1
|
Dong W, Li H, Li Y, Wang Y, Dai L, Wang S. Characterization of active peptides derived from three leeches and comparison of their anti-thrombotic mechanisms using the tail vein thrombosis model in mice and metabonomics. Front Pharmacol 2024; 14:1324418. [PMID: 38333223 PMCID: PMC10851270 DOI: 10.3389/fphar.2023.1324418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/26/2023] [Indexed: 02/10/2024] Open
Abstract
Background and aims: The increasing incidence of cardiovascular diseases has created an urgent need for safe and effective anti-thrombotic agents. Leech, as a traditional Chinese medicine, has the effect of promoting blood circulation and removing blood stasis, but its real material basis and mechanism of action for the treatment of diseases such as blood stasis and thrombosis have not been reported. Methods: In this study, Whitmania Pigra Whitman (WPW), Hirudo nipponica Whitman (HNW) and Whitmania acranutata Whitman (WAW) were hydrolyzed by biomimetic enzymatic hydrolysis to obtain the active peptides of WPW (APP), the active peptides of HNW (APH) and the active peptides of WAW (APA), respectively. Then their structures were characterized by sykam amino acid analyzer, fourier transform infrared spectrometer (FT-IR), circular dichroism (CD) spectrometer and LC-MS. Next, the anti-thrombotic activities of APP, APH and APA were determined by carrageenan-induced tail vein thrombosis model in mice, and the anti-thrombotic mechanisms of high-dose APP group (HAPP), high-dose APH group (HAPH) and high-dose APA group (HAPA) were explored based on UHPLC-Q-Exactive Orbitrap mass spectrometry. Results: The results showed that the amino acid composition of APP, APH and APA was consistent, and the proportion of each amino acid was few different. The results of FT-IR and CD showed that there were no significant differences in the proportion of secondary structures (such as β-sheet and random coil) and infrared absorption peaks between APP, APH and APA. Mass spectrometry data showed that there were 43 common peptides in APP, APH and APA, indicating that the three have common material basis. APP, APH and APA could significantly inhibit platelet aggregation, reduce black-tail length, whole blood viscosity (WBV), plasma viscosity (PV), and Fibrinogen (FIB), and prolong coagulation time, including activated partial thrombin time (APTT), prothrombin time (PT) and thrombin time (TT). In addition, 24 metabolites were identified as potential biomarkers associated with thrombosis development. Among these, 19, 23, and 20 metabolites were significantly normalized after administration of HAPP, HAPH, and HAPA in the mice, respectively. Furthermore, the intervention mechanism of HAPP, HAPH and HAPA on tail vein thrombosis mainly involved in linoleic acid metabolism, primary bile acid biosynthesis and ether lipid metabolism. Conclusion: Our findings suggest that APP, APH and APA can exert their anti-blood stasis and anti-thrombotic activities by interfering with disordered metabolic pathways in vivo, and there is no significant difference in their efficacies.
Collapse
Affiliation(s)
- Weichao Dong
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huajian Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
- School of Pharmacy, ZheJiang Chinese Medicial University, Hangzhou, China
| | - Yanan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuqing Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Shaoping Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
2
|
Dong P, Wang H, Li Y, Yu J, Liu X, Wang Y, Dai L, Wang S. Active peptides from Eupolyphaga sinensis walker attenuates experimental hyperlipidemia by regulating the gut microbiota and biomarkers in rats with dyslipidemia. Biomed Pharmacother 2024; 170:116064. [PMID: 38154268 DOI: 10.1016/j.biopha.2023.116064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023] Open
Abstract
Eupolyphaga sinensis Walker (ESW) is a traditional Chinese medicine formulation used to treat hyperlipidemia. However, the hypolipidemic effect of the active peptides from E. sinensis Walker (APE) is incompletely understood. We studied the hypolipidemic effect of APE and explored the impact of APE on the gut microbiota (GM) in rats suffering from hyperlipidemia. APE was prepared by enzymatic digestion, and its structure was characterized using various methods. The anti-hyperlipidemic activity of APE was assessed using a high-fat diet (HFD)-induced model in zebrafish and rats. In rats, HFD administration caused abnormalities of lipid metabolism and disturbances of the GM and amino acid (AA) profile in plasma. The abundance of bacteria of the phyla Firmicutes and Bacteroides was increased significantly (p < 0.05), and the relative abundance of Lactobacillus species and Clostridium species was decreased significantly (p < 0.05). HFD therapy affected the levels of 12 AAs in vivo: 10 AAs showed increased levels and two AAs had decreased levels (p < 0.05). Similar results were demonstrated in an experiment on fecal microbiota transplantation. APE treatment dose-dependently decreased lipid factors and liver damage (p < 0.05). Sequencing of the 16 S rRNA gene indicated that APE improved the intestinal-flora structure of rats with HL markedly, and increased the relative abundance of Lactobacillus species and Clostridium species. Metabolomics analysis indicated that APE could alter the levels of 10 AAs affected by HFD consumption. Spearman correlation analysis revealed that gamma-aminobutyric acid (GABA) could be a crucial metabolite, and Lactobacillus species and Clostridium species might be important bacteria for the action of APE against hyperlipidemia. We speculate that APE exhibited an anti-hyperlipidemic effect by regulating GABA synthesis in the presence of Lactobacillus species and Clostridium species.
Collapse
Affiliation(s)
- Pingping Dong
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Macao 999078, China
| | - Hong Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Yanan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Jiayi Yu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xin Liu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yinglei Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Shaoping Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
3
|
Zhang C, Wang D, Li W, Zhang B, Abdel-Fattah Ouf GM, Su X, Li J. The coat protein p25 from maize chlorotic mottle virus involved in symptom development and systemic movement of tobacco mosaic virus hybrids. Front Microbiol 2022; 13:951479. [PMID: 35992724 PMCID: PMC9389212 DOI: 10.3389/fmicb.2022.951479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Viral coat protein (CP) has numerous critical functions in plant infection, but little is known about p25, the CP of maize chlorotic mottle virus (MCMV; Machlomovirus), which causes severe yield losses in maize worldwide. Here, we investigated the roles of p25 in pathogenicity and systemic movement, as well as potential interactions with host plants, using a hybrid tobacco mosaic virus (TMV)-based expression system. Highly conserved protein p25 is predicted to contain a membrane-anchored nuclear localization signal (NLS) sequence and an extracellular sequence. In transgenic Nicotiana benthamiana plants containing the movement protein (MP) of TMV (TMV-MP), p25 induced severe symptoms, including dwarf and foliar necrosis, and was detected in inoculated and non-inoculated leaves. After the deletion of NLS from nuclear-located p25, the protein was found throughout the host cell, and plant stunting and starch granule deformity were reduced. Systemic movement and pathogenicity were significantly impaired when the C-terminal regions of p25 were absent. Using virus-induced gene silencing (VIGS), the transcript level of heat shock protein HSP90 was distinctly lower in host plants in association with the absence of leaf necrosis induced by TMV-p25. Our results revealed crucial roles for MCMV p25 in viral pathogenicity, long-distance movement, and interactions with N. benthamiana.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Di Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Weimin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baolong Zhang
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Gamal M. Abdel-Fattah Ouf
- Department of Botany and Applied Microbiology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
4
|
Gao Z, Zhang D, Wang X, Zhang X, Wen Z, Zhang Q, Li D, Dinesh-Kumar SP, Zhang Y. Coat proteins of necroviruses target 14-3-3a to subvert MAPKKKα-mediated antiviral immunity in plants. Nat Commun 2022; 13:716. [PMID: 35132090 PMCID: PMC8821596 DOI: 10.1038/s41467-022-28395-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades play an important role in innate immunity against various pathogens in plants and animals. However, we know very little about the importance of MAPK cascades in plant defense against viral pathogens. Here, we used a positive-strand RNA necrovirus, beet black scorch virus (BBSV), as a model to investigate the relationship between MAPK signaling and virus infection. Our findings showed that BBSV infection activates MAPK signaling, whereas viral coat protein (CP) counteracts MAPKKKα-mediated antiviral defense. CP does not directly target MAPKKKα, instead it competitively interferes with the binding of 14-3-3a to MAPKKKα in a dose-dependent manner. This results in the instability of MAPKKKα and subversion of MAPKKKα-mediated antiviral defense. Considering the conservation of 14-3-3-binding sites in the CPs of diverse plant viruses, we provide evidence that 14-3-3-MAPKKKα defense signaling module is a target of viral effectors in the ongoing arms race of defense and viral counter-defense.
Collapse
Affiliation(s)
- Zongyu Gao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Dingliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Xiaoling Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Xin Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Zhiyan Wen
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Qianshen Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
5
|
Gao Z, Pu H, Liu J, Wang X, Zhong C, Yue N, Zhang Z, Wang XB, Han C, Yu J, Li D, Zhang Y. Tobacco Necrosis Virus-A C Single Coat Protein Amino Acid Substitutions Determine Host-Specific Systemic Infections of Nicotiana benthamiana and Soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:49-61. [PMID: 32986512 DOI: 10.1094/mpmi-07-20-0184-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plant viruses often infect several distinct host species. Sometimes, viruses can systemically infect a specific host whereas, in other cases, only local infections occur in other species. How viral and host factors interact to determine systemic infections among different hosts is largely unknown, particularly for icosahedral positive-stranded RNA viruses. The Tobacco necrosis virus-A Chinese isolate belongs to the genus Alphanecrovirus in the family Tombusviridae. In this study, we investigated variations in systemic infections of tobacco necrosis virus-AC (TNV-AC) in Nicotiana benthamiana and Glycine max (soybean) by alanine-scanning mutagenesis of the viral coat protein (CP), which is essential for systemic movement of TNV-AC. We found that three amino acids, R169, K177, and Q233, are key residues that mediate varying degrees of systemic infections of N. benthamiana and soybean. Further analysis revealed that variations in systemic trafficking of TNV-AC CP mutants in N. benthamiana and soybean are associated with virion assembly and stability. The CP amino acids K177 and Q233 are highly conserved among all TNV-A isolates and are replaced by Q and K in the TNV-D isolates. We demonstrated that systemic infectivity of either TNV-AC K177A and Q233A or K177Q and Q233K mutants are correlated with the binding affinity of the mutated CPs to the host-specific Hsc70-2 protein. These results expand our understanding of host-dependent long-distance movement of icosahedral viruses in plants.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zongyu Gao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Heng Pu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Jingyuan Liu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaoling Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Chenchen Zhong
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Ning Yue
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Ziding Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Chenggui Han
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
6
|
Farzadfar S, Pourrahim R. Positive selection and recombination shaped the large genetic differentiation of Beet black scorch virus population. PLoS One 2019; 14:e0215574. [PMID: 31022219 PMCID: PMC6483173 DOI: 10.1371/journal.pone.0215574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/05/2019] [Indexed: 01/01/2023] Open
Abstract
Beet black scorch virus (BBSV) is a species in the Betanecrovirus genus, in family Tombusviridae. BBSV infection is of considerable importance, causing economic losses to sugar beet (Beta vulgaris) field crops worldwide. Phylogenetic analyses using 3'UTR sequences divided most BBSV isolates into two main groups. Group I is composed of Iranian isolates from all Iranian provinces that have been sampled. Chinese, European, one North American and some other Iranian isolates from North-Western Iran are in Group II. The division of Iranian BBSV isolates into two groups suggests numerous independent infection events have occurred in Iran, possibly from isolated sources from unknown host(s) linked through the viral vector Olpidium. The between-group diversity was higher than the within-group diversity, indicating the role of a founder effect in the diversification of BBSV isolates. The high FST among BBSV populations differentiates BBSV groups. We found no indication of frequent gene flow between populations in Mid-Eurasia, East-Asia and Europe countries. Recombination analysis indicated an intra-recombination event in the Chinese Xinjiang/m81 isolate and an inter-recombination breakpoint in the viral 3'UTR of Iranian isolates in subgroup IranA in Group I. The ω ratios (dNS/dS) were used for detecting positive selection at individual codon sites. Amino acid sequences were conserved with ω from 0.040 to 0.229 in various proteins. In addition, a small fraction of amino acids in proteins RT-ORF1 (p82), ORF4 (p7b) and ORF6 (p24) are positively selected with ω > 1. This analysis could increase the understanding of protein structure and function and Betanecrovirus epidemiology. The recombination analysis shows that genomic exchanges are associated with the emergence of new BBSV strains. Such recombinational exchange analysis may provide new information about the evolution of Betanecrovirus diversity.
Collapse
Affiliation(s)
- Shirin Farzadfar
- Plant Virus Research Department, Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
- * E-mail:
| | - Reza Pourrahim
- Plant Virus Research Department, Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| |
Collapse
|
7
|
Niu S, Guo S, Tewary SK, Wong SM. Effects of deletion at the TTTSTTT motif of Hibiscus latent Singapore virus coat protein on viral replication and long-distance movement. Virology 2019; 526:13-21. [PMID: 30317102 DOI: 10.1016/j.virol.2018.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/29/2018] [Accepted: 09/29/2018] [Indexed: 11/24/2022]
Abstract
Hibiscus latent Singapore virus (HLSV) mutant HLSV-22A could not express coat protein (CP) nor infect plants systemically (Niu et al., 2015). In this study, a serine- and threonine-rich motif TTTSTTT at the C-terminus of HLSV CP was found to be involved in virus replication and systemic movement. Deletion the last amino acid residue in HLSV-22A led to a more rapid virus replication, but with delayed systemic movement. When the RNA structure in TTTSTTT motif was altered, while keeping its amino acids unchanged, mutants HLSV-87A-mmSL and HLSV-22A-mmSL showed no change in viral replication. These results indicated that the unique TTTSTTT motif is associated with virus replication and systemic movement. Deletion but not substitution of amino acid(s) at the C-terminus of TTTSTTT motif of HLSV CP with short internal poly(A) track enhanced virus replication, whereas the virus with a longer internal poly(A) tract of 87 A showed delayed systemic movement (147 words).
Collapse
Affiliation(s)
- Shengniao Niu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Song Guo
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Sunil Kumar Tewary
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China 215123.
| |
Collapse
|
8
|
Li Z, Zhang Y, Jiang Z, Jin X, Zhang K, Wang X, Han C, Yu J, Li D. Hijacking of the nucleolar protein fibrillarin by TGB1 is required for cell-to-cell movement of Barley stripe mosaic virus. MOLECULAR PLANT PATHOLOGY 2018; 19:1222-1237. [PMID: 28872759 PMCID: PMC6638131 DOI: 10.1111/mpp.12612] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 05/18/2023]
Abstract
Barley stripe mosaic virus (BSMV) Triple Gene Block1 (TGB1) is a multifunctional movement protein with RNA-binding, ATPase and helicase activities which mainly localizes to the plasmodesmata (PD) in infected cells. Here, we show that TGB1 localizes to the nucleus and the nucleolus, as well as the cytoplasm, and that TGB1 nuclear-cytoplasmic trafficking is required for BSMV cell-to-cell movement. Prediction analyses and laser scanning confocal microscopy (LSCM) experiments verified that TGB1 possesses a nucleolar localization signal (NoLS) (amino acids 95-104) and a nuclear localization signal (NLS) (amino acids 227-238). NoLS mutations reduced BSMV cell-to-cell movement significantly, whereas NLS mutations almost completely abolished movement. Furthermore, neither the NoLS nor NLS mutant viruses could infect Nicotiana benthamiana systemically, although the NoLS mutant virus was able to establish systemic infections of barley. Protein interaction experiments demonstrated that TGB1 interacts directly with the glycine-arginine-rich (GAR) domain of the nucleolar protein fibrillarin (Fib2). Moreover, in BSMV-infected cells, Fib2 accumulation increased by about 60%-70% and co-localized with TGB1 in the plasmodesmata. In addition, BSMV cell-to-cell movement in fib2 knockdown transgenic plants was reduced to less than one-third of that of non-transgenic plants. Fib2 also co-localized with both TGB1 and BSMV RNA, which are the main components of the ribonucleoprotein (RNP) movement complex. Collectively, these results show that TGB1-Fib2 interactions play a direct role in cell-to-cell movement, and we propose that Fib2 is hijacked by BSMV TGB1 to form a BSMV RNP which functions in cell-to-cell movement.
Collapse
Affiliation(s)
- Zhenggang Li
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Yongliang Zhang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Zhihao Jiang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Xuejiao Jin
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Kun Zhang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Xianbing Wang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Chenggui Han
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Jialin Yu
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Dawei Li
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| |
Collapse
|
9
|
Wang X, Cao X, Liu M, Zhang R, Zhang X, Gao Z, Zhao X, Xu K, Li D, Zhang Y. Hsc70-2 is required for Beet black scorch virus infection through interaction with replication and capsid proteins. Sci Rep 2018; 8:4526. [PMID: 29540800 PMCID: PMC5852052 DOI: 10.1038/s41598-018-22778-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/27/2018] [Indexed: 11/09/2022] Open
Abstract
Dissecting the complex molecular interplay between the host plant and invading virus improves our understanding of the mechanisms underlying viral pathogenesis. In this study, immunoprecipitation together with the mass spectrometry analysis revealed that the heat shock protein 70 (Hsp70) family homolog, Hsc70-2, was co-purified with beet black scorch virus (BBSV) replication protein p23 and coat protein (CP), respectively. Further experiments demonstrated that Hsc70-2 interacts directly with both p23 and CP, whereas there is no interaction between p23 and CP. Hsc70-2 expression is induced slightly during BBSV infection of Nicotiana benthamiana, and overexpression of Hsc70-2 promotes BBSV accumulation, while knockdown of Hsc70-2 in N. benthamiana leads to drastic reduction of BBSV accumulation. Infection experiments revealed that CP negatively regulates BBSV replication, which can be mitigated by overexpression of Hsc70-2. Further experiments indicate that CP impairs the interaction between Hsc70-2 and p23 in a dose-dependent manner. Altogether, we provide evidence that besides specific functions of Hsp70 family proteins in certain aspects of viral infection, they can serve as a mediator for the orchestration of virus infection by interacting with different viral components. Our results provide new insight into the role of Hsp70 family proteins in virus infection.
Collapse
Affiliation(s)
- Xiaoling Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Xiuling Cao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Min Liu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Ruiqi Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Xin Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Zongyu Gao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Xiaofei Zhao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
10
|
Alam SB, Reade R, Theilmann J, Rochon D. Evidence for the role of basic amino acids in the coat protein arm region of Cucumber necrosis virus in particle assembly and selective encapsidation of viral RNA. Virology 2017; 512:83-94. [PMID: 28946005 DOI: 10.1016/j.virol.2017.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/31/2017] [Accepted: 09/02/2017] [Indexed: 01/21/2023]
Abstract
Cucumber necrosis virus (CNV) is a T = 3 icosahedral virus with a (+)ssRNA genome. The N-terminal CNV coat protein arm contains a conserved, highly basic sequence ("KGRKPR"), which we postulate is involved in RNA encapsidation during virion assembly. Seven mutants were constructed by altering the CNV "KGRKPR" sequence; the four basic residues were mutated to alanine individually, in pairs, or in total. Virion accumulation and vRNA encapsidation were significantly reduced in mutants containing two or four substitutions and virion morphology was also affected, where both T = 1 and intermediate-sized particles were produced. Mutants with two or four substitutions encapsidated significantly greater levels of truncated RNA than that of WT, suggesting that basic residues in the "KGRKPR" sequence are important for encapsidation of full-length CNV RNA. Interestingly, "KGRKPR" mutants also encapsidated relatively higher levels of host RNA, suggesting that the "KGRKPR" sequence also contributes to selective encapsidation of CNV RNA.
Collapse
Affiliation(s)
- Syed Benazir Alam
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, B.C., Canada
| | - Ron Reade
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, B.C., Canada
| | - Jane Theilmann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, B.C., Canada
| | - D'Ann Rochon
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, B.C., Canada; Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, B.C., Canada.
| |
Collapse
|
11
|
Ni R, Zhou J, Hossain N, Chau Y. Virus-inspired nucleic acid delivery system: Linking virus and viral mimicry. Adv Drug Deliv Rev 2016; 106:3-26. [PMID: 27473931 DOI: 10.1016/j.addr.2016.07.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/02/2016] [Accepted: 07/20/2016] [Indexed: 12/21/2022]
Abstract
Targeted delivery of nucleic acids into disease sites of human body has been attempted for decades, but both viral and non-viral vectors are yet to meet our expectations. Safety concerns and low delivery efficiency are the main limitations of viral and non-viral vectors, respectively. The structure of viruses is both ordered and dynamic, and is believed to be the key for effective transfection. Detailed understanding of the physical properties of viruses, their interaction with cellular components, and responses towards cellular environments leading to transfection would inspire the development of safe and effective non-viral vectors. To this goal, this review systematically summarizes distinctive features of viruses that are implied for efficient nucleic acid delivery but not yet fully explored in current non-viral vectors. The assembly and disassembly of viral structures, presentation of viral ligands, and the subcellular targeting of viruses are emphasized. Moreover, we describe the current development of cationic material-based viral mimicry (CVM) and structural viral mimicry (SVM) in these aspects. In light of the discrepancy, we identify future opportunities for rational design of viral mimics for the efficient delivery of DNA and RNA.
Collapse
Affiliation(s)
- Rong Ni
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Junli Zhou
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Naushad Hossain
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ying Chau
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
12
|
Chkuaseli T, Newburn LR, Bakhshinyan D, White KA. Protein expression strategies in Tobacco necrosis virus-D. Virology 2015; 486:54-62. [PMID: 26402375 DOI: 10.1016/j.virol.2015.08.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/25/2015] [Accepted: 08/29/2015] [Indexed: 02/04/2023]
Abstract
Tobacco necrosis virus (TNV-D) has a plus-strand RNA genome that is neither 5' capped nor 3' poly-adenylated. Instead, it utilizes a 3' cap-independent translational enhancer (3'CITE) located in its 3' untranslated region (UTR) for translation of its proteins. We have examined the protein expression strategies used by TNV-D and our results indicate that: (i) a base pairing interaction between conserved ACCA and UGGU motifs in the genomic 5'UTR and 3'CITE, respectively, is not required for efficient plant cell infection, (ii) similar potential 5'UTR-3'CITE interactions in the two viral subgenomic mRNAs are not needed for efficient translation of viral proteins in vitro, (iii) a small amount of capsid protein is translated from the viral genome by a largely 3'CITE-independent mechanism, (iv) the larger of two possible forms of capsid protein is efficiently translated, and (v) p7b is translated from subgenomic mRNA1 by a leaky scanning mechanism.
Collapse
Affiliation(s)
- Tamari Chkuaseli
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - Laura R Newburn
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - David Bakhshinyan
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3.
| |
Collapse
|
13
|
Tian YP, Valkonen JPT. Recombination of strain O segments to HCpro-encoding sequence of strain N of Potato virus Y modulates necrosis induced in tobacco and in potatoes carrying resistance genes Ny or Nc. MOLECULAR PLANT PATHOLOGY 2015; 16:735-47. [PMID: 25557768 PMCID: PMC6638495 DOI: 10.1111/mpp.12231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Hypersensitive resistance (HR) to strains O and C of Potato virus Y (PVY, genus Potyvirus) is conferred by potato genes Ny(tbr) and Nc(tbr), respectively; however, PVY N strains overcome these resistance genes. The viral helper component proteinases (HCpro, 456 amino acids) from PVY(N) and PVY(O) are distinguished by an eight-amino-acid signature sequence, causing HCpro to fold into alternative conformations. Substitution of only two residues (K269R and R270K) of the eight-amino-acid signature in PVY(N) HCpro was needed to convert the three-dimensional (3D) model of PVY(N) HCpro to a PVY(O) -like conformation and render PVY(N) avirulent in the presence of Ny(tbr), whereas four amino acid substitutions were necessary to change PVY(O) HCpro to a PVY(N) -like conformation. Hence, the HCpro conformation rather than other features ascribed to the sequence were essential for recognition by Ny(tbr). The 3D model of PVY(C) HCpro closely resembled PVY(O), but differed from PVY(N) HCpro. HCpro of all strains was structurally similar to β-catenin. Sixteen PVY(N) 605-based chimeras were inoculated to potato cv. Pentland Crown (Ny(tbr)), King Edward (Nc(tbr)) and Pentland Ivory (Ny(tbr)/Nc(tbr)). Eleven chimeras induced necrotic local lesions and caused no systemic infection, and thus differed from both parental viruses that infected King Edward systemically, and from PVY(N) 605 that infected Pentland Crown and Pentland Ivory systemically. These 11 chimeras triggered both Ny(tbr) and Nc(tbr) and, in addition, six induced veinal necrosis in tobacco. Further, specific amino acid residues were found to have an additive impact on necrosis. These results shed new light on the causes of PVY-related necrotic symptoms in potato.
Collapse
Affiliation(s)
- Yan-Ping Tian
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
| | - Jari P T Valkonen
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland
| |
Collapse
|
14
|
Zhao X, Wang X, Dong K, Zhang Y, Hu Y, Zhang X, Chen Y, Wang X, Han C, Yu J, Li D. Phosphorylation of Beet black scorch virus coat protein by PKA is required for assembly and stability of virus particles. Sci Rep 2015; 5:11585. [PMID: 26108567 PMCID: PMC4479801 DOI: 10.1038/srep11585] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/20/2015] [Indexed: 12/22/2022] Open
Abstract
Plant virus coat proteins (CPs) play a fundamental role in protection of genomic RNAs, virion assembly, and viral movement. Although phosphorylation of several CPs during virus infection have been reported, little information is available about CP phosphorylation of the spherical RNA plant viruses. Here, we demonstrate that the CP of Beet black scorch virus (BBSV), a member of the genus Necrovirus, can be phosphorylated at threonine-41 (T41) by cAMP-dependent protein kinase (PKA)-like kinase in vivo and in vitro. Mutant viruses containing a T41A non-phosphorylatable alanine substitution, and a T41E glutamic acid substitution to mimic threonine phosphorylation were able to replicate but were unable to move systemically in Nicotiana benthamiana. Interestingly, the T41A and T41E mutants generated unstable 17 nm virus-like particles that failed to package viral genomic (g) RNA, compared with wild-type BBSV with 30 nm virions during viral infection in N. benthamiana. Further analyses showed that the T41 mutations had little effect on the gRNA-binding activity of the CP. Therefore, we propose a model whereby CP phosphorylation plays an essential role in long-distance movement of BBSV that involves formation of stable virions.
Collapse
Affiliation(s)
- Xiaofei Zhao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoling Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kai Dong
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yue Hu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xin Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanmei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xianbing Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chenggui Han
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Wan J, Cabanillas DG, Zheng H, Laliberté JF. Turnip mosaic virus moves systemically through both phloem and xylem as membrane-associated complexes. PLANT PHYSIOLOGY 2015; 167:1374-88. [PMID: 25717035 PMCID: PMC4378181 DOI: 10.1104/pp.15.00097] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/23/2015] [Indexed: 05/08/2023]
Abstract
Plant viruses move systemically in plants through the phloem. They move as virions or as ribonucleic protein complexes, although it is not clear what these complexes are made of. The approximately 10-kb RNA genome of Turnip mosaic virus (TuMV) encodes a membrane protein, known as 6K2, that induces endomembrane rearrangements for the formation of viral replication factories. These factories take the form of vesicles that contain viral RNA (vRNA) and viral replication proteins. In this study, we report the presence of 6K2-tagged vesicles containing vRNA and the vRNA-dependent RNA polymerase in phloem sieve elements and in xylem vessels. Transmission electron microscopy observations showed the presence in the xylem vessels of vRNA-containing vesicles that were associated with viral particles. Stem-girdling experiments, which leave xylem vessels intact but destroy the surrounding tissues, confirmed that TuMV could establish a systemic infection of the plant by going through xylem vessels. Phloem sieve elements and xylem vessels from Potato virus X-infected plants also contained lipid-associated nonencapsidated vRNA, indicating that the presence of membrane-associated ribonucleic protein complexes in the phloem and xylem may not be limited to TuMV. Collectively, these studies indicate that viral replication factories could end up in the phloem and the xylem.
Collapse
Affiliation(s)
- Juan Wan
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec, Canada H7V 1B7 (J.W., D.G.C., J.-F.L.); andDepartment of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1 (H.Z.)
| | - Daniel Garcia Cabanillas
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec, Canada H7V 1B7 (J.W., D.G.C., J.-F.L.); andDepartment of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1 (H.Z.)
| | - Huanquan Zheng
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec, Canada H7V 1B7 (J.W., D.G.C., J.-F.L.); andDepartment of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1 (H.Z.)
| | - Jean-François Laliberté
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec, Canada H7V 1B7 (J.W., D.G.C., J.-F.L.); andDepartment of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1 (H.Z.)
| |
Collapse
|
16
|
Niu S, Gil-Salas FM, Tewary SK, Samales AK, Johnson J, Swaminathan K, Wong SM. Hibiscus chlorotic ringspot virus coat protein is essential for cell-to-cell and long-distance movement but not for viral RNA replication. PLoS One 2014; 9:e113347. [PMID: 25402344 PMCID: PMC4234673 DOI: 10.1371/journal.pone.0113347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/22/2014] [Indexed: 11/29/2022] Open
Abstract
Hibiscus chlorotic ringspot virus (HCRSV) is a member of the genus Carmovirus in the family Tombusviridae. In order to study its coat protein (CP) functions on virus replication and movement in kenaf (Hibiscus cannabinus L.), two HCRSV mutants, designated as p2590 (A to G) in which the first start codon ATG was replaced with GTG and p2776 (C to G) in which proline 63 was replaced with alanine, were constructed. In vitro transcripts of p2590 (A to G) were able to replicate to a similar level as wild type without CP expression in kenaf protoplasts. However, its cell-to-cell movement was not detected in the inoculated kenaf cotyledons. Structurally the proline 63 in subunit C acts as a kink for β-annulus formation during virion assembly. Progeny of transcripts derived from p2776 (C to G) was able to move from cell-to-cell in inoculated cotyledons but its long-distance movement was not detected. Virions were not observed in partially purified mutant virus samples isolated from 2776 (C to G) inoculated cotyledons. Removal of the N-terminal 77 amino acids of HCRSV CP by trypsin digestion of purified wild type HCRSV virions resulted in only T = 1 empty virus-like particles. Taken together, HCRSV CP is dispensable for viral RNA replication but essential for cell-to-cell movement, and virion is required for the virus systemic movement. The proline 63 is crucial for HCRSV virion assembly in kenaf plants and the N-terminal 77 amino acids including the β-annulus domain is required in T = 3 assembly in vitro.
Collapse
Affiliation(s)
- Shengniao Niu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Hainan, China
| | - Francisco M. Gil-Salas
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica, Almería, Spain
| | - Sunil Kumar Tewary
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | | | - John Johnson
- Department of Molecular Biology, The Scripps Research Institute, California, United States of America
| | | | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, Singapore, Singapore
- National University of Singapore Suzhou Research Institute, Suzhou Industrial Park, Jiangsu, China
| |
Collapse
|
17
|
Nchongboh CG, Wu GW, Hong N, Wang GP. Protein–protein interactions between proteins of Citrus tristeza virus isolates. Virus Genes 2014; 49:456-65. [DOI: 10.1007/s11262-014-1100-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/20/2014] [Indexed: 12/01/2022]
|