1
|
Cuadra C, Wolf SL, Lyle MA. Heteronymous feedback from quadriceps onto soleus in stroke survivors. J Neuroeng Rehabil 2025; 22:39. [PMID: 40011904 PMCID: PMC11866609 DOI: 10.1186/s12984-025-01572-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Recent findings suggest increased excitatory heteronymous feedback from quadriceps onto soleus may contribute to abnormal coactivation of knee and ankle extensors after stroke. However, there is lack of consensus on whether persons post-stroke exhibit altered heteronymous reflexes and, when present, the origin of increased excitation (i.e. increased excitation alone and/or decreased inhibition). This study examined heteronymous excitation and inhibition from quadriceps onto soleus in paretic, nonparetic, and age-matched control limbs to determine whether increased excitation was due to excitatory and/or reduced inhibitory reflex circuits. A secondary purpose was to examine whether heteronymous reflex magnitudes were related to clinical measures of lower limb recovery, walking-speed, and dynamic balance. METHODS Heteronymous excitation and inhibition from quadriceps onto soleus were examined in fourteen persons post-stroke and fourteen age-matched unimpaired participants. Heteronymous feedback was elicited by femoral nerve and quadriceps muscle stimulation in separate trials while participants tonically activated soleus at 20% maximum voluntary isometric contraction. Fugl-Meyer assessment of lower extremity, 10-m walk test, and Mini-BESTest were assessed in stroke survivors. RESULTS Heteronymous excitation and inhibition onsets, durations, and magnitudes were not different between paretic, nonparetic or age-matched unimpaired limbs. Quadriceps stimulation elicited excitation that was half the magnitude of femoral nerve stimulation. Femoral nerve elicited paretic limb heteronymous excitation was positively correlated with walking speed but did not reach significance because only a subset of paretic limbs exhibited excitation (n = 8, Spearman r = 0.69, P = 0.058). CONCLUSIONS Heteronymous feedback from quadriceps onto soleus assessed in a seated posture was not impaired in persons post-stroke. Despite being unable to identify whether reduced inhibition contributes to abnormal excitation reported in prior studies, our results indicate quadriceps stimulation may allow a better estimate of heteronymous inhibition in those that exhibit exaggerated excitation. Heteronymous excitation magnitude in the paretic limb was positively correlated with self-selected walking speed suggesting paretic limb excitation at the higher end of a normal range may facilitate walking ability after stroke. Future studies are needed to identify whether heteronymous feedback from Q onto SOL is altered after stroke in upright postures and during motor tasks as a necessary next step to identify mechanisms underlying motor impairment.
Collapse
Affiliation(s)
- Cristian Cuadra
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy. Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
| | - Steven L Wolf
- Department of Rehabilitation Medicine, Division of Physical Therapy, Center for Physical Therapy and Movement Science, Emory University School of Medicine, Atlanta, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Atlanta, GA, USA
| | - Mark A Lyle
- Department of Rehabilitation Medicine, Division of Physical Therapy, Center for Physical Therapy and Movement Science, Emory University School of Medicine, Atlanta, USA.
| |
Collapse
|
2
|
Liang JN, Bashford G, Kulig K, Ho KY. Achilles tendon morphology adaptations in chronic post-stroke hemiparesis: a comparative analysis with neurologically intact controls. Front Sports Act Living 2025; 6:1498333. [PMID: 39839548 PMCID: PMC11745886 DOI: 10.3389/fspor.2024.1498333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/25/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction In individuals with chronic post-stroke hemiparesis, slow walking speed is a significant concern related to inadequate propulsion of the paretic limb. However, an overlooked factor is this population's altered morphology of the Achilles tendon, which may compromise the propulsive forces by the paretic limb. This study aimed to explore changes in Achilles tendon morphology, including gross thickness and intra-tendinous collagen fiber bundle organization, following stroke-induced brain lesions. Methods Fifteen individuals with chronic post-stroke hemiparesis (at least 6 months post-stroke) and 19 neurologically intact controls participated. Ultrasound imaging was used to evaluate Achilles tendon thickness and collagen organization in the paretic and non-paretic limbs of post-stroke participants, as well as in the right limb (control limb) of the neurologically intact control group. Results and discussion Compared to control individuals, the paretic limb in individuals post-stroke showed increased tendon thickness at the Achilles tendon insertion and 2 cm above it. The collagen fiber bundle at the Achilles tendon insertion of the paretic limb showed reduced organization compared to that in the control limb. Individuals post-stroke also exhibited slower walking speed, and increased plantarflexor muscle tone in the paretic limb compared to controls. In conclusion, individuals with chronic post-stroke hemiparesis demonstrated tendon thickening and collagen disorganization in the paretic limb, particularly at the insertion site of the Achilles tendon, likely due to an abnormal loading environment influenced by increased plantarflexor muscle tone, muscle co-activation, and muscle disuse and atrophy. These changes may increase tendon compliance, impair force transmission and propulsion, and contribute to slower walking speed. Addressing Achilles tendon integrity should be incorporated as a component of strategies to improve neuromuscular control in this population.
Collapse
Affiliation(s)
- Jing Nong Liang
- Department of Physical Therapy, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Greg Bashford
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Kornelia Kulig
- Division of Biokinesiology & Physical Therapy, University of Southern California, Los Angeles, CA, United States
| | - Kai-Yu Ho
- Department of Physical Therapy, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
3
|
Cleland BT, Giffhorn M, Jayaraman A, Madhavan S. Understanding corticomotor mechanisms for activation of non-target muscles during unilateral isometric contractions of leg muscles after stroke. Int J Neurosci 2024; 134:1332-1341. [PMID: 37750212 PMCID: PMC10963339 DOI: 10.1080/00207454.2023.2263817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/09/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE Muscle activation often occurs in muscles ipsilateral to a voluntarily activated muscle and to a greater extent after stroke. In this study, we measured muscle activation in non-target, ipsilateral leg muscles and used transcranial magnetic stimulation (TMS) to provide insight into whether corticomotor pathways contribute to involuntary activation. MATERIALS AND METHODS Individuals with stroke performed unilateral isometric ankle dorsiflexion, ankle plantarflexion, knee extension, and knee flexion. To quantify involuntary muscle activation in non-target muscles, muscle activation was measured during contractions from the ipsilateral tibialis anterior (TA), medial gastrocnemius (MG), rectus femoris (RF), and biceps femoris (BF) and normalized to resting muscle activity. To provide insight into mechanisms of involuntary non-target muscle activation, TMS was applied to the contralateral hemisphere, and motor evoked potentials (MEPs) were recorded. RESULTS We found significant muscle activation in nearly every non-target muscle during isometric unilateral contractions. MEPs were frequently observed in non-target muscles, but greater non-target MEP amplitude was not associated with greater non-target muscle activation. CONCLUSIONS Our results suggest that non-target muscle activation occurs frequently in individuals with chronic stroke. The lack of association between non-target TMS responses and non-target muscle activation suggests that non-target muscle activation may have a subcortical or spinal origin. Non-target muscle activation has important clinical implications because it may impair torque production, out-of-synergy movement, and muscle activation timing.
Collapse
Affiliation(s)
- Brice T Cleland
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences University of Illinois Chicago, Chicago, IL, USA
| | - Matt Giffhorn
- Max Nader Center for Rehabilitation Technologies & Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Arun Jayaraman
- Max Nader Center for Rehabilitation Technologies & Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Lab, Department of Physical Therapy, College of Applied Health Sciences University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Fujita K, Tsushima Y, Hayashi K, Kawabata K, Ogawa T, Hori H, Kobayashi Y. Altered muscle synergy structure in patients with poststroke stiff knee gait. Sci Rep 2024; 14:20295. [PMID: 39217201 PMCID: PMC11365932 DOI: 10.1038/s41598-024-71083-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Stiff knee gait (SKG) occurrence after a stroke is associated with various abnormal muscle activities; however, the interactions among these muscles are unclear. This study aimed to elucidate the muscle synergy characteristics during walking in patients with SKG after a stroke. This cross-sectional study included 20 patients with poststroke SKG (SKG group), 16 patients without poststroke SKG (non-SKG group), and 15 healthy adults (control group). Participants walked a 10-m distance at a comfortable speed, and electromyographic data were recorded from six lower-limb muscles. Non-negative matrix factorization was employed to derive time-varying activity (C), muscle weights (W), and the percentage of total variance accounted for (tVAF) for muscle synergies. The SKG group showed a higher tVAF than the control group. The initial stance module (including knee extensors) showed increased activity during the swing phase. The initial swing module (including hip flexors and ankle dorsiflexors) exhibited a higher activity during the single-support phase but a lower activity during the swing phase. The synergy structure in patients with SKG after stroke was simplified, with specific abnormalities in synergy activities. SKG may arise from several synergy alterations involving multiple muscles, indicating that approaches focused on controlling individual muscle activities are unsuitable.
Collapse
Affiliation(s)
- Kazuki Fujita
- Graduate School of Health Science, Fukui Health Science University, 55-13-1 Egami, Fukui, 910-3190, Japan.
| | - Yuichi Tsushima
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui, Japan
| | - Koji Hayashi
- Department of Rehabilitation Medicine, Fukui General Hospital, Fukui, Japan
| | - Kaori Kawabata
- Graduate School of Health Science, Fukui Health Science University, 55-13-1 Egami, Fukui, 910-3190, Japan
| | - Tomoki Ogawa
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui, Japan
| | - Hideaki Hori
- Graduate School of Health Science, Fukui Health Science University, 55-13-1 Egami, Fukui, 910-3190, Japan
| | - Yasutaka Kobayashi
- Graduate School of Health Science, Fukui Health Science University, 55-13-1 Egami, Fukui, 910-3190, Japan
| |
Collapse
|
5
|
Cuadra C, Wolf SL, Lyle MA. Heteronymous feedback from quadriceps onto soleus in stroke survivors. RESEARCH SQUARE 2024:rs.3.rs-4540327. [PMID: 38978589 PMCID: PMC11230478 DOI: 10.21203/rs.3.rs-4540327/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Recent findings suggest increased excitatory heteronymous feedback from quadriceps onto soleus may contribute to abnormal coactivation of knee and ankle extensors after stroke. However, there is lack of consensus on whether persons post-stroke exhibit altered heteronymous reflexes and, when present, the origin of increased excitation (i.e. increased excitation alone and/or decreased inhibition). This study examined heteronymous excitation and inhibition from quadriceps onto soleus in paretic, nonparetic, and age-matched control limbs to determine whether increased excitation was due to excitatory and/or reduced inhibitory reflex circuits. A secondary purpose was to examine whether heteronymous reflex magnitudes were related to clinical measures of lower limb recovery, walking-speed, and dynamic balance. Methods Heteronymous excitation and inhibition from quadriceps onto soleus were examined in fourteen persons post-stroke and fourteen age-matched unimpaired participants. Heteronymous feedback was elicited by femoral nerve and quadriceps muscle stimulation in separate trials while participants tonically activated soleus at 20% max. Fugl-Myer assessment of lower extremity, 10-meter walk test, and Mini-BESTest were assessed in stroke survivors. Results Heteronymous excitation and inhibition onsets, durations, and magnitudes were not different between paretic, nonparetic or age-matched unimpaired limbs. Quadriceps stimulation elicited excitation that was half the magnitude of femoral nerve stimulation. Femoral nerve elicited paretic limb heteronymous excitation was positively correlated with walking speed but did not reach significance because only a subset of paretic limbs exhibited excitation (n = 8, Spearman r = 0.69, P = 0.058). Conclusions Heteronymous feedback from quadriceps onto soleus assessed in a seated posture was not impaired in persons post-stroke. Despite being unable to identify whether reduced inhibition contributes to abnormal excitation reported in prior studies, our results indicate quadriceps stimulation may allow a better estimate of heteronymous inhibition in those that exhibit exaggerated excitation. Heteronymous excitation magnitude in the paretic limb was positively correlated with self-selected walking speed suggesting paretic limb excitation at the higher end of a normal range may facilitate walking ability after stroke. Future studies are needed to identify whether heteronymous feedback from Q onto SOL is altered after stroke in upright postures and during motor tasks as a necessary next step to identify mechanisms underlying motor impairment.
Collapse
|
6
|
Ogawa T, Fujita K, Kawabata K, Hori H, Hayashi K, Suzuki A, Nakaya Y, Kobayashi Y. Is it safe to control the car pedal with the lower limb of the unaffected side in patients with stroke? TRAFFIC INJURY PREVENTION 2023; 25:27-35. [PMID: 37773056 DOI: 10.1080/15389588.2023.2260914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
OBJECTIVES Few studies have examined motor function in determining the suitability of patients with stroke to resume driving a car. Patients with hemiplegia usually control car pedals with the unaffected lower limb. However, motor control on the unaffected side is also impaired in patients with stroke. This study aimed to clarify the neurophysiological characteristics of pedal switching control during emergency braking in patients with hemiplegia. METHODS The study participants consisted of 10 drivers with left hemiplegia and 10 age-matched healthy drivers. An experimental pedal was used to measure muscle activity and kinematic data during braking, triggered by the light from a light-emitting diode placed in front of the drivers. RESULTS The patient group took the same reaction time as the healthy group. However, from the visual stimulus to the release of the accelerator pedal, the patient group had higher muscle activity in the tibialis anterior and rectus femoris and had faster angular velocities of hip and knee flexion than the healthy group. In addition, the patient group had higher co-contraction activities between flexors and extensors. From the accelerator pedal release to brake contact, the patient group had slower angular velocities of hip adduction, internal rotation, ankle dorsiflexion, internal return, and internal rotation than the healthy group. CONCLUSIONS Patients with hemiplegia exhibited poor control of pedal switching using their unaffected side throughout the pedal-switching task. These results indicate that the safety related to car-pedal control should be carefully evaluated while deciding whether a patient can resume driving a car after a stroke.
Collapse
Affiliation(s)
- Tomoki Ogawa
- Department of Health Science, Graduate School of Health Science, Fukui Health Science University, Fukui, Japan
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui, Japan
| | - Kazuki Fujita
- Graduate School of Health Science, Fukui Health Science University, Fukui, Japan
| | - Kaori Kawabata
- Graduate School of Health Science, Fukui Health Science University, Fukui, Japan
| | - Hideaki Hori
- Graduate School of Health Science, Fukui Health Science University, Fukui, Japan
| | - Koji Hayashi
- Department of Rehabilitation Medicine, Fukui General Hospital, Fukui, Japan
| | - Asuka Suzuki
- Department of Rehabilitation Medicine, Fukui General Hospital, Fukui, Japan
| | - Yuka Nakaya
- Department of Rehabilitation Medicine, Fukui General Hospital, Fukui, Japan
| | - Yasutaka Kobayashi
- Graduate School of Health Science, Fukui Health Science University, Fukui, Japan
| |
Collapse
|
7
|
Abstract
Spasticity is characterized by an enhanced size and reduced threshold for activation of stretch reflexes and is associated with "positive signs" such as clonus and spasms, as well as "negative features" such as paresis and a loss of automatic postural responses. Spasticity develops over time after a lesion and can be associated with reduced speed of movement, cocontraction, abnormal synergies, and pain. Spasticity is caused by a combination of damage to descending tracts, reductions in inhibitory activity within spinal cord circuits, and adaptive changes within motoneurons. Increased tone, hypertonia, can also be caused by changes in passive stiffness due to, for example, increase in connective tissue and reduction in muscle fascicle length. Understanding the cause of hypertonia is important for determining the management strategy as nonneural, passive causes of stiffness will be more amenable to physical rather than pharmacological interventions. The management of spasticity is determined by the views and goals of the patient, family, and carers, which should be integral to the multidisciplinary assessment. An assessment, and treatment, of trigger factors such as infection and skin breakdown should be made especially in people with a recent change in tone. The choice of management strategies for an individual will vary depending on the severity of spasticity, the distribution of spasticity (i.e., whether it affects multiple muscle groups or is more prominent in one or two groups), the type of lesion, and the potential for recovery. Management options include physical therapy, oral agents; focal therapies such as botulinum injections; and peripheral nerve blocks. Intrathecal baclofen can lead to a reduction in required oral antispasticity medications. When spasticity is severe intrathecal phenol may be an option. Surgical interventions, largely used in the pediatric population, include muscle transfers and lengthening and selective dorsal root rhizotomy.
Collapse
Affiliation(s)
- Jonathan Marsden
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth, United Kingdom.
| | - Valerie Stevenson
- Department of Therapies and Rehabilitation, National Hospital for Neurology and Neurosurgery UCLH, London, United Kingdom
| | - Louise Jarrett
- Department of Neurology, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| |
Collapse
|
8
|
Sheng W, Li S, Zhao J, Wang Y, Luo Z, Lo WLA, Ding M, Wang C, Li L. Upper Limbs Muscle Co-contraction Changes Correlated With the Impairment of the Corticospinal Tract in Stroke Survivors: Preliminary Evidence From Electromyography and Motor-Evoked Potential. Front Neurosci 2022; 16:886909. [PMID: 35720692 PMCID: PMC9198335 DOI: 10.3389/fnins.2022.886909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Increased muscle co-contraction of the agonist and antagonist muscles during voluntary movement is commonly observed in the upper limbs of stroke survivors. Much remain to be understood about the underlying mechanism. The aim of the study is to investigate the correlation between increased muscle co-contraction and the function of the corticospinal tract (CST). Methods Nine stroke survivors and nine age-matched healthy individuals were recruited. All the participants were instructed to perform isometric maximal voluntary contraction (MVC) and horizontal task which consist of sponge grasp, horizontal transportation, and sponge release. We recorded electromyography (EMG) activities from four muscle groups during the MVC test and horizontal task in the upper limbs of stroke survivors. The muscle groups consist of extensor digitorum (ED), flexor digitorum (FD), triceps brachii (TRI), and biceps brachii (BIC). The root mean square (RMS) of EMG was applied to assess the muscle activation during horizontal task. We adopted a co-contraction index (CI) to evaluate the degree of muscle co-contraction. CST function was evaluated by the motor-evoked potential (MEP) parameters, including resting motor threshold, amplitude, latency, and central motor conduction time. We employed correlation analysis to probe the association between CI and MEP parameters. Results The RMS, CI, and MEP parameters on the affected side showed significant difference compared with the unaffected side of stroke survivors and the healthy group. The result of correlation analysis showed that CI was significantly correlated with MEP parameters in stroke survivors. Conclusion There existed increased muscle co-contraction and impairment in CST functionality on the affected side of stroke survivors. The increased muscle co-contraction was correlated with the impairment of the CST. Intervention that could improve the excitability of the CST may contribute to the recovery of muscle discoordination in the upper limbs of stroke survivors.
Collapse
Affiliation(s)
- Wenfei Sheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shijue Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiangli Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yujia Wang
- Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, China
| | - Zichong Luo
- Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minghui Ding
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
9
|
Chow JW, Stokic DS. Relations between knee and ankle muscle coactivation and temporospatial gait measures in patients without hypertonia early after stroke. Exp Brain Res 2020; 238:2909-2919. [PMID: 33063171 DOI: 10.1007/s00221-020-05936-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022]
Abstract
It is unclear whether muscle coactivation during gait is altered early after stroke and among which muscles. We sought to characterize muscle coactivation during gait in subacute stroke subjects without hypertonia and explore the relationship with temporospatial parameters. In 70 stroke (23 ± 12 days post-onset) and 29 age-matched healthy subjects, surface electromyography signals were used to calculate coactivation magnitude and duration between rectus femoris and medial hamstring (knee antagonistic coactivation), tibialis anterior and medial gastrocnemius (ankle antagonistic coactivation), and rectus femoris and medial gastrocnemius (extensor synergistic coactivation) during early double-support (DS1), early single-support (SS1), late single-support (SS2), late double-support (DS2), and swing (SW). Compared to both free and very-slow speeds of controls, stroke subjects had bilaterally decreased ankle coactivation magnitude in SS2 and duration in SS1 and SS2 as well as increased extensor coactivation magnitude in DS2 and SW. Both non-paretic knee and ankle coactivation magnitudes in SS2 moderately correlated with most temporospatial parameters (|r| ≥ 0.40). Antagonistic and synergistic coactivation patterns of the knee and ankle muscles during gait are altered bilaterally in subacute stroke subjects without lower limb hypertonia suggesting impairments in motor control. Greater coactivation magnitudes in the non-paretic knee and both ankles during the terminal stance (SS2) are associated with the overall worse gait performance. Unlike previously reported excessive coactivation or no change in chronic stroke, bilaterally decreased and increased coactivation patterns are present in subacute stroke. These findings warrant longitudinal studies to examine the evolution of changes in muscle coactivation from subacute to chronic stroke.
Collapse
Affiliation(s)
- John W Chow
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA.
| | - Dobrivoje S Stokic
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA
| |
Collapse
|
10
|
Fujita K, Kobayashi Y, Miaki H, Hori H, Tsushima Y, Sakai R, Nomura T, Ogawa T, Kinoshita H, Nishida T, Hitosugi M. Pedaling improves gait ability of hemiparetic patients with stiff-knee gait: fall prevention during gait. J Stroke Cerebrovasc Dis 2020; 29:105035. [PMID: 32807447 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Stiff-knee gait, which is a gait abnormality observed after stroke, is characterized by decreased knee flexion angles during the swing phase, and it contributes to a decline in gait ability. This study aimed to identify the immediate effects of pedaling exercises on stiff-knee gait from a kinesiophysiological perspective. METHODS Twenty-one patients with chronic post-stroke hemiparesis and stiff-knee gait were randomly assigned to a pedaling group and a walking group. An ergometer was set at a load of 5 Nm and rotation speed of 40 rpm, and gait was performed at a comfortable speed; both the groups performed the intervention for 10 min. Kinematic and electromyographical data while walking on flat surfaces were immediately measured before and after the intervention. RESULTS In the pedaling group, activity of the rectus femoris significantly decreased from the pre-swing phase to the early swing phase during gait after the intervention. Flexion angles and flexion angular velocities of the knee and hip joints significantly increased during the same period. The pedaling group showed increased step length on the paralyzed side and gait velocity. CONCLUSIONS Pedaling increases knee flexion during the swing phase in hemiparetic patients with stiff-knee gait and improves gait ability.
Collapse
Affiliation(s)
- Kazuki Fujita
- Department of Rehabilitation, Faculty of Health Science, Fukui Health Science University, 55-13-1 Egami, Fukui-city 910-3190, Fukui, Japan.
| | - Yasutaka Kobayashi
- Department of Rehabilitation, Faculty of Health Science, Fukui Health Science University, 55-13-1 Egami, Fukui-city 910-3190, Fukui, Japan.
| | - Hiroichi Miaki
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa-city, Ishikawa, Japan.
| | - Hideaki Hori
- Department of Rehabilitation, Faculty of Health Science, Fukui Health Science University, 55-13-1 Egami, Fukui-city 910-3190, Fukui, Japan.
| | - Yuichi Tsushima
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui-city, Fukui, Japan.
| | - Ryo Sakai
- Department of Rehabilitation, Faculty of Health Science, Fukui Health Science University, 55-13-1 Egami, Fukui-city 910-3190, Fukui, Japan.
| | - Tomomi Nomura
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui-city, Fukui, Japan.
| | - Tomoki Ogawa
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui-city, Fukui, Japan.
| | - Hirotaka Kinoshita
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui-city, Fukui, Japan.
| | - Tomoko Nishida
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui-city, Fukui, Japan.
| | - Masahito Hitosugi
- Department of Legal Medicine, Shiga University of Medical Science, Otsu-city, Shiga, Japan.
| |
Collapse
|
11
|
Akbas T, Sulzer J. Musculoskeletal simulation framework for impairment-based exoskeletal assistance post-stroke. IEEE Int Conf Rehabil Robot 2020; 2019:1185-1190. [PMID: 31374790 DOI: 10.1109/icorr.2019.8779564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Assistive technology for the lower extremities has shown great promise towards improving gait function in people following neuromuscular injuries. However, our previous work assisting knee flexion torque in post-stroke Stiff-Knee gait found that augmenting strength can induce secondary complications such as spasticity due to stretching of the rectus femoris. In this work we explore whether we could have obtained improved knee flexion but avoided a spastic response by simulating combinations of hip and knee flexion torques using musculoskeletal modeling and simulation. We explore previously collected data on a case-by-case basis to determine individual-specific quadriceps reflex thresholds based on estimated rectus femoris muscle fiber stretch velocities. We then implemented a forward simulation framework to identify the subject-specific hip-knee assistance prescription to improve knee range of motion without initiating a spastic response. The obtained subject-specific assistive prescription informs the development of new gait assistance strategies for post-stroke gait and could be extended to other neuromuscular gait impairments.
Collapse
|
12
|
Akbas T, Neptune RR, Sulzer J. Neuromusculoskeletal Simulation Reveals Abnormal Rectus Femoris-Gluteus Medius Coupling in Post-stroke Gait. Front Neurol 2019; 10:301. [PMID: 31001189 PMCID: PMC6454148 DOI: 10.3389/fneur.2019.00301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/11/2019] [Indexed: 11/13/2022] Open
Abstract
Post-stroke gait is often accompanied by muscle impairments that result in adaptations such as hip circumduction to compensate for lack of knee flexion. Our previous work robotically enhanced knee flexion in individuals post-stroke with Stiff-Knee Gait (SKG), however, this resulted in greater circumduction, suggesting the existence of abnormal coordination in SKG. The purpose of this work is to investigate two possible mechanisms of the abnormal coordination: (1) a reflex coupling between stretched quadriceps and abductors, and (2) a coupling between volitionally activated knee flexors and abductors. We used previously collected kinematic, kinetic and EMG measures from nine participants with chronic stroke and five healthy controls during walking with and without the applied knee flexion torque perturbations in the pre-swing phase of gait in the neuromusculoskeletal simulation. The measured muscle activity was supplemented by simulated muscle activations to estimate the muscle states of the quadriceps, hamstrings and hip abductors. We used linear mixed models to investigate two hypotheses: (H1) association between quadriceps and abductor activation during an involuntary period (reflex latency) following the perturbation and (H2) association between hamstrings and abductor activation after the perturbation was removed. We observed significantly higher rectus femoris (RF) activation in stroke participants compared to healthy controls within the involuntary response period following the perturbation based on both measured (H1, p < 0.001) and simulated (H1, p = 0.022) activity. Simulated RF and gluteus medius (GMed) activations were correlated only in those with SKG, which was significantly higher compared to healthy controls (H1, p = 0.030). There was no evidence of synergistic coupling between any combination of hamstrings and hip abductors (H2, p > 0.05) when the perturbation was removed. The RF-GMed coupling suggests an underlying abnormal coordination pattern in post-stroke SKG, likely reflexive in origin. These results challenge earlier assumptions that hip circumduction in stroke is simply a kinematic adaptation due to reduced toe clearance. Instead, abnormal coordination may underlie circumduction, illustrating the deleterious role of abnormal coordination in post-stroke gait.
Collapse
Affiliation(s)
| | | | - James Sulzer
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
13
|
Fujita K, Miaki H, Hori H, Kobayashi Y, Nakagawa T. How effective is physical therapy for gait muscle activity in hemiparetic patients who receive botulinum toxin injections? Eur J Phys Rehabil Med 2019; 55:8-18. [DOI: 10.23736/s1973-9087.18.05168-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Fujita K, Miaki H, Fujimoto A, Hori H, Fujimoto H, Kobayashi Y. Factors affecting premature plantarflexor muscle activity during hemiparetic gait. J Electromyogr Kinesiol 2018; 39:99-103. [PMID: 29475131 DOI: 10.1016/j.jelekin.2018.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 02/09/2018] [Indexed: 11/17/2022] Open
Abstract
In hemiparetic stroke survivors, premature plantarflexor muscle activity (PPF) often appears as a gait abnormality from terminal swing to the loading response on the paretic side. This study aimed to discern factors giving rise to PPF. Lower extremity function, spasticity magnitude, and gait electromyograms were assessed in 31 hemiparetic stroke survivors. Mean amplitudes during gait phases were determined for the paretic soleus, tibialis anterior, rectus femoris, and biceps femoris. The subjects were classified into PPF and non-PPF groups based on their relative soleus amplitude at different phases of gait, and group differences in each measurement were calculated and subjected to logistic regression. The PPF group showed less activity of the tibialis anterior during the swing phase but greater activity of the rectus femoris during the swing phase and of the biceps femoris, both prematurely and during the loading response. Logistic regression revealed premature activity of the biceps femoris to be a significant variable related to presence of PPF (odds ratio = 1.054). PPF in hemiparetic gait may work with the biceps femoris to supplement compromised lower extremity extension strength. PPF might be reduced by attaining enhanced strength of the hip and knee extensors at the time of initial contact during gait.
Collapse
Affiliation(s)
- Kazuki Fujita
- Fukui Health Science University, Faculty of Health Science, Department of Rehabilitation Physical Therapy, Japan.
| | - Hiroichi Miaki
- Kanazawa University, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Japan
| | - Akira Fujimoto
- Fukui Health Science University, Faculty of Health Science, Department of Rehabilitation Physical Therapy, Japan
| | - Hideaki Hori
- Fukui Health Science University, Faculty of Health Science, Department of Rehabilitation Physical Therapy, Japan
| | - Hitomi Fujimoto
- Fukui College of Health Sciences, Department of Nursing, Japan
| | | |
Collapse
|
15
|
Maupas E, Dyer JO, Melo SDA, Forget R. Patellar tendon vibration reduces the increased facilitation from quadriceps to soleus in post-stroke hemiparetic individuals. Ann Phys Rehabil Med 2017; 60:319-328. [PMID: 28528818 DOI: 10.1016/j.rehab.2017.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Stimulation of the femoral nerve in healthy people can facilitate soleus H-reflex and electromyography (EMG) activity. In stroke patients, such facilitation of transmission in spinal pathways linking the quadriceps and soleus muscles is enhanced and related to co-activation of knee and ankle extensors while sitting and walking. Soleus H-reflex facilitation can be depressed by vibration of the quadriceps in healthy people, but the effects of such vibration have never been studied on the abnormal soleus facilitation observed in people after stroke. OBJECTIVES To determine whether vibration of the quadriceps can modify the enhanced heteronymous facilitation of the soleus muscle observed in people with spastic stroke after femoral nerve stimulation and compare post-vibration effects on soleus facilitation in control and stroke individuals. METHODS Modulation of voluntary soleus EMG activity induced by femoral nerve stimulation (2×motor threshold) was assessed before, during and after vibration of the patellar tendon in 10 healthy controls and 17 stroke participants. RESULTS Voluntary soleus EMG activity was facilitated by femoral nerve stimulation in 4/10 (40%) controls and 11/17 (65%) stroke participants. The level of facilitation was greater in the stroke than control group. Vibration significantly reduced early heteronymous facilitation in both groups (50% of pre-vibration values). However, the delay in recovery of soleus facilitation after vibration was shorter for the stroke than control group. The control condition with the vibrator turned off had no effect on the modulation. CONCLUSIONS Patellar tendon vibration can reduce the facilitation between knee and ankle extensors, which suggests effective presynaptic inhibition but decreased post-activation depression in the lower limb of people after chronic hemiparetic stroke. Further studies are warranted to determine whether such vibration could be used to reduce the abnormal extension synergy of knee and ankle extensors in people after hemiparetic stroke.
Collapse
Affiliation(s)
- Eric Maupas
- ASEI, centre Paul-Dottin, 31520 Ramonville-Saint-Agne, France; Laboratoire de physiologie de la posture et du mouvement PoM, université Champollion, 81000 Albi, France.
| | - Joseph-Omer Dyer
- Centre de recherche interdisciplinaire en réadaptation, institut de réadaptation Gingras-Lindsay de Montréal, CIUSSS du centre-Sud-de-l'Île-de-Montréal, Québec, Canada; École de réadaptation, faculté de médecine, université de Montréal, Québec, Canada
| | - Sibele de Andrade Melo
- Centre de recherche interdisciplinaire en réadaptation, institut de réadaptation Gingras-Lindsay de Montréal, CIUSSS du centre-Sud-de-l'Île-de-Montréal, Québec, Canada; École de réadaptation, faculté de médecine, université de Montréal, Québec, Canada
| | - Robert Forget
- Centre de recherche interdisciplinaire en réadaptation, institut de réadaptation Gingras-Lindsay de Montréal, CIUSSS du centre-Sud-de-l'Île-de-Montréal, Québec, Canada; École de réadaptation, faculté de médecine, université de Montréal, Québec, Canada
| |
Collapse
|
16
|
Intrathecal baclofen bolus reduces exaggerated extensor coactivation during pre-swing and early-swing of gait after acquired brain injury. Clin Neurophysiol 2017; 128:725-733. [DOI: 10.1016/j.clinph.2017.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/30/2017] [Accepted: 02/22/2017] [Indexed: 01/05/2023]
|
17
|
Motor Function Evaluation of Hemiplegic Upper-Extremities Using Data Fusion from Wearable Inertial and Surface EMG Sensors. SENSORS 2017; 17:s17030582. [PMID: 28335394 PMCID: PMC5375868 DOI: 10.3390/s17030582] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/06/2017] [Accepted: 02/23/2017] [Indexed: 11/25/2022]
Abstract
Quantitative evaluation of motor function is of great demand for monitoring clinical outcome of applied interventions and further guiding the establishment of therapeutic protocol. This study proposes a novel framework for evaluating upper limb motor function based on data fusion from inertial measurement units (IMUs) and surface electromyography (EMG) sensors. With wearable sensors worn on the tested upper limbs, subjects were asked to perform eleven straightforward, specifically designed canonical upper-limb functional tasks. A series of machine learning algorithms were applied to the recorded motion data to produce evaluation indicators, which is able to reflect the level of upper-limb motor function abnormality. Sixteen healthy subjects and eighteen stroke subjects with substantial hemiparesis were recruited in the experiment. The combined IMU and EMG data yielded superior performance over the IMU data alone and the EMG data alone, in terms of decreased normal data variation rate (NDVR) and improved determination coefficient (DC) from a regression analysis between the derived indicator and routine clinical assessment score. Three common unsupervised learning algorithms achieved comparable performance with NDVR around 10% and strong DC around 0.85. By contrast, the use of a supervised algorithm was able to dramatically decrease the NDVR to 6.55%. With the proposed framework, all the produced indicators demonstrated high agreement with the routine clinical assessment scale, indicating their capability of assessing upper-limb motor functions. This study offers a feasible solution to motor function assessment in an objective and quantitative manner, especially suitable for home and community use.
Collapse
|
18
|
Focusing on Increasing Velocity during Heavy Resistance Knee Flexion Exercise Boosts Hamstring Muscle Activity in Chronic Stroke Patients. Neurol Res Int 2016; 2016:6523724. [PMID: 27525118 PMCID: PMC4976165 DOI: 10.1155/2016/6523724] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/03/2016] [Indexed: 12/31/2022] Open
Abstract
Background. Muscle strength is markedly reduced in stroke patients, which has negative implications for functional capacity and work ability. Different types of feedback during strength training exercises may alter neuromuscular activity and functional gains. Objective. To compare levels of muscle activity during conditions of blindfolding and intended high contraction speed with a normal condition of high-intensity knee flexions. Methods. Eighteen patients performed unilateral machine knee flexions with a 10-repetition maximum load. Surface electromyography (EMG) was recorded from the quadrics and hamstring muscles and normalized to maximal EMG (nEMG) of the nonparetic limb. Results. For the paretic leg, the speed condition showed higher values of muscle activity compared with the normal and blindfolded conditions for both biceps femoris and semitendinosus. Likewise, the speed condition showed higher co-contraction values compared with the normal and blindfolded conditions for the vastus lateralis. No differences were observed between exercise conditions for the nonparetic leg. Conclusion. Chronic stroke patients are capable of performing heavy resistance training with intended high speed of contraction. Focusing on speed during the concentric phase elicited higher levels of muscle activity of the hamstrings compared to normal and blindfolded conditions, which may have implications for regaining fast muscle strength in stroke survivors.
Collapse
|
19
|
Sánchez N, Acosta AM, Stienen AH, Dewald JP. A Multiple Degree of Freedom Lower Extremity Isometric Device to Simultaneously Quantify Hip, Knee, and Ankle Torques. IEEE Trans Neural Syst Rehabil Eng 2015; 23:765-75. [PMID: 25163064 PMCID: PMC4427551 DOI: 10.1109/tnsre.2014.2348801] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Characterization of the joint torque coupling strategies used in the lower extremity to generate maximal and submaximal levels of torque at either the hip, knee, or ankle is lacking. Currently, there are no available isometric devices that quantify all concurrent joint torques in the hip, knee, and ankle of a single leg during maximum voluntary torque generation. Thus, joint-torque coupling strategies in the hip, knee, and concurrent torques at ankle and/or coupling patterns at the hip and knee driven by the ankle have yet to be quantified. This manuscript describes the design, implementation, and validation of a multiple degree of freedom, lower extremity isometric device (the MultiLEIT) that accurately quantifies simultaneous torques at the hip, knee, and ankle. The system was mechanically validated and then implemented with two healthy control individuals and two post-stroke individuals to test usability and patient acceptance. Data indicated different joint torque coupling strategies used by both healthy individuals. In contrast, data showed the same torque coupling patterns in both post-stroke individuals, comparable to those described in the clinic. Successful implementation of the MultiLEIT can contribute to the understanding of the underlying mechanisms responsible for abnormal movement patterns and aid in the design of therapeutic interventions.
Collapse
Affiliation(s)
- Natalia Sánchez
- Departments of Biomedical Engineering and Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611 USA
| | - Ana Maria Acosta
- Department of Physical Therapy and Human Movement Sciences and the Interdepartamental Neuroscience Program (NUIN), Northwestern University, Chicago, IL 60611 USA
| | - Arno H.A. Stienen
- University of Twente Department of Biomechanical Engineering, Enschede, NL and the Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611 USA
| | - Julius P.A. Dewald
- Departments of Physical Therapy and Human Movement Sciences, Biomedical Engineering, Physical Medicine and Rehabilitation, and Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611 USA
| |
Collapse
|
20
|
Hillen BK, Jindrich DL, Abbas JJ, Yamaguchi GT, Jung R. Effects of spinal cord injury-induced changes in muscle activation on foot drag in a computational rat ankle model. J Neurophysiol 2015; 113:2666-75. [PMID: 25673734 DOI: 10.1152/jn.00507.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 02/06/2015] [Indexed: 11/22/2022] Open
Abstract
Spinal cord injury (SCI) can lead to changes in muscle activation patterns and atrophy of affected muscles. Moderate levels of SCI are typically associated with foot drag during the swing phase of locomotion. Foot drag is often used to assess locomotor recovery, but the causes remain unclear. We hypothesized that foot drag results from inappropriate muscle coordination preventing flexion at the stance-to-swing transition. To test this hypothesis and to assess the relative contributions of neural and muscular changes on foot drag, we developed a two-dimensional, one degree of freedom ankle musculoskeletal model with gastrocnemius and tibialis anterior muscles. Anatomical data collected from sham-injured and incomplete SCI (iSCI) female Long-Evans rats as well as physiological data from the literature were used to implement an open-loop muscle dynamics model. Muscle insertion point motion was calculated with imposed ankle trajectories from kinematic analysis of treadmill walking in sham-injured and iSCI animals. Relative gastrocnemius deactivation and tibialis anterior activation onset times were varied within physiologically relevant ranges based on simplified locomotor electromyogram profiles. No-atrophy and moderate muscle atrophy as well as normal and injured muscle activation profiles were also simulated. Positive moments coinciding with the transition from stance to swing phase were defined as foot swing and negative moments as foot drag. Whereas decreases in activation delay caused by delayed gastrocnemius deactivation promote foot drag, all other changes associated with iSCI facilitate foot swing. Our results suggest that even small changes in the ability to precisely deactivate the gastrocnemius could result in foot drag after iSCI.
Collapse
Affiliation(s)
- Brian K Hillen
- Center for Adaptive Neural Systems, Arizona State University, Tempe, Arizona; School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona
| | - Devin L Jindrich
- Center for Adaptive Neural Systems, Arizona State University, Tempe, Arizona; School of Life Sciences, Arizona State University, Tempe, Arizona
| | - James J Abbas
- Center for Adaptive Neural Systems, Arizona State University, Tempe, Arizona; School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona
| | | | - Ranu Jung
- Center for Adaptive Neural Systems, Arizona State University, Tempe, Arizona; School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona; Department of Biomedical Engineering, Florida International University, Miami, Florida
| |
Collapse
|
21
|
Dyer JO, Maupas E, de Andrade Melo S, Bourbonnais D, Nadeau S, Forget R. Changes in activation timing of knee and ankle extensors during gait are related to changes in heteronymous spinal pathways after stroke. J Neuroeng Rehabil 2014; 11:148. [PMID: 25343962 PMCID: PMC4271343 DOI: 10.1186/1743-0003-11-148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 10/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extensor synergy is often observed in the paretic leg of stroke patients. Extensor synergy consists of an abnormal stereotyped co-activation of the leg extensors as patients attempt to move. As a component of this synergy, the simultaneous activation of knee and ankle extensors in the paretic leg during stance often affects gait pattern after stroke. The mechanisms involved in extensor synergy are still unclear. The first objective of this study is to compare the co-activation of knee and ankle extensors during the stance phase of gait between stroke and healthy individuals. The second objective is to explore whether this co-activation is related to changes in heteronymous spinal modulations between quadriceps and soleus muscles on the paretic side in post-stroke individuals. METHODS Thirteen stroke patients and ten healthy individuals participated in gait and heteronymous spinal modulation evaluations. Co-activation was measured using peak EMG activation intervals (PAI) and co-activation amplitude indexes (CAI) between knee and ankle extensors during the stance phase of gait in both groups. The evaluation of heteronymous spinal modulations was performed on the paretic leg in stroke participants and on one leg in healthy participants. This evaluation involved assessing the early facilitation and later inhibition of soleus voluntary EMG induced by femoral nerve stimulation. RESULTS All PAI were lower and most CAI were higher on the paretic side of stroke participants compared with the co-activation indexes among control participants. CAI and PAI were moderately correlated with increased heteronymous facilitation of soleus on the paretic side in stroke individuals. CONCLUSIONS Increased co-activation of knee and ankle extensors during gait is related to changes in intersegmental facilitative pathways linking quadriceps to soleus on the paretic side in stroke individuals. Malfunction of intersegmental pathways could contribute to abnormal timing of leg extensors during the stance phase of gait in hemiparetic individuals.
Collapse
Affiliation(s)
- Joseph-Omer Dyer
- Centre de recherche interdisciplinaire en réadaptation, Institut de réadaptation Gingras-Lindsay de Montréal, Montréal, Canada.
| | | | | | | | | | | |
Collapse
|
22
|
Liang JN, Brown DA. Foot force direction control during a pedaling task in individuals post-stroke. J Neuroeng Rehabil 2014; 11:63. [PMID: 24739234 PMCID: PMC3996495 DOI: 10.1186/1743-0003-11-63] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 04/02/2014] [Indexed: 11/10/2022] Open
Abstract
Background Appropriate magnitude and directional control of foot-forces is required for successful execution of locomotor tasks. Earlier evidence suggested, following stroke, there is a potential impairment in foot-force control capabilities both during stationary force generation and locomotion. The purpose of this study was to investigate the foot-pedal surface interaction force components, in non-neurologically-impaired and stroke-impaired individuals, in order to determine how fore/aft shear-directed foot/pedal forces are controlled. Methods Sixteen individuals with chronic post-stroke hemiplegia and 10 age-similar non-neurologically-impaired controls performed a foot placement maintenance task under a stationary and a pedaling condition, achieving a target normal pedal force. Electromyography and force profiles were recorded. We expected generation of unduly large magnitude shear pedal forces and reduced participation of multiple muscles that can contribute forces in appropriate directions in individuals post-stroke. Results We found lower force output, inconsistent modulation of muscle activity and reduced ability to change foot force direction in the paretic limbs, but we did not observe unduly large magnitude shear pedal surface forces by the paretic limbs as we hypothesized. Conclusion These findings suggested the preservation of foot-force control capabilities post-stroke under minimal upright postural control requirements. Further research must be conducted to determine whether inappropriate shear force generation will be revealed under non-seated, postural demanding conditions, where subjects have to actively control for upright body suspension.
Collapse
Affiliation(s)
- Jing Nong Liang
- Department of Physical Therapy and Human Movement Sciences, Suite 1100, 645 N, Michigan Avenue, Chicago, IL 60611, USA.
| | | |
Collapse
|
23
|
Reference values and psychometric properties of the lower extremity motor coordination test. Arch Phys Med Rehabil 2014; 95:1490-7. [PMID: 24681388 DOI: 10.1016/j.apmr.2014.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 02/05/2014] [Accepted: 03/01/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVES (1) To create predictive nomograms for the dominant and nondominant limbs on the Lower Extremity Motor Coordination Test (LEMOCOT) using reference values, and (2) to determine the inter- and intrarater reliability for the LEMOCOT; the best scoring method (first vs mean of the first 2 vs mean of the last 2 vs mean of 3 vs the highest of 3 trials); the best testing method (direct vs video observation); and the ability to detect real change (smallest real difference [SRD] and standard error of the measurement [SEM]). DESIGN Normative and methodological study. SETTING Metropolitan area. PARTICIPANTS Healthy individuals (N=320, 50% women) in 7 age groups: 20 to 29, 30 to 39, 40 to 49, 50 to 59, 60 to 69, 70 to 79, and ≥80 years. Each group had 50 participants, except for ≥80 years (n=20). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURE LEMOCOT RESULTS Age and sex explained 48% of the variance in the LEMOCOT scores for the dominant limb and 44% for the nondominant limb (125<F<148; P<.001). No significant differences were found regarding the different scoring methods (.12<F<1.02; .10<P<.92), and all of them demonstrated good reliability (intraclass correlation coefficients between .90 and .99; P<.001). There was agreement between scores from direct and video observation (limits of agreement -1.99 to 1.85; -1.55 to 1.62). Appropriate SEM (2.27-1.85) and SRD (6.27-5.11) values were found. CONCLUSIONS Reference values were determined for the LEMOCOT, and predictive nomograms were created based on age and sex. The LEMOCOT is reliable, needing only 1 trial (after familiarization) to generate reliable scores; can be scored from either direct or video observation; and has the ability to detect real change over time.
Collapse
|
24
|
Vinti M, Couillandre A, Hausselle J, Bayle N, Primerano A, Merlo A, Hutin E, Gracies JM. Influence of effort intensity and gastrocnemius stretch on co-contraction and torque production in the healthy and paretic ankle. Clin Neurophysiol 2013; 124:528-35. [DOI: 10.1016/j.clinph.2012.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/26/2012] [Accepted: 08/20/2012] [Indexed: 11/16/2022]
|