechanism of action of EP-39, a bevirimat derivative that inhibits HIV-1 maturation. Antiviral Res 2019; 164:162-175. [PMID: 30825471 DOI: 10.1016/j.antiviral.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/15/2022]
Abstract
Maturation of human immunodeficiency virus type 1 (HIV-1) particles is a key step for viral infectivity. This process can be blocked using maturation inhibitors (MIs) that affect the cleavage of the capsid-spacer peptide 1 (CA-SP1) junction. Here, we investigated the mechanisms underlying the activity of EP-39, a bevirimat (BVM) derivative with better hydrosolubility. To this aim, we selected in vitro EP-39- and BVM-resistant mutants. We found that EP-39-resistant viruses have four mutations within the CA domain (CA-A194T, CA-T200N, CA-V230I, and CA-V230A) and one in the first residue of SP1 (SP1-A1V). We also identified six mutations that confer BVM resistance (CA-A194T, CA-L231F, CA-L231M, SP1-A1V, SP1-S5N and SP1-V7A). To characterize the EP-39 and BVM-resistant mutants, we studied EP-39 effects on mutant virus replication and performed a biochemical analysis with both MIs. We observed common and distinct characteristics, suggesting that, although EP-39 and BVM share the same chemical skeleton, they could interact in a different way with the Gag polyprotein precursor (Pr55Gag). Using an in silico approach, we observed that EP-39 and BVM present different predicted positions on the hexameric crystal structure of the CACTD-SP1 Gag fragment. To clearly understand the relationship between assembly and maturation, we investigated the impact of all identified mutations on virus assembly by expressing Pr55Gag mutants. Finally, using NMR, we have shown that the interaction of EP-39 with a peptide carrying the SP1-A1V mutation (CA-SP1(A1V)-NC) is almost suppressed in comparison with the wild type peptide. These results suggest that EP-39 and BVM could interact differently with the Pr55Gag lattice and that the mutation of the first SP1 residue induces a loss of interaction between Pr55Gag and EP-39.
Collapse
|
4
|
Does BCA3 Play a Role in the HIV-1 Replication Cycle? Viruses 2018; 10:v10040212. [PMID: 29677171 PMCID: PMC5923506 DOI: 10.3390/v10040212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/05/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
The cellular role of breast carcinoma-associated protein (BCA3), also known as A-kinase-interacting protein 1 (AKIP-1), is not fully understood. Recently, we reported that full-length, but not C-terminally truncated, BCA3 is incorporated into virions of Mason-Pfizer monkey virus, and that BCA3 enhances HIV-1 protease-induced apoptosis. In the present study, we report that BCA3 is associated with purified and subtilisin-treated HIV particles. Using a combination of immune-based methods and confocal microscopy, we show that the C-terminus of BCA3 is required for packaging into HIV-1 particles. However, we were unable to identify an HIV-1 binding domain for BCA3, and we did not observe any effect of incorporated BCA3 on HIV-1 infectivity. Interestingly, the BCA3 C-terminus was previously identified as a binding site for the catalytic subunit of protein kinase A (PKAc), a cellular protein that is specifically packaged into HIV-1 particles. Based on our analysis of PKAc–BCA3 interactions, we suggest that BCA3 incorporation into HIV-1 particles is mediated by its ability to interact with PKAc.
Collapse
|
5
|
Phosphorylation of the HIV-1 capsid by MELK triggers uncoating to promote viral cDNA synthesis. PLoS Pathog 2017; 13:e1006441. [PMID: 28683086 PMCID: PMC5500366 DOI: 10.1371/journal.ppat.1006441] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/02/2017] [Indexed: 11/19/2022] Open
Abstract
Regulation of capsid disassembly is crucial for efficient HIV-1 cDNA synthesis after entry, yet host factors involved in this process remain largely unknown. Here, we employ genetic screening of human T-cells to identify maternal embryonic leucine zipper kinase (MELK) as a host factor required for optimal uncoating of the HIV-1 core to promote viral cDNA synthesis. Depletion of MELK inhibited HIV-1 cDNA synthesis with a concomitant delay of capsid disassembly. MELK phosphorylated Ser-149 of the capsid in the multimerized HIV-1 core, and a mutant virus carrying a phosphorylation-mimetic amino-acid substitution of Ser-149 underwent premature capsid disassembly and earlier HIV-1 cDNA synthesis, and eventually failed to enter the nucleus. Moreover, a small-molecule MELK inhibitor reduced the efficiency of HIV-1 replication in peripheral blood mononuclear cells in a dose-dependent manner. These results reveal a previously unrecognized mechanism of HIV-1 capsid disassembly and implicate MELK as a potential target for anti-HIV therapy. Phosphorylation of the HIV-1 capsid has long been known to regulate viral uncoating and cDNA synthesis processes, but the cellular kinases responsible for this have remained unidentified. Here, we report that a host cell kinase MELK dictates optimal capsid disassembly through phosphorylation of Ser-149 in the multimerized HIV-1 core, which leads to efficient viral cDNA synthesis in target cells. The phosphorylation-mimetic capsid mutation of Ser-149 caused aberrant capsid disassembly and too-early completion of reverse transcription, and impeded nuclear entry of HIV-1 cDNA, suggesting the importance of well-ordered capsid disassembly in the early stages of viral replication. This discovery will facilitate understanding of the functional link among virus uncoating, reverse transcription and nuclear entry, and is expected to contribute to developing a novel strategy for AIDS therapy.
Collapse
|
6
|
Ye J, Zhang H, He W, Zhu B, Zhou D, Chen Z, Ashraf U, Wei Y, Liu Z, Fu ZF, Chen H, Cao S. Quantitative phosphoproteomic analysis identifies the critical role of JNK1 in neuroinflammation induced by Japanese encephalitis virus. Sci Signal 2016; 9:ra98. [DOI: 10.1126/scisignal.aaf5132] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Santos S, Obukhov Y, Nekhai S, Pushkarsky T, Brichacek B, Bukrinsky M, Iordanskiy S. Cellular minichromosome maintenance complex component 5 (MCM5) is incorporated into HIV-1 virions and modulates viral replication in the newly infected cells. Virology 2016; 497:11-22. [PMID: 27414250 PMCID: PMC5079758 DOI: 10.1016/j.virol.2016.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/22/2016] [Accepted: 06/28/2016] [Indexed: 12/01/2022]
Abstract
The post-entry events of HIV-1 infection occur within reverse transcription complexes derived from the viral cores entering the target cell. HIV-1 cores contain host proteins incorporated from virus-producing cells. In this report, we show that MCM5, a subunit of the hexameric minichromosome maintenance (MCM) DNA helicase complex, associates with Gag polyprotein and is incorporated into HIV-1 virions. The progeny virions depleted of MCM5 demonstrated reduced reverse transcription in newly infected cells, but integration and subsequent replication steps were not affected. Interestingly, increased packaging of MCM5 into the virions also led to reduced reverse transcription, but here viral replication was impaired. Our data suggest that incorporation of physiological amounts of MCM5 promotes aberrant reverse transcription, leading to partial incapacitation of cDNA, whereas increased MCM5 abundance leads to reduced reverse transcription and infection. Therefore, MCM5 has the properties of an inhibitory factor that interferes with production of an integration-competent cDNA product.
Collapse
Affiliation(s)
- Steven Santos
- George Washington University School of Medicine and Health Sciences, Department of Microbiology, Immunology and Tropical Medicine, 2300 I Street NW, Ross Hall, Washington, DC 20037, USA
| | - Yuri Obukhov
- Howard University College of Medicine, Department of Medicine, Center for Sickle Cell Disease, 1840 7th Street N.W., Washington DC 20001, USA; Howard University College of Medicine, RCMI Proteomics Core Facility, 1840 7th Street N.W., Washington DC 20001, USA
| | - Sergei Nekhai
- Howard University College of Medicine, Department of Medicine, Center for Sickle Cell Disease, 1840 7th Street N.W., Washington DC 20001, USA; Howard University College of Medicine, RCMI Proteomics Core Facility, 1840 7th Street N.W., Washington DC 20001, USA
| | - Tatiana Pushkarsky
- George Washington University School of Medicine and Health Sciences, Department of Microbiology, Immunology and Tropical Medicine, 2300 I Street NW, Ross Hall, Washington, DC 20037, USA
| | - Beda Brichacek
- George Washington University School of Medicine and Health Sciences, Department of Microbiology, Immunology and Tropical Medicine, 2300 I Street NW, Ross Hall, Washington, DC 20037, USA
| | - Michael Bukrinsky
- George Washington University School of Medicine and Health Sciences, Department of Microbiology, Immunology and Tropical Medicine, 2300 I Street NW, Ross Hall, Washington, DC 20037, USA.
| | - Sergey Iordanskiy
- George Washington University School of Medicine and Health Sciences, Department of Microbiology, Immunology and Tropical Medicine, 2300 I Street NW, Ross Hall, Washington, DC 20037, USA
| |
Collapse
|
8
|
Jiang WM, Zhang XY, Zhang YZ, Liu L, Lu HZ. A high throughput RNAi screen reveals determinants of HIV-1 activity in host kinases. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:2229-2237. [PMID: 24966931 PMCID: PMC4069921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Drug resistance remains a great challenge in HIV/AIDS treatment despite the recent advances in novel therapeutics. It may be a good strategy to develop drugs targeting the essential host factors to decrease the risk of drug resistance. Previous studies suggested that so many host kinases play roles in HIV life cycles. More importantly, many kinase genes are drugable targets, therefore, it is vital to figure out host kinases responsible for HIV-1 infection and replication to provide novel therapeutic regimens and to deepen our understanding to HIV-host interaction. In present work, a high throughput RNAi screen with a shRNA library against 474 kinases was applied to HEK293T cells stably expressed a HIV-1 LTR (long terminal repeat)-driven reporter plasmid. Four genes, AK1, EphB2, PRKACB and CDK5R2, were found to specifically suppress the HIV-1 LTR activity following effective knockdown. Furthermore, overexpression of AK1 and PRKACB upregulated the HIV-1 LTR activity. Therefore, AK1 and PRKACB are in positive control of HIV-1 activity. DNA microarray analysis demonstrated that overlapped genes between AK1-silenced and PRKACB-silenced cells were mainly enriched in several amino acid biosynthesis pathways, TGF-β signaling and p53 signaling pathways. These alterations may repress the viral infection by the downregulation of ERK1/2, p38MAPK and NFκB signaling pathways. Collectively, our work uncovers several host kinases involving the HIV-1 infection and may provide potential therapeutic targets for AIDS treatment in future.
Collapse
Affiliation(s)
- Wei-Min Jiang
- Huashan Hospital Affiliated to Fudan UniversityShanghai, China
| | - Xin-Yun Zhang
- Huashan Hospital Affiliated to Fudan UniversityShanghai, China
| | - Yun-Zhi Zhang
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan UniversityShanghai, China
| | - Li Liu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan UniversityShanghai, China
| | - Hong-Zhou Lu
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan UniversityShanghai, China
| |
Collapse
|