1
|
Olasz K, Gál S, Khanfar E, Balogh P, Németh P, Berki T, Boldizsár F. The Spleen Modulates the Balance of Natural and Pathological Autoantibodies in a Mouse Model of Autoimmune Arthritis. Int J Mol Sci 2024; 25:11683. [PMID: 39519235 PMCID: PMC11545939 DOI: 10.3390/ijms252111683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Natural autoantibodies (natAAbs) react with evolutionarily conserved antigens but they do not lead to pathological tissue destruction, contrary to pathological autoantibodies (pathAAbs). NatAAbs usually belong to the IgM isotype, and their network, also known as the "immunological homunculus", is thought to play a role in immunological tolerance. NatAAbs are produced by B1 cells found mostly on the serosa surfaces or the spleen. The exact relation between natAAbs and pathAAbs is still not completely understood. The recombinant human proteoglycan (PG) aggrecan G1 domain (rhG1)-induced arthritis (GIA) is an excellent mouse model for rheumatoid arthritis because it represents most of the clinical, immunological and laboratory parameters of the corresponding human pathology. Recently, we studied the role of the spleen in GIA, and found that a splenectomy modified the development of autoimmunity. To further characterize the possible role of the nAAb levels in tolerance and autoimmunity, in the present study, we set out to measure the nat- and pathAAb levels in GIA. We analyzed the natAAb levels in the serum against cartilage PG aggrecan, Hsp60 and Hsp70, and the mitochondrial citrate synthase (CS) antigens in healthy control and arthritic mice. Furthermore, we studied whether the splenectomy influenced the production of nat- and pathAAbs in mice with GIA. Our results show that the natAAb levels against PG aggrecan, Hsp60, Hsp70 and CS showed age-related variations in healthy BALB/c mice. The induction of autoimmune arthritis did not change the levels of the measured natAAbs significantly. Splenectomy, on the other hand, clearly decreased the levels of all the measured natAAbs. Interestingly, the levels of the pathAAbs showed the opposite change: they were higher in the splenectomized group than in the control arthritic mice. Based on these results, we conclude that the spleen plays a role in setting the balance between nat- and pathAAbs in autoimmune arthritis.
Collapse
Affiliation(s)
- Katalin Olasz
- Department of Immunology and Biotechnology, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.O.); (S.G.); (E.K.); (P.B.); (P.N.); (T.B.)
| | - Szonja Gál
- Department of Immunology and Biotechnology, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.O.); (S.G.); (E.K.); (P.B.); (P.N.); (T.B.)
| | - Esam Khanfar
- Department of Immunology and Biotechnology, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.O.); (S.G.); (E.K.); (P.B.); (P.N.); (T.B.)
| | - Péter Balogh
- Department of Immunology and Biotechnology, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.O.); (S.G.); (E.K.); (P.B.); (P.N.); (T.B.)
- Lymphoid Organogenesis Research Group, Szentagothai Research Center, University of Pécs, 7622 Pécs, Hungary
| | - Péter Németh
- Department of Immunology and Biotechnology, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.O.); (S.G.); (E.K.); (P.B.); (P.N.); (T.B.)
| | - Tímea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.O.); (S.G.); (E.K.); (P.B.); (P.N.); (T.B.)
| | - Ferenc Boldizsár
- Department of Immunology and Biotechnology, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.O.); (S.G.); (E.K.); (P.B.); (P.N.); (T.B.)
| |
Collapse
|
2
|
Khanfar E, Olasz K, Gál S, Gajdócsi E, Kajtár B, Kiss T, Balogh P, Berki T, Boldizsár F. Splenectomy at early stage of autoimmune arthritis delayed inflammatory response and reduced joint deterioration in mice. Clin Exp Immunol 2024; 216:240-251. [PMID: 38363980 PMCID: PMC11097914 DOI: 10.1093/cei/uxae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/15/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024] Open
Abstract
The spleen plays a role in innate and adaptive immunity, and autoimmune diseases like rheumatoid arthritis (RA). We investigated the effect of splenectomy in early and moderate stages of autoimmune arthritis in a mouse model. To induce recombinant human G1-induced arthritis (GIA), BALB/c mice were immunized intraperitoneally three times in 4-week intervals with the rhG1 antigen. Mice were splenectomized on day 7 (SPE1) or day 35 (SPE2) after the initiation of immunization; tested for clinical severity, joint radiological and histological changes, serum levels of inflammatory cytokines and autoantibodies, and rhG1-specific immune responses; and compared to those in control mice with spleen left intact. Circulating Tregs and T-helper subset ratios in the spleen and inguinal lymph nodes (LNs) were also examined using flow cytometry. The onset of severe inflammatory response was significantly delayed in SPE1 and SPE2 groups compared to control mice at early stages of GIA, which was associated with increased circulating Tregs. After the third immunization, as disease progressed, the severity scores were robustly increased in all mice. Nevertheless, in splenectomized mice, we observed reduced joint deterioration and cartilage damage, more Th2 cells in LNs, and reduced levels of pro-inflammatory cytokines and autoantibodies in their sera. Mesenteric LN cells of splenectomized mice exhibited weaker response in vitro against the rhG1 antigen compared to control mice spleen. In conclusion, splenectomy in the early stages of GIA delayed the inflammatory response, suggesting a protective effect against the development and progression of severe destructive arthritis.
Collapse
Affiliation(s)
- Esam Khanfar
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pécs, Hungary
| | - Katalin Olasz
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pécs, Hungary
| | - Szonja Gál
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pécs, Hungary
| | - Erzsébet Gajdócsi
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pécs, Hungary
| | - Béla Kajtár
- Department of Pathology, Medical School, University of Pecs, Pécs, Hungary
| | - Tamás Kiss
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pécs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pécs, Hungary
| | - Timea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pécs, Hungary
| | - Ferenc Boldizsár
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pécs, Hungary
| |
Collapse
|
3
|
Bi J, Zhang C, Lu C, Mo C, Zeng J, Yao M, Jia B, Liu Z, Yuan P, Xu S. Age-related bone diseases: Role of inflammaging. J Autoimmun 2024; 143:103169. [PMID: 38340675 DOI: 10.1016/j.jaut.2024.103169] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/03/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Bone aging is characterized by an imbalance in the physiological and pathological processes of osteogenesis, osteoclastogenesis, adipogenesis, and chondrogenesis, resulting in exacerbated bone loss and the development of age-related bone diseases, including osteoporosis, osteoarthritis, rheumatoid arthritis, and periodontitis. Inflammaging, a novel concept in the field of aging research, pertains to the persistent and gradual escalation of pro-inflammatory reactions during the aging process. This phenomenon is distinguished by its low intensity, systemic nature, absence of symptoms, and potential for management. The mechanisms by which inflammaging contribute to age-related chronic diseases, particularly in the context of age-related bone diseases, remain unclear. The precise manner in which systemic inflammation induces bone aging and consequently contributes to the development of age-related bone diseases has yet to be fully elucidated. This article primarily examines the mechanisms underlying inflammaging and its association with age-related bone diseases, to elucidate the potential mechanisms of inflammaging in age-related bone diseases and offer insights for developing preventive and therapeutic strategies for such conditions.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Caimei Zhang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Caihong Lu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiawei Zeng
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingyan Yao
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China; Department of Endocrinology, Baoding No.1 Central Hospital, Baoding, China
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Vlachogiannis NI, Evangelou K, Ntari L, Nikolaou C, Denis MC, Karagianni N, Veroutis D, Gorgoulis V, Kollias G, Sfikakis PP. Targeting senescence and inflammation in chronic destructive TNF-driven joint pathology. Mech Ageing Dev 2023; 214:111856. [PMID: 37558168 DOI: 10.1016/j.mad.2023.111856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
We had shown that administration of the senolytic Dasatinib abolishes arthritis in the human TNF transgenic mouse model of chronic destructive arthritis when given in combination with a sub-therapeutic dose of the anti-TNF mAb Infliximab (1 mg/kg). Herein, we found that while the number of senescent chondrocytes (GL13+/Ki67-), assessed according to guideline algorithmic approaches, was not affected by either Dasatinib or sub-therapeutic Infliximab monotherapies, their combination reduced senescent chondrocytes by 50 %, which was comparable to levels observed with therapeutic Infliximab monotherapy (10 mg/kg). This combination therapy also reduced the expression of multiple factors of senescence-associated secretory phenotype in arthritic joints. Studies to elucidate the interplay of inflammation and senescence may help in optimizing treatment strategies also for age-related pathologies characterized by chronic low-grade joint inflammation.
Collapse
Affiliation(s)
- Nikolaos I Vlachogiannis
- First Department of Propaedeutic Internal Medicine and Joint Academic Rheumatology Program, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; Department of Physiology, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece.
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
| | | | - Christoforos Nikolaou
- Institute for Bioinnovation, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672 Vari, Greece
| | | | | | - Dimitris Veroutis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; Biomedical Research Foundation, Academy of Athens, Athens, Greece; Ninewells Hospital and Medical School, University of Dundee, Dundee, UK; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Faculty of Health and Medical Sciences, University of Surrey, UK
| | - George Kollias
- Department of Physiology, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; Institute for Bioinnovation, Biomedical Sciences Research Center (B.S.R.C.) "Alexander Fleming", 16672 Vari, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine and Joint Academic Rheumatology Program, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Postgraduate Medical Studies in Geriatric Syndromes and Physiology of Aging, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Gál S, Gajdócsi E, Khanfar E, Olasz K, Simon D, Balogh P, Berki T, Németh P, Boldizsár F. Natural and Pathological Autoantibodies Show Age-Related Changes in a Spontaneous Autoimmune Mouse (NZB) Model. Int J Mol Sci 2023; 24:9809. [PMID: 37372957 DOI: 10.3390/ijms24129809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The natural autoantibody (natAAb) network is thought to play a role in immune regulation. These IgM antibodies react with evolutionary conserved antigens; however, they do not lead to pathological tissue destruction as opposed to pathological autoantibodies (pathAAb). The exact relation between the natAAbs and pathAAbs is still not completely understood; therefore, in the present study, we set out to measure nat- and pathAAb levels against three conserved antigens in a spontaneous autoimmune disease model: the NZB mouse strain which develops autoimmune hemolytic anemia (AIHA) from six months of age. There was an age dependent increase in the natAAb levels in the serum against Hsp60, Hsp70, and the mitochondrial citrate synthase until 6-9 months of age, followed by a gradual decrease. The pathological autoantibodies appeared after six months of age, which corresponded with the appearance of the autoimmune disease. The changes in nat/pathAAb levels were coupled with decreasing B1- and increasing plasma cell and memory B cell percentages. Based on this, we propose that there is a switch from natAAbs towards pathAAbs in aged NZB mice.
Collapse
Affiliation(s)
- Szonja Gál
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pécs, Hungary
| | - Erzsébet Gajdócsi
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pécs, Hungary
| | - Esam Khanfar
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pécs, Hungary
| | - Katalin Olasz
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pécs, Hungary
| | - Diána Simon
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pécs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pécs, Hungary
- Lymphoid Organogenesis Research Group, Szentagothai Research Center, University of Pecs, H-7624 Pécs, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pécs, Hungary
| | - Péter Németh
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pécs, Hungary
| | - Ferenc Boldizsár
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pécs, Hungary
| |
Collapse
|
6
|
Mena-Vázquez N, Lisbona-Montañez JM, Redondo-Rodriguez R, Mucientes A, Manrique-Arija S, Rioja J, Garcia-Studer A, Ortiz-Márquez F, Cano-García L, Fernández-Nebro A. Inflammatory profile of incident cases of late-onset compared with young-onset rheumatoid arthritis: A nested cohort study. Front Med (Lausanne) 2022; 9:1016159. [PMID: 36425102 PMCID: PMC9679221 DOI: 10.3389/fmed.2022.1016159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
Objectives To describe the characteristics of patients between late-onset rheumatoid arthritis (LORA) with young-onset (YORA), and analyze their association with cumulative inflammatory burden. Methods We performed a nested cohort study in a prospective cohort comprising 110 patients with rheumatoid arthritis (RA) and 110 age- and sex-matched controls. The main variable was cumulative inflammatory activity according to the 28-joint Disease Activity Score with erythrocyte sedimentation rate (DAS28-ESR). High activity was defined as DAS28 ≥ 3.2 and low activity as DAS28 < 3.2. The other variables recorded were inflammatory cytokines, physical function, and comorbid conditions. Two multivariate models were run to identify factors associated with cumulative inflammatory activity. Results A total of 22/110 patients (20%) met the criteria for LORA (≥ 60 years). Patients with LORA more frequently had comorbid conditions than patients with YORA and controls. Compared with YORA patients, more LORA patients had cumulative high inflammatory activity from onset [13 (59%) vs. 28 (31%); p = 0.018] and high values for CRP (p = 0.039) and IL-6 (p = 0.045). Cumulative high inflammatory activity in patients with RA was associated with LORA [OR (95% CI) 4.69 (1.49-10.71); p = 0.008], smoking [OR (95% CI) 2.07 (1.13-3.78); p = 0.017], anti-citrullinated peptide antibody [OR (95% CI) 3.24 (1.15-9.13); p = 0.025], average Health Assessment Questionnaire (HAQ) score [OR (95% CI) 2.09 (1.03-14.23); p = 0.034], and physical activity [OR (95% CI) 0.99 (0.99-0.99); p = 0.010]. The second model revealed similar associations with inflammatory activity in patients with LORA. Conclusion Control of inflammation after diagnosis is poorer and comorbidity more frequent in patients with LORA than in YORA patients and healthy controls.
Collapse
Affiliation(s)
- Natalia Mena-Vázquez
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Unidad de Gestión Clínica (UGC) de Reumatología, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Jose Manuel Lisbona-Montañez
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Unidad de Gestión Clínica (UGC) de Reumatología, Hospital Regional Universitario de Málaga, Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, Málaga, Spain
| | - Rocío Redondo-Rodriguez
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Unidad de Gestión Clínica (UGC) de Reumatología, Hospital Regional Universitario de Málaga, Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, Málaga, Spain
| | - Arkaitz Mucientes
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Unidad de Gestión Clínica (UGC) de Reumatología, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Sara Manrique-Arija
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Unidad de Gestión Clínica (UGC) de Reumatología, Hospital Regional Universitario de Málaga, Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, Málaga, Spain
| | - José Rioja
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, Málaga, Spain
| | - Aimara Garcia-Studer
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Unidad de Gestión Clínica (UGC) de Reumatología, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Fernando Ortiz-Márquez
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Unidad de Gestión Clínica (UGC) de Reumatología, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Laura Cano-García
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Unidad de Gestión Clínica (UGC) de Reumatología, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Antonio Fernández-Nebro
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionand, Málaga, Spain
- Unidad de Gestión Clínica (UGC) de Reumatología, Hospital Regional Universitario de Málaga, Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
7
|
Andreas N, Müller S, Templin N, Jordan PM, Schuhwerk H, Müller M, Gerstmeier J, Miek L, Andreas S, Werz O, Kamradt T. Incidence and severity of G6PI-induced arthritis are not increased in genetically distinct mouse strains upon aging. Arthritis Res Ther 2021; 23:222. [PMID: 34429153 PMCID: PMC8383389 DOI: 10.1186/s13075-021-02596-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/02/2021] [Indexed: 12/02/2022] Open
Abstract
Background The incidence of rheumatoid arthritis is correlated with age. In this study, we analyzed the association of the incidence and severity of glucose-6-phosphate isomerase (G6PI)-induced arthritis with age in two different mouse strains. Methods Young and very old mice from two different arthritis-susceptible wild-type mouse strains were analyzed after a single subcutaneous injection of G6PI s.c. The metabolism and the function of synoviocytes were analyzed in vitro, the production of bioactive lipid mediators by myeloid cells and synoviocytes was assessed in vitro and ex vivo by UPLC-MS-MS, and flow cytometry was used to verify age-related changes of immune cell composition and function. Results While the severity of arthritis was independent from age, the onset was delayed in old mice. Old mice showed common signs of immune aging like thymic atrophy associated with decreased CD4+ effector T cell numbers. Despite its decrease, the effector T helper (Th) cell compartment in old mice was reactive and functionally intact, and their Tregs exhibited unaltered suppressive capacities. In homeostasis, macrophages and synoviocytes from old mice produced higher amounts of pro-inflammatory cyclooxygenase (COX)-derived products. However, this functional difference did not remain upon challenge in vitro nor upon arthritis reactions ex vivo. Conclusion While old mice show a higher baseline of inflammatory functions, this does not result in increased reaction towards self-antigens in arthritis-susceptible mouse strains. Together, our data from two different mouse strains show that the susceptibility for G6PI-induced arthritis is not age-dependent. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02596-7.
Collapse
Affiliation(s)
- Nico Andreas
- Institute of Immunology, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany.
| | - Sylvia Müller
- Institute of Immunology, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany
| | - Nicole Templin
- Institute of Immunology, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University, Philosophenweg 14, 07743, Jena, Germany
| | - Harald Schuhwerk
- Institute of Immunology, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany
| | - Michael Müller
- Institute of Immunology, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University, Philosophenweg 14, 07743, Jena, Germany
| | - Laura Miek
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University, Philosophenweg 14, 07743, Jena, Germany
| | - Saskia Andreas
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University, Philosophenweg 14, 07743, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University, Philosophenweg 14, 07743, Jena, Germany
| | - Thomas Kamradt
- Institute of Immunology, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany.
| |
Collapse
|
8
|
Ameliorated Autoimmune Arthritis and Impaired B Cell Receptor-Mediated Ca 2+ Influx in Nkx2-3 Knock-out Mice. Int J Mol Sci 2020; 21:ijms21176162. [PMID: 32859051 PMCID: PMC7503974 DOI: 10.3390/ijms21176162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
B cells play a crucial role in the pathogenesis of rheumatoid arthritis. In Nkx2-3-deficient mice (Nkx2-3−/−) the spleen’s histological structure is fundamentally changed; therefore, B cell homeostasis is seriously disturbed. Based on this, we were curious, whether autoimmune arthritis could be induced in Nkx2-3−/− mice and how B cell activation and function were affected. We induced arthritis with immunization of recombinant human proteoglycan aggrecan G1 domain in Nkx2-3−/− and control BALB/c mice. We followed the clinical picture, characterized the radiological changes, the immune response, and intracellular Ca2+ signaling of B cells. Incidence of the autoimmune arthritis was lower, and the disease severity was milder in Nkx2-3−/− mice than in control BALB/c mice. The radiological changes were in line with the clinical picture. In Nkx2-3−/− mice, we measured decreased antigen-induced proliferation and cytokine production in spleen cell cultures; in the sera, we found less anti-CCP-IgG2a, IL-17 and IFNγ, but more IL-1β, IL-4 and IL-6. B cells isolated from the lymph nodes of Nkx2-3−/− mice showed decreased intracellular Ca2+ signaling compared to those isolated from BALB/c mice. Our findings show that the transcription factor Nkx2-3 might regulate the development of autoimmune arthritis most likely through modifying B cell activation.
Collapse
|
9
|
Serhal L, Lwin MN, Holroyd C, Edwards CJ. Rheumatoid arthritis in the elderly: Characteristics and treatment considerations. Autoimmun Rev 2020; 19:102528. [DOI: 10.1016/j.autrev.2020.102528] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/23/2022]
|
10
|
Kugyelka R, Prenek L, Olasz K, Kohl Z, Botz B, Glant TT, Berki T, Boldizsár F. ZAP-70 Regulates Autoimmune Arthritis via Alterations in T Cell Activation and Apoptosis. Cells 2019; 8:cells8050504. [PMID: 31137740 PMCID: PMC6562615 DOI: 10.3390/cells8050504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 01/08/2023] Open
Abstract
T cells play an essential role in the pathogenesis of both human rheumatoid arthritis (RA) and its murine models. A key molecule in T cell activation is ZAP-70, therefore we aimed to investigate the effects of partial ZAP-70 deficiency on the pathogenesis of recombinant human G1(rhG1)-induced arthritis (GIA), a well-established mouse model of RA. Arthritis was induced in BALB/c and ZAP-70+/- heterozygous mice. Disease progression was monitored using a scoring system and in vivo imaging, antigen-specific proliferation, cytokine and autoantibody production was measured and T cell apoptotic pathways were analyzed. ZAP-70+/- mice developed a less severe arthritis, as shown by both clinical picture and in vitro parameters (decreased T cell proliferation, cytokine and autoantibody production). The amount of cleaved Caspase-3 increased in arthritic ZAP-70+/- T cells, with no significant changes in cleaved Caspase-8 and -9 levels; although expression of Bim, Bcl-2 and Cytochrome C showed alterations. Tyrosine phosphorylation was less pronounced in arthritic ZAP-70+/- T cells and the amount of Cbl-b-a negative regulator of T cell activation-decreased as well. We hypothesize that the less severe disease seen in the partial absence of ZAP-70 might be caused by the decreased T cell activation accompanied by increased apoptosis.
Collapse
Affiliation(s)
- Réka Kugyelka
- Department of Immunology and Biotechnology, Medical School, University of Pécs, H-7624 Pécs, Hungary.
| | - Lilla Prenek
- Department of Immunology and Biotechnology, Medical School, University of Pécs, H-7624 Pécs, Hungary.
| | - Katalin Olasz
- Department of Immunology and Biotechnology, Medical School, University of Pécs, H-7624 Pécs, Hungary.
| | - Zoltán Kohl
- Department of Immunology and Biotechnology, Medical School, University of Pécs, H-7624 Pécs, Hungary.
| | - Bálint Botz
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary.
- Department of Radiology, Medical School, University of Pécs, H-7624 Pécs, Hungary.
| | - Tibor T Glant
- Department of Molecular Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Timea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pécs, H-7624 Pécs, Hungary.
| | - Ferenc Boldizsár
- Department of Immunology and Biotechnology, Medical School, University of Pécs, H-7624 Pécs, Hungary.
| |
Collapse
|
11
|
Horváth Á, Borbély É, Bölcskei K, Szentes N, Kiss T, Belák M, Rauch T, Glant T, Zákány R, Juhász T, Karanyicz E, Boldizsár F, Helyes Z, Botz B. Regulatory role of capsaicin-sensitive peptidergic sensory nerves in the proteoglycan-induced autoimmune arthritis model of the mouse. J Neuroinflammation 2018; 15:335. [PMID: 30509328 PMCID: PMC6276168 DOI: 10.1186/s12974-018-1364-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022] Open
Abstract
Objective The regulatory role of capsaicin-sensitive peptidergic sensory nerves has been shown in acute inflammation, but little is known about their involvement in T/B-cell driven autoimmune arthritis. This study integratively characterized the function of these nerve endings in the proteoglycan-induced chronic arthritis (PGIA), a translational model of rheumatoid arthritis. Methods Peptidergic afferents were defunctionalized by resiniferatoxin (RTX) pretreatment in BALB/c mice, PGIA was induced by repeated antigen challenges. Hind paw volume, arthritis severity, grasping ability and the mechanonociceptive threshold were monitored during the 17-week experiment. Myeloperoxidase activity, vascular leakage and bone turnover were evaluated by in vivo optical imaging. Bone morphology was assessed using micro-CT, the intertarsal small joints were processed for histopathological analysis. Results Following desensitization of the capsaicin-sensitive afferents, ankle edema, arthritis severity and mechanical hyperalgesia were markedly diminished. Myeloperoxidase activity was lower in the early, but increased in the late phase, whilst plasma leakage and bone turnover were not altered. Desensitized mice displayed similar bone spurs and erosions, but increased trabecular thickness of the tibia and bony ankylosis of the spine. Intertarsal cartilage thickness was not altered in the model, but desensitization increased this parameter in both the non-arthritic and arthritic groups. Conclusion This is the first integrative in vivo functional and morphological characterization of the PGIA mouse model, wherein peptidergic afferents have an important regulatory function. Their overall effect is proinflammatory by increasing acute inflammation, immune cell activity and pain. Meanwhile, their activation decreases spinal ankylosis, arthritis-induced altered trabecularity, and cartilage thickness in small joints. Electronic supplementary material The online version of this article (10.1186/s12974-018-1364-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ádám Horváth
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti u. 12, Pécs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, National Brain Research Program 20017-1.2.1-NKP-2017-00002, Chronic Pain Research Group, University of Pécs Medical School, Pécs, Hungary
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti u. 12, Pécs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, National Brain Research Program 20017-1.2.1-NKP-2017-00002, Chronic Pain Research Group, University of Pécs Medical School, Pécs, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti u. 12, Pécs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, National Brain Research Program 20017-1.2.1-NKP-2017-00002, Chronic Pain Research Group, University of Pécs Medical School, Pécs, Hungary
| | - Nikolett Szentes
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti u. 12, Pécs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, National Brain Research Program 20017-1.2.1-NKP-2017-00002, Chronic Pain Research Group, University of Pécs Medical School, Pécs, Hungary
| | - Tamás Kiss
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti u. 12, Pécs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Department of Pharmacology and Pharmacotherapy, National Brain Research Program 20017-1.2.1-NKP-2017-00002, Chronic Pain Research Group, University of Pécs Medical School, Pécs, Hungary
| | - Mátyás Belák
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti u. 12, Pécs, 7624, Hungary
| | - Tibor Rauch
- Department of Orthopedic Surgery, Section of Molecular Medicine, Rush University Medical Center, Chicago, USA
| | - Tibor Glant
- Department of Orthopedic Surgery, Section of Molecular Medicine, Rush University Medical Center, Chicago, USA
| | - Róza Zákány
- Department of Anatomy, Histology, and Embryology, University of Debrecen, Debrecen, Hungary
| | - Tamás Juhász
- Department of Anatomy, Histology, and Embryology, University of Debrecen, Debrecen, Hungary
| | - Edina Karanyicz
- Department of Anatomy, Histology, and Embryology, University of Debrecen, Debrecen, Hungary
| | - Ferenc Boldizsár
- Medical School, Department of Immunology, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti u. 12, Pécs, 7624, Hungary. .,János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary. .,Department of Pharmacology and Pharmacotherapy, National Brain Research Program 20017-1.2.1-NKP-2017-00002, Chronic Pain Research Group, University of Pécs Medical School, Pécs, Hungary.
| | - Bálint Botz
- János Szentágothai Research Centre, Molecular Pharmacology Research Team and Centre for Neuroscience, University of Pécs, Pécs, Hungary.,Medical School, Department of Radiology, University of Pécs, Pécs, Hungary
| |
Collapse
|
12
|
Abstract
The types of changes in physical appearance and behavior that occur in elderly people similarly develop in elderly animals. Signs and symptoms that might cause concern in younger people or mice may be normal in their elderly but generally healthy counterparts. Although numerous scoring methods have been developed to assess rodent health, these systems were often designed for young adults used in specific types of research, such as cancer or neurologic studies, and therefore may be suboptimal for assessing aging rodents. Approaches known as frailty assessments provide a global evaluation of the health of aged mice, rats, and people, and mouse frailty scores correlate well with the likelihood of death. Complementing frailty assessment, prediction of imminent death in aged mice can often be accomplished by focusing on 2 objective parameters-body weight and temperature. Before they die, many (but not all) mice develop marked reductions in body weight and temperature, thus providing signs that close monitoring, intervention, or preemptive euthanasia may be necessary. Timely preemptive euthanasia allows antemortem collection of data and samples that would be lost if spontaneous death occurred; preemptive euthanasia also limits terminal suffering. These approaches to monitoring declining health and predicting death in elderly research mice can aid in establishing and implementing timely interventions that both benefit the research and reduce antemortem suffering.
Collapse
Affiliation(s)
- Linda A Toth
- Emeritus Faculty, Southern Illinois University School of Medicine, Springfield, Illinois, USA.
| |
Collapse
|
13
|
Tyagi AM, Mansoori MN, Srivastava K, Khan MP, Kureel J, Dixit M, Shukla P, Trivedi R, Chattopadhyay N, Singh D. Enhanced immunoprotective effects by anti-IL-17 antibody translates to improved skeletal parameters under estrogen deficiency compared with anti-RANKL and anti-TNF-α antibodies. J Bone Miner Res 2014; 29:1981-92. [PMID: 24677326 DOI: 10.1002/jbmr.2228] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/07/2014] [Accepted: 03/13/2014] [Indexed: 12/19/2022]
Abstract
Activated T cell has a key role in the interaction between bone and immune system. T cells produce proinflammatory cytokines, including receptor activator of NF-κB ligand (RANKL), tumor necrosis factor α (TNF-α), and interleukin 17 (IL-17), all of which augment osteoclastogenesis. RANKL and TNF-α are targeted by inhibitors such as denosumab, a human monoclonal RANKL antibody, and infliximab, which neutralizes TNF-α. IL-17 is also an important mediator of bone loss, and an antibody against IL-17 is undergoing phase II clinical trial for rheumatoid arthritis. Although there are a few studies showing suppression of Th17 cell differentiation and induction of regulatory T cells (Tregs) by infliximab, the effect of denosumab remains poorly understood. In this study, we investigated the effects of anti-TNF-α, anti-RANKL, or anti-IL-17 antibody administration to estrogen-deficient mice on CD4(+) T-cell proliferation, CD28 loss, Th17/Treg balance and B lymphopoesis, and finally, the translation of these immunomodulatory effects on skeletal parameters. Adult Balb/c mice were treated with anti-RANKL/-TNF-α/-IL-17 subcutaneously, twice a week, postovariectomy (Ovx) for 4 weeks. Animals were then autopsied; bone marrow cells were collected for FACS and RNA analysis and serum collected for ELISA. Bones were dissected for static and dynamic histomorphometry studies. We observed that although anti-RANKL and anti-TNF-α therapies had no effect on Ovx-induced CD4(+) T-cell proliferation and B lymphopoesis, anti-IL-17 effectively suppressed both events with concomitant reversal of CD28 loss. Anti-IL-17 antibody reduced proinflammatory cytokine production and induced Tregs. All three antibodies restored trabecular microarchitecture with comparable efficacy; however, cortical bone parameters, bone biomechanical properties, and histomorphometry were best preserved by anti-IL-17 antibody, likely attributable to its inhibitory effect on osteoblast apoptosis and increased number of bone lining cells and Wnt10b expression. Based on the superior immunoprotective effects of anti-IL-17, which appears to translate to a better skeletal preservation, we propose beginning clinical trials using a humanized antibody against IL-17 for treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Abdul M Tyagi
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW With progressive age, the immune system and the propensity for abnormal immunity change fundamentally. Individuals greater than 50 years of age are not only more susceptible to infection and cancer, but also at higher risk for chronic inflammation and immune-mediated tissue damage. The process of immunosenescence is accelerated in rheumatoid arthritis (RA). RECENT FINDINGS Premature T-cell senescence occurs not only in RA, but also has been involved in morbidity and mortality of chronic HIV infection. Senescent cells acquire the 'senescence-associated secretory phenotype', which promotes and sustains tissue inflammation. Molecular mechanisms underlying T-cell aging are beginning to be understood. In addition to the contraction of T-cell diversity because of uneven clonal expansion, senescent T cells have defects in balancing cytoplasmic kinase and phosphatase activities, changing their activation thresholds. Also, leakiness in repairing DNA lesions and uncapped telomeres imposes genomic stress. Age-induced changes in the tissue microenvironment may alter the T-cell responses. SUMMARY Gain-of-function and loss-of-function in senescent T cells undermine protective immunity and create the conditions for chronic tissue inflammation, a combination typically encountered in RA. Genetic programs involved in T-cell signaling and DNA repair are of high interest in the search for underlying molecular defects.
Collapse
|
15
|
Commercial bovine proteoglycan is highly arthritogenic and can be used as an alternative antigen source for PGIA model. BIOMED RESEARCH INTERNATIONAL 2014; 2014:148594. [PMID: 24971313 PMCID: PMC4058295 DOI: 10.1155/2014/148594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/29/2014] [Accepted: 05/01/2014] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is the most common systemic autoimmune disease. It affects mainly the joints, causing synovitis, cartilage destruction, and bone erosion. Many experimental models are used to study the mechanisms involved in immunopathogenesis and new therapies for this disease. Proteoglycan-induced arthritis (PGIA) is a widely used model based on the cross-reactivity of injected foreign (usually human) PG and mice self-PG. Considering the complexity of the extraction and purification of human PG, in this study we evaluated the arthritogenicity of bovine PG that is commercially available. Bovine PG was highly arthritogenic, triggering 100% incidence of arthritis in female BALB/c retired breeder mice. Animals immunized with bovine PG presented clinical symptoms and histopathological features similar to human RA and other experimental models. Moreover, bovine PG immunization determined higher levels of proinflammatory and anti-inflammatory cytokines in arthritic mice compared to healthy ones. As expected, only the arthritic group produced IgG1 and IgG2a antibodies against PG. Thus, commercial bovine PG can be used as an alternative antigenic source to PGIA for the study of many RA aspects, including the immunopathogenesis of the disease and also the development of new therapies.
Collapse
|
16
|
Boldizsar F, Mikecz K, Glant TT. Immunosenescence and its potential modulation: lessons from mouse models. Expert Rev Clin Immunol 2014; 6:353-7. [DOI: 10.1586/eci.10.16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Non-MHC risk alleles in rheumatoid arthritis and in the syntenic chromosome regions of corresponding animal models. Clin Dev Immunol 2012; 2012:284751. [PMID: 23251214 PMCID: PMC3521484 DOI: 10.1155/2012/284751] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/13/2012] [Accepted: 09/30/2012] [Indexed: 11/29/2022]
Abstract
Rheumatoid arthritis (RA) is a polygenic autoimmune disease primarily affecting the synovial joints. Numerous animal models show similarities to RA in humans; some of them not only mimic the clinical phenotypes but also demonstrate the involvement of homologous genomic regions in RA. This paper compares corresponding non-MHC genomic regions identified in rodent and human genome-wide association studies (GWAS). To date, over 30 non-MHC RA-associated loci have been identified in humans, and over 100 arthritis-associated loci have been identified in rodent models of RA. The genomic regions associated with the disease are designated by the name(s) of the gene having the most frequent and consistent RA-associated SNPs or a function suggesting their involvement in inflammatory or autoimmune processes. Animal studies on rats and mice preferentially have used single sequence length polymorphism (SSLP) markers to identify disease-associated qualitative and quantitative trait loci (QTLs) in the genome of F2 hybrids of arthritis-susceptible and arthritis-resistant rodent strains. Mouse GWAS appear to be far ahead of rat studies, and significantly more mouse QTLs correspond to human RA risk alleles.
Collapse
|
18
|
Tyagi AM, Srivastava K, Mansoori MN, Trivedi R, Chattopadhyay N, Singh D. Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: a new candidate in the pathogenesis of osteoporosis. PLoS One 2012; 7:e44552. [PMID: 22970248 PMCID: PMC3438183 DOI: 10.1371/journal.pone.0044552] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 08/06/2012] [Indexed: 01/05/2023] Open
Abstract
Th17 cells produce IL-17, and the latter promotes bone loss in collagen-induced arthritis in mice. Blocking IL-17 action in mouse model of rheumatoid arthritis reduces disease symptoms. These observations suggest that Th17 cells may be involved in the pathogenesis of bone loss. However, the role of Th17 cell in estrogen (E2) deficiency-induced bone loss is still not very clear. We investigated the effect of E2 on Th17 differentiation in vivo and IL-17 mediated regulation of osteoclast and osteoblast differentiation. Additionally, effect of IL-17 functional block under E2 deficiency-induced bone loss was studied. In murine bone marrow cells, E2 suppressed IL-17 mediated osteoclast differentiation. IL-17 inhibited formation of mineralized nodules in osteoblasts and this effect was suppressed by E2. E2 treatment to mouse calvarial osteoblasts inhibited the IL-17-induced production of osteoclastogenic cytokines and NF-kB translocation. In ovariectomized mice, there was increase in the number of Th17 cells, transcription factors promoting Th17 cell differentiation and circulating IL-17 levels. These effects were reversed by E2 supplementation. Treatment of neutralizing IL-17 monoclonal antibody to Ovx mice mitigated the E2 deficiency-induced trabecular bone loss and reversed the decreased osteoprotegerin-to-receptor activator of nuclear factor kappa B ligand (RANKL) transcript levels in long bones, increased osteoclast differentiation from the bone marrow precursor cells and decreased osteoblast differentiation from the bone marrow stromal cells. Our findings indicate that E2 deficiency leads to increased differentiation of Th17 cells with attendant up regulation of STAT3, ROR-γt and ROR-α and downregulation of Foxp3 which antagonizes Th17 cell differentiation. Increased IL-17 production in turn induces bone loss by increasing pro-osteoclastogenic cytokines including TNF-α, IL-6 and RANKL from osteoblasts and functional block of IL-17 prevents bone loss. IL-17 thus plays a critical causal role in Ovx-induced bone loss and may be considered a potential therapeutic target in pathogenesis of post menopausal osteoporosis.
Collapse
Affiliation(s)
- Abdul M. Tyagi
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Chattar Manzil, Lucknow, India
| | - Kamini Srivastava
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Chattar Manzil, Lucknow, India
| | - Mohd Nizam Mansoori
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Chattar Manzil, Lucknow, India
| | - Ritu Trivedi
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Chattar Manzil, Lucknow, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Chattar Manzil, Lucknow, India
| | - Divya Singh
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Chattar Manzil, Lucknow, India
- * E-mail:
| |
Collapse
|
19
|
Kis-Toth K, Radacs M, Olasz K, van Eden W, Mikecz K, Glant TT. Arthritogenic T cells drive the recovery of autoantibody-producing B cell homeostasis and the adoptive transfer of arthritis in SCID mice. Int Immunol 2012; 24:507-17. [PMID: 22518822 DOI: 10.1093/intimm/dxs057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
T cells orchestrate joint inflammation in rheumatoid arthritis (RA), but B cells/B cell-derived factors are also involved in disease pathogenesis. The goal of this study was to understand the role of antigen-specific T and B cells in the pathological events of arthritis, which is impossible to study in humans due to the small number of antigen-specific cells. To determine the significance of antigen-specific lymphocytes and antibodies in the development of an autoimmune mouse model of RA, we generated TCR transgenic (TCR-Tg) mice specific for the dominant arthritogenic epitope of cartilage proteoglycan (PG) and performed a series of combined transfers of T cells, B cells and autoantibodies into BALB/c.Scid mice. The adoptive transfer of highly purified T cells from naive TCR-Tg, arthritic TCR-Tg or arthritic wild-type mice induced arthritis in SCID recipients, but the onset and severity of the disease were dependent on the sequential events of the T cell-supported reconstitution of PG-specific B cells and autoantibodies. The presence of activated PG-specific T cells was critical for disease induction, establishing a unique milieu for the selective homeostasis of autoantibody-producing B cells. In this permissive environment, anti-PG autoantibodies bound to cartilage and induced activation of the complement cascade, leading to irreversible cartilage destruction in affected joints. These findings may lead to a better understanding of the complex molecular and cellular mechanisms of RA.
Collapse
Affiliation(s)
- Katalin Kis-Toth
- Department of Molecular Medicine, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Tyagi AM, Srivastava K, Kureel J, Kumar A, Raghuvanshi A, Yadav D, Maurya R, Goel A, Singh D. Premature T cell senescence in Ovx mice is inhibited by repletion of estrogen and medicarpin: a possible mechanism for alleviating bone loss. Osteoporos Int 2012; 23:1151-61. [PMID: 21562872 DOI: 10.1007/s00198-011-1650-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 03/10/2011] [Indexed: 01/01/2023]
Abstract
UNLABELLED Presently the relationship between CD28, biological marker of senescence, and ovariectomy is not well understood. We show that ovariectomy leads to CD28 loss on T cells and estrogen (E2) repletion and medicarpin (Med) inhibits this effect. We thus propose that Med/E2 prevents bone loss by delaying premature T cell senescence. INTRODUCTION Estrogen deficiency triggers reproductive aging by accelerating the amplification of TNF-α-producing T cells, thereby leading to bone loss. To date, no study has been carried out to explain the relationship between CD4(+)CD28null T cells and ovariectomy or osteoporosis. We aim to determine the effect of Ovx on CD28 expression on T cells and effects of E2 and medicarpin (a pterocarpan phytoalexin) with proven osteoprotective effect on altered T cell responses. METHODS Adult, female Balb/c mice were taken for the study. The groups were: sham, Ovx, Ovx + Med or E2. Treatments were given daily by oral gavage. At autopsy bone marrow and spleen were flushed out and cells labelled with antibodies for FACS analysis. Serum was collected for ELISA. RESULTS In Ovx mice, Med/E2 at their respective osteoprotective doses resulted in thymus involution and lowered Ovx-induced increase in serum TNF-α level and its mRNA levels in the BM T cells. Med/E2 reduced BM and spleen CD4(+) T cell proliferation and prevented CD28 loss on CD4(+) T cells. Further, Med abrogated TNF-α-induced loss of CD28 expression in the BM T cells. CONCLUSIONS To our knowledge this is the first report to determine the mechanism of CD28 loss on T cells as a result of ovariectomy. Our study demonstrates that Ovx leads to the generation of premature senescent CD4(+)CD28null T cells, an effect inhibited by E2 and Med. We propose that one of the mechanisms by which Med/E2 alleviates Ovx-induced bone loss is by delaying T cell senescence and enhancing CD28 expression.
Collapse
Affiliation(s)
- A M Tyagi
- Division of Endocrinology, Central Drug Research Institute, Council of Scientific and Industrial Research, Chattar Manzil, PO Box 173, Lucknow, India
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tyagi AM, Srivastava K, Sharan K, Yadav D, Maurya R, Singh D. Daidzein prevents the increase in CD4+CD28null T cells and B lymphopoesis in ovariectomized mice: a key mechanism for anti-osteoclastogenic effect. PLoS One 2011; 6:e21216. [PMID: 21731677 PMCID: PMC3120851 DOI: 10.1371/journal.pone.0021216] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 05/23/2011] [Indexed: 01/01/2023] Open
Abstract
Estrogen deficiency leads to an upregulation of TNF-α producing T cells and B-lymphopoesis which augments osteoclastogenesis. Estrogen deficiency also increases the population of premature senescent CD4⁺ CD28null T cells which secrete a higher amount of TNF-α thus leading to enhanced osteoclastogenesis. Isoflavonoids like daidzein and genistein are found mostly in soybeans, legumes, and peas. These share structural similarity with 17β-stradiol (E2) and have osteoprotective role. This study explores the effect of daidzein (Daid) on the proliferation of TNF-α producing T cells, premature senescent T cells and B cell lymphopoesis under estrogen deficient conditions. For this study adult Balb/c mice were treated with Daid at 10 mg/kg body weight dose by oral gavage daily post ovariectomy (Ovx). After six weeks animals were autopsied and bone marrow and spleen cells were collected for FACS analysis. Blood serum was collected for ELISA. It was observed that Ovx mice treated with Daid for six weeks show reduction in Ovx induced expansion of CD4⁺ T cells in bone marrow and spleen when analysed by flow cytometry. Estrogen deficiency led to increased prevalence of TNF-α secreting CD4⁺CD28null T cells, however, treatment with Daid increased the percentage of CD4⁺CD28⁺ T cells. Co-culture of CD4⁺CD28null T cells and bone marrow resulted in enhanced osteoclastogenesis as evident by increased tartarate resistant acid phosphatase (TRAP) expression, an osteoclast marker. However, treatment with Daid resulted in reduced osteoclastogenesis in CD4⁺CD28null T cells and bone marrow cell co-culture. Daid also regulated B lymphopoesis and decreased mRNA levels of RANKL in B220⁺ cells. Taken together, we propose that one of the mechanisms by which Daid prevents bone loss is by reversing the detrimental immune changes as a result of estrogen deficiency.
Collapse
Affiliation(s)
- Abdul Malik Tyagi
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Chattar Manzil, Lucknow, India
| | - Kamini Srivastava
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Chattar Manzil, Lucknow, India
| | - Kunal Sharan
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Chattar Manzil, Lucknow, India
| | - Dinesh Yadav
- Division of Medicinal and Process Chemistry, Central Drug Research Institute (Council of Scientific and Industrial Research), Chattar Manzil, Lucknow, India
| | - Rakesh Maurya
- Division of Medicinal and Process Chemistry, Central Drug Research Institute (Council of Scientific and Industrial Research), Chattar Manzil, Lucknow, India
| | - Divya Singh
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Chattar Manzil, Lucknow, India
| |
Collapse
|
22
|
Ojeda G, Pini E, Eguiluz C, Montes-Casado M, Broere F, van Eden W, Rojo JM, Portolés P. Complement regulatory protein Crry/p65 costimulation expands natural Treg cells with enhanced suppressive properties in proteoglycan-induced arthritis. ACTA ACUST UNITED AC 2011; 63:1562-72. [DOI: 10.1002/art.30328] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Boldizsar F, Kis-Toth K, Tarjanyi O, Olasz K, Hegyi A, Mikecz K, Glant TT. Impaired activation-induced cell death promotes spontaneous arthritis in antigen (cartilage proteoglycan)-specific T cell receptor-transgenic mice. ACTA ACUST UNITED AC 2010; 62:2984-94. [PMID: 20564001 DOI: 10.1002/art.27614] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate whether genetic preponderance of a T cell receptor (TCR) recognizing an arthritogenic peptide of human cartilage proteoglycan (PG) is sufficient for development of arthritis. METHODS We performed a longitudinal study using BALB/c mice expressing a TCR that recognizes the arthritogenic ATEGRVRVNSAYQDK peptide of human cartilage PG. PG-specific TCR-transgenic (PG-TCR-Tg) mice were inspected weekly for peripheral arthritis until 12 months of age. Peripheral joints were examined histologically, and T cell responses, T cell activation markers, serum cytokines, and autoantibodies were measured. Apoptosis and signaling studies were performed in vitro on T cells from aged PG-TCR-Tg mice. RESULTS Spontaneous arthritis developed as early as 5-6 months of age, and the incidence increased to 40-50% by 12 months of age. Progressive inflammation began with cartilage and bone erosions in the interphalangeal joints, and later expanded to the proximal joints of the front and hind paws. Spontaneous arthritis was associated with a high proportion of activated CD4+ T cells, enhanced interferon-γ and interleukin-17 (IL-17) production, and elevated levels of serum autoantibodies. PG-TCR-Tg mice lacking IL-4 developed arthritis earlier and at a higher incidence than IL-4-sufficient mice. Antigen-specific activation-induced cell death was diminished in vitro in CD4+ T cells of PG-TCR-Tg mice with spontaneous arthritis, especially in those lacking IL-4. CONCLUSION The presence of CD4+ T cells expressing a TCR specific for an arthritogenic PG epitope is sufficient to trigger spontaneous autoimmune inflammation in the joints of BALB/c mice. IL-4 appears to be a negative regulator of this disease, through attenuation of activation-induced cell death.
Collapse
|
24
|
Bevaart L, Vervoordeldonk MJ, Tak PP. Evaluation of therapeutic targets in animal models of arthritis: How does it relate to rheumatoid arthritis? ACTA ACUST UNITED AC 2010; 62:2192-205. [DOI: 10.1002/art.27503] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|