1
|
Wang SF, Hung YH, Tsao CH, Chiang CY, Teoh PG, Chiang ML, Lin WH, Hsu DK, Jan HM, Lin HC, Lin CH, Liu FT, Chen HY. Galectin-3 facilitates cell-to-cell HIV-1 transmission by altering the composition of membrane lipid rafts in CD4 T cells. Glycobiology 2022; 32:760-777. [PMID: 35789267 DOI: 10.1093/glycob/cwac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/28/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Galectin-3 (GAL3) is a β-galactoside-binding lectin expressed in CD4 T cells infected with human immunodeficiency virus-1 (HIV-1). GAL3 promotes HIV-1 budding by associating with ALIX and Gag p6. GAL3 has been shown to localize in membrane lipid rafts in dendritic cells and positively regulate cell migration. HIV-1 spreads between T cells by forming supramolecular structures (virological synapses [VSs]), whose integrity depends on lipid rafts. Here, we addressed the potential role of GAL3 in cell-to-cell transmission of HIV-1 in CD4 T cells. GAL3 expressed in donor cells was more important for facilitating HIV-1 cell-to-cell transfer than GAL3 expressed in target cells. GAL3 was found to be co-transferred with Gag from HIV-1-positive donor to HIV-1-negative target T cells. HIV-1 infection induced translocation of GAL3 together with Gag to the cell-cell interfaces and colocalize with GM1, where GAL3 facilitated VS formation. GAL3 regulated the coordinated transfer of Gag and flotillin-1 into plasma membrane fractions. Finally, depletion of GAL3 reduced the cholesterol levels in membrane lipid rafts in CD4 T cells. These findings provide evidence that endogenous GAL3 stimulates lipid raft components and facilitates intercellular HIV-1 transfer among CD4 T cells, offering another pathway by which GAL3 regulates HIV-1 infection. These findings may inform the treatment of HIV-1 infection based on targeting GAL3 to modulate lipid rafts.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsien Hung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Han Tsao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Ph.D. Program in Translational Medicine, Kaohsiung Medical University and Academia Sinica, Taiwan
| | - Cho-Ying Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pak-Guan Teoh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Meng-Lin Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Han Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Daniel K Hsu
- Department of Dermatology, University of California Davis, California, USA
| | - Hau-Ming Jan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Chu Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Dermatology, University of California Davis, California, USA
| | - Huan-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Dermatology, University of California Davis, California, USA
| |
Collapse
|
2
|
Zhu S, Ye L, Bennett S, Xu H, He D, Xu J. Molecular structure, gene expression and functional role of WFDC1 in angiogenesis and cancer. Cell Biochem Funct 2021; 39:588-595. [PMID: 33615507 DOI: 10.1002/cbf.3624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/29/2020] [Accepted: 01/17/2021] [Indexed: 02/04/2023]
Abstract
Whey acidic proteins (WAP) perform a diverse range of important biological functions, including proteinase activity, calcium transport and bacterial growth. The WAP four-disulphide core domain protein 1 (WFDC1) gene (also called PS20), encodes the 20 kDa prostate stromal protein (ps20), which is a member of the WAP-type four-disulphide core domain family of proteins, and exhibits characteristics of serine protease inhibitors, such as elafin and secretory leukocyte protease inhibitor. Molecular structural analysis reveals that ps20 consists of four-disulphide bonds formed by eight cysteine residues located at the carboxyl terminus of the protein. Wfdc1-null mice were found to display no overt developmental phenotype, suggesting a dispensable role in organ growth and development. However, WFDC1 was able to mediate endothelial cell migration and pericyte stabilization, which are vital for the formation of functional vascular structures. WFDC1 was also found to be downregulated in cancers and exhibited a regulatory effect on cell proliferation. In addition, it was involved in the modulation of memory T cells during human immunodeficiency virus infection. Gaining a solid understanding of the mechanisms by which WFDC1 regulates tissue homeostasis and disease processes, in a tissue specific manner, will be an important move towards the development of WFDC1/ps20 as potential therapeutic targets.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Lin Ye
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Samuel Bennett
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dengwei He
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Yu X, Shang H, Jiang Y. ICAM-1 in HIV infection and underlying mechanisms. Cytokine 2019; 125:154830. [PMID: 31491723 DOI: 10.1016/j.cyto.2019.154830] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/29/2019] [Accepted: 08/24/2019] [Indexed: 02/07/2023]
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a glycoprotein that participates in inflammatory and immune responses. Both cell surface and soluble ICAM-1 are significantly increased during human immunodeficiency virus (HIV) infection, and ICAM-1 has important functions in promoting inflammatory responses and enhancing HIV infectivity; however, a comprehensive summary these roles has yet to be elaborated. In this review we describe the general biological characteristics of ICAM-1, its association with HIV disease progression and promotion of HIV production, mechanisms inducing upregulation of ICAM-1, and possible intervention strategies, representing important insights in the context of HIV treatment.
Collapse
Affiliation(s)
- Xiaowen Yu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China.
| | - Yongjun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou 310003, China.
| |
Collapse
|
4
|
Phylogenetic, molecular evolution and structural analyses of the WFDC1/prostate stromal protein 20 (ps20). Gene 2019; 686:125-140. [DOI: 10.1016/j.gene.2018.10.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/07/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022]
|
5
|
Suppressor of cytokine signaling (SOCS) proteins are induced by IL-7 and target surface CD127 protein for degradation in human CD8 T cells. Cell Immunol 2016; 306-307:41-52. [PMID: 27423467 DOI: 10.1016/j.cellimm.2016.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/02/2016] [Accepted: 07/04/2016] [Indexed: 01/05/2023]
Abstract
Given the essential role interleukin (IL)-7 plays in T-cell survival, homeostasis and function, it is no surprise expression of the IL-7 receptor alpha-chain (CD127) is tightly regulated. We have previously shown IL-7 binding to its receptor on the surface of CD8 T cells leads to both suppression of CD127 gene transcription and loss of existing CD127 protein from the cell membrane. Indeed upon binding IL-7, CD127 is rapidly internalized into early endosomes where phosphorylation by JAK targets the receptor for degradation. We now show that IL-7 induces the expression of suppressor of cytokine signaling (SOCS) proteins CIS, SOCS1 and SOCS2 through the JAK/STAT-5 pathway and that CIS and SOCS2 specifically interact with CD127 in early endosomes and direct the receptor complex to the proteasome for degradation. These results illustrate how expression of the IL-7 receptor and thus IL-7 signaling is modulated in human CD8 T cells by a negative feedback mechanism dependent on members of the SOCS family of proteins.
Collapse
|
6
|
Li C, Jin W, Du T, Wu B, Liu Y, Shattock RJ, Hu Q. Binding of HIV-1 virions to α4β 7 expressing cells and impact of antagonizing α4β 7 on HIV-1 infection of primary CD4+ T cells. Virol Sin 2014; 29:381-92. [PMID: 25527342 DOI: 10.1007/s12250-014-3525-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/21/2014] [Indexed: 01/17/2023] Open
Abstract
HIV-1 envelope glycoprotein is reported to interact with α4β7, an integrin mediating the homing of lymphocytes to gut-associated lymphoid tissue, but the significance of α4β7 in HIV-1 infection remains controversial. Here, using HIV-1 strain BaL, the gp120 of which was previously shown to be capable of interacting with α4β7, we demonstrated that α4β7 can mediate the binding of whole HIV-1 virions to α4β7-expressing transfectants. We further constructed a cell line stably expressing α4β7 and confirmed the α4β7-mediated HIV-1 binding. In primary lymphocytes with activated α4β7 expression, we also observed significant virus binding which can be inhibited by an anti-α4β7 antibody. Moreover, we investigated the impact of antagonizing α4β7 on HIV-1 infection of primary CD4(+) T cells. In α4β7-activated CD4(+) T cells, both anti-α4β7 antibodies and introduction of short-hairpin RNAs specifically targeting α4β7 resulted in a decreased HIV-1 infection. Our findings indicate that α4β7 may serve as an attachment factor at least for some HIV-1 strains. The established approach provides a promising means for the investigation of other viral strains to understand the potential roles of α4β7 in HIV-1 infection.
Collapse
Affiliation(s)
- Chang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Advances in siRNA delivery to T-cells: potential clinical applications for inflammatory disease, cancer and infection. Biochem J 2013; 455:133-47. [DOI: 10.1042/bj20130950] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The specificity of RNAi and its ability to silence ‘undruggable’ targets has made inhibition of gene expression in T-cells with siRNAs an attractive potential therapeutic strategy for the treatment of inflammatory disease, cancer and infection. However, delivery of siRNAs into primary T-cells represents a major hurdle to their use as potential therapeutic agents. Recent advances in siRNA delivery through the use of electroporation/nucleofection, viral vectors, peptides/proteins, nanoparticles, aptamers and other agents have now enabled efficient gene silencing in primary T-cells both in vitro and in vivo. Overcoming such barriers in siRNA delivery offers exciting new prospects for directly targeting T-cells systemically with siRNAs, or adoptively transferring T-cells back into patients following ex vivo manipulation with siRNAs. In the present review, we outline the challenges in delivering siRNAs into primary T-cells and discuss the mechanism and therapeutic opportunities of each delivery method. We emphasize studies that have exploited RNAi-mediated gene silencing in T-cells for the treatment of inflammatory disease, cancer and infection using mouse models. We also discuss the potential therapeutic benefits of manipulating T-cells using siRNAs for the treatment of human diseases.
Collapse
|
8
|
Dale BM, Alvarez RA, Chen BK. Mechanisms of enhanced HIV spread through T-cell virological synapses. Immunol Rev 2013; 251:113-24. [PMID: 23278744 DOI: 10.1111/imr.12022] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An elaborate network of cell-cell interactions in the immune system is essential for vertebrates to mount adaptive immune responses against invading pathogens. For lymphotropic viruses such as the human immunodeficiency virus type 1 (HIV-1), these immune cell interactions can also promote the spread of the virus within the host. The main target of HIV-1 infection is the CD4(+) helper T lymphocyte, a cell type that is responsible for coordinating immune responses and modulating effector responses to foreign antigens. As part of their normal immune surveillance duties, these cells migrate actively within lymphoid tissues and can travel from inductive sites to effector sites in search of their cognate antigen. For CD4(+) T cells, there is an ongoing search for a unique peptide antigen presented in the context of class II MHC that can activate a proliferative or tolerogenic response. This iterative and continual probing and interrogation of other cells determine the outcome of immune responses. Recent studies in vitro have revealed that the viral infection program induces cell-cell interactions called virological synapses between infected and uninfected CD4(+) T cells. These long-lived, virally induced adhesive contacts greatly enhance the rate of productive infection and may be central to the spread of the virus in vivo. Here, we review aspects of this efficient mode of cell-to-cell infection and the implications for our understanding of HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Benjamin M Dale
- Division of Infectious Disease, Department of Medicine, Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
9
|
|
10
|
War and peace between WAP and HIV: role of SLPI, trappin-2, elafin and ps20 in susceptibility to HIV infection. Biochem Soc Trans 2012; 39:1427-32. [PMID: 21936827 DOI: 10.1042/bst0391427] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite tremendous advances in our understanding of HIV/AIDS since the first cases were reported 30 years ago, we are still a long way from understanding critical steps of HIV acquisition, pathogenesis and correlates of protection. Our new understanding of the importance of the mucosa as a target for HIV infection, as well as our recent observations showing that altered expression and responses of innate pattern recognition receptors are significantly associated with pathogenesis and resistance to HIV infection, indicate that correlates of immunity to HIV are more likely to be associated with mucosal and innate responses. Most of the heterosexual encounters do not result in productive HIV infection, suggesting that the female genital tract is protected against HIV by innate defence molecules, such as antiproteases, secreted mucosally. The present review highlights the role and significance of the serine protease inhibitors SLPI (secretory leucocyte protease inhibitor), trappin-2, elafin and ps20 (prostate stromal protein 20 kDa) in HIV susceptibility and infection. Interestingly, in contrast with SLPI, trappin-2 and elafin, ps20 has been shown to enhance HIV infectivity. Thus understanding the balance and interaction of these factors in mucosal fluids may significantly influence HIV infection.
Collapse
|
11
|
Abstract
The present evaluates the key features of the WFDC1 [WAP (whey acidic protein) four disulfide core 1] gene that encodes ps20 (20 kDa prostate stromal protein), a member of the WAP family. ps20 was first characterized as a growth inhibitory activity that was secreted by fetal urogenital sinus mesenchymal cells. Purified ps20 exhibited several activities that centre on cell adhesion, migration and proliferation. The WFDC1 gene was cloned, contained seven exons, and was mapped to chromosome 16q24, suggesting that it may function as a tumour suppressor; however, direct evidence of this has not emerged. In vivo, ps20 stimulated angiogenesis, although expression of WFDC1/ps20 was down-regulated in the reactive stroma tumour microenvironment in prostate cancer. WFDC1 expression is differential in other cancers and inflammatory conditions. Recent studies point to a role in viral infectivity. Although mechanisms of action are not fully understood, WFDC1/ps20 is emerging as a secreted matricellular protein that probably affects response to micro-organisms and tissue repair homoeostasis.
Collapse
|
12
|
Immunotherapy of prostate cancer: identification of new treatments and targets for therapy, and role of WAP domain-containing proteins. Biochem Soc Trans 2011; 39:1433-6. [DOI: 10.1042/bst0391433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prostate adenocarcinoma is present in over 80% of men over the age of 80 and is by far the most common cancer of men. Although radical prostatectomy is curative in early disease, the risks of incontinence and impotence can affect the quality of life of patients. Early intervention with localized immunotherapy represents a potential solution as lymphocyte infiltration does occur in prostate cancer lesions, and immunotherapy with dendritic cell vaccines can significantly increase survival in late stage disease. However, lymphocytic infiltrates in the cancerous prostates have an anergic character arising from the suppressive effects of the microenvironment resulting from a conversion of effector cells into regulatory T-cells. Although TGFβ (transforming growth factor β) and IL-10 (interleukin-10) are known to be strong suppressor molecules associated with prostate cancer, they are among many possible suppressive factors. We discuss the possible role of alternative suppressor molecules, including the WAP (whey acidic protein) homologue ps20 that is expressed on prostate stroma and other WAP domain-containing proteins in the immunosuppressive prostate cancer milieu and discuss novel immunotherapeutic strategies to combat this disease.
Collapse
|