1
|
Nerome K, Imagawa T, Sugita S, Arasaki Y, Maegawa K, Kawasaki K, Tanaka T, Watanabe S, Nishimura H, Suzuki T, Kuroda K, Kosugi I, Kajiura Z. The potential of a universal influenza virus-like particle vaccine expressing a chimeric cytokine. Life Sci Alliance 2022; 6:6/1/e202201548. [PMID: 36344085 PMCID: PMC9644419 DOI: 10.26508/lsa.202201548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
The efficacy of the current influenza vaccines is frequently reduced because of antigenic drift, a trade-off of developing improved vaccines with broad cross-protective activity against influenza A viruses. In this study, we have successfully constructed a chimeric cytokine (CC) comprising the M2 protein, influenza A neuraminidase stalk, and interleukin-12. We produced virus-like particles (VLPs) containing CC and influenza hemagglutinin (HA) proteins using a baculovirus system in Eri silkworm pupae. The protective efficacy of the CCHA-VLP vaccine was evaluated in mice. The CCFkH5HA-VLP vaccine increased the survival rates of BALB/c mice, infected with a lethal dose of PRH1 and HKH5 viruses, to 80% and 100%, respectively. The results suggested that CCHA-VLP successfully induced potent cross-reactive protective immunity against infection with homologous and heterologous subtypes of the influenza A virus. This is the first study to design a CC-containing HA-VLP vaccine and validate its protective efficacy.
Collapse
Affiliation(s)
| | - Toshifumi Imagawa
- Nerome Institute of Biological Resources, Nago, Japan,Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shigeo Sugita
- Equine Research Institute, Japan Racing Association, Shimotsuke, Japan
| | - Youta Arasaki
- Nerome Institute of Biological Resources, Nago, Japan
| | | | - Kazunori Kawasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Osaka, Japan
| | | | - Shinji Watanabe
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, National Hospital Organization, Sendai, Japan
| | - Tetsuro Suzuki
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazumichi Kuroda
- Division of Gastroenterology and Hepatology, Nihon University School of Medicine, Tokyo, Japan
| | - Isao Kosugi
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Zenta Kajiura
- Division of Applied Biology, Facility of Textile Science and Technology, Shinshu University, Ueda, Japan
| |
Collapse
|
2
|
Song H, Zhang S, Yang B, Liu Y, Kang Y, Li Y, Qian A, Yuan Z, Cong B, Shan X. Effects of four different adjuvants separately combined with Aeromonas veronii inactivated vaccine on haematoimmunological state, enzymatic activity, inflammatory response and disease resistance in crucian carp. FISH & SHELLFISH IMMUNOLOGY 2022; 120:658-673. [PMID: 34500055 DOI: 10.1016/j.fsi.2021.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
The purpose of the current study was to explore the immunomodulatory effects of different adjuvants combined with inactivated vaccines under Aeromonas veronii TH0426 infection in crucian carp. This study explored the best conditions for A. veronii as an inactivated vaccine, and included an animal safety test. Furthermore, we expressed the flagellin FlaA of the A. veronii TH0426 strain for use as an adjuvant supplemented in the diet. Crucian carp were fed 12 different experimental diets for 35 days, including the administration of 10 different adjuvants and inactivated vaccine combinations (50% aluminum hydroxide gel and inactivated vaccine combination, and inactivated vaccine with 20%, 30%, or 50% glucan, astragalus polysaccharide or flagellin), inactivated vaccine alone, and PBS control without adjuvant and inactivated vaccine. After the 42 day feeding trials, the fish were challenged with A. veronii TH0426, and the survival rate over 14 days was recorded. In addition, flagellin FlaA can be expressed normally in large amounts. All experimental groups produced higher levels of IgM serum titres than the control group in the different feeding cycles. Moreover, the activity of serum ACP, AKP, SOD, and LZM, and the expression of inflammatory factors were significantly increased in the experimental groups compared with the control group. The results of qRT-PCR analysis showed that the transcription levels of the IL-10, IL-1β, IFN-γ and TNF-α genes in heart, liver, spleen and kidney tissues were significantly enhanced by adjuvant treatment, indicating that the addition of adjuvants can significantly promote the body's inflammatory response. In addition, the phagocytic activity of leukocytes in each adjuvant treated group was significantly enhanced compared to that in the groups without adjuvant. After the A. veronii challenge, the survival rate of all adjuvant-treated groups was significantly higher than that of the control group, and the 50% flagellin adjuvant group had the highest rate of 78.37%. Overall, our findings strongly indicate that adjuvants not only significantly improve the body's immunity, but also exhibit a strong anti-infection ability. Importantly, this work provides a new perspective for the prevention and control of aquaculture diseases.
Collapse
Affiliation(s)
- Haichao Song
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Siqi Zhang
- Dunhua Agricultural and Rural Bureau, Dunhua, Jilin, China
| | - Bintong Yang
- Marine College, Shandong University, Weihai, China
| | - Yanhui Liu
- Jilin Academy of Sciences, Changchun, Jilin, China
| | | | - Ying Li
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Aidong Qian
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhonghua Yuan
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Bo Cong
- Institute of Special Animal and Plant Sciences of CAAS, Changchun, Jilin, China.
| | - Xiaofeng Shan
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
3
|
Pan J, Cui Z. Self-Assembled Nanoparticles: Exciting Platforms for Vaccination. Biotechnol J 2020; 15:e2000087. [PMID: 33411412 DOI: 10.1002/biot.202000087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/25/2020] [Indexed: 12/14/2022]
Abstract
Vaccination is successfully advanced to control several fatal diseases and improve human life expectancy. However, additional innovations are required in this field because there are no effective vaccines to prevent some infectious diseases. The shift from the attenuated or inactivated pathogens to safer but less immunogenic protein or peptide antigens has led to a search for effective antigen delivery carriers that can function as both antigen vehicles and intrinsic adjuvants. Among these carriers, self-assembled nanoparticles (SANPs) have shown great potential to be the best representative. For the nanoscale and multiple presentation of antigens, with accurate control over size, geometry, and functionality, these nanoparticles are assembled spontaneously and mimic pathogens, resulting in enhanced antigen presentation and increased cellular and humoral immunity responses. In addition, they may be applied through needle-free routes due to their adhesive ability, which gives them a great future in vaccination applications. This review provides an overview of various SANPs and their applications in prophylactic vaccines.
Collapse
Affiliation(s)
- Jingdi Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Maegawa K, Sugita S, Arasaki Y, Nerome R, Nerome K. Interleukin 12-containing influenza virus-like-particle vaccine elevate its protective activity against heterotypic influenza virus infection. Heliyon 2020; 6:e04543. [PMID: 32802975 PMCID: PMC7417893 DOI: 10.1016/j.heliyon.2020.e04543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/03/2020] [Accepted: 07/21/2020] [Indexed: 11/20/2022] Open
Abstract
To produce monovalent and bivalent influenza vaccines composed of virus-like particles (VLPs) containing hemagglutinin (HA), we generated four recombinant Baculoviruses derived from Bombyx mori nuclear polyhedrosis virus (BmNPV) and Autographa california nuclear polyhedrosis virus (AcNPV). Monovalent Fukushima (A/tufted duck/Fukushima/16/2011 [H5N1]) (FkH5) and Anhui (A/Anhui/1/2013 [H7N9]) (AnH7) VLP influenza vaccines were produced in silkworm pupae infected with FkH5-BmNPV or AnH7-BmNPV. To produce a bivalent FkH5 and AnH7 vaccine, the pupae were simultaneously inoculated with FkH5-BmNPV and AnH7-BmNPV. Then, interleukin (IL)-containing bivalent vaccines were produced by Eri silkworm pupae following triple infection with FkH5-AcNPV, AnH7-AcNPV, and IL-12-AcNPV. Fluorescent antibody tests in Sf9 cells triple-infected with FkH5-AcNPV, AnH7-AcNPV, and IL-12-AcNPV showed coexpression of FkH5, AnH7, and IL-12 antigens, suggesting the presence of VLPs containing all three antigens. We then performed competitive hemagglutination inhibition (CHI) tests to calculate the VLP vaccine constituents. Inoculation with two recombinant viruses led to the production of bivalent vaccines containing very similar amounts of the H5 and H7 antigens, suggesting that our dual infection system can be used to produce bivalent VLP vaccines. Immunisation of mice with our developed monovalent and bivalent VLP vaccines induced the production of HI antibody, which protected against a sublethal dose of influenza virus. These IL-12-containing vaccines tended to display increased protection against hetero-subtype influenza viruses.
Collapse
Affiliation(s)
- Kenichi Maegawa
- The Institute of Biological Resources, 893-2, Nakayama, Nago-shi, Okinawa 905-0004, Japan
| | - Shigeo Sugita
- Equine Research Institute, Japan Racing Association, 1400-4, Shiba, Shimotsuke-shi, Tochigi 329-0412, Japan
| | - Youta Arasaki
- The Institute of Biological Resources, 893-2, Nakayama, Nago-shi, Okinawa 905-0004, Japan
| | - Reiko Nerome
- The Institute of Biological Resources, 893-2, Nakayama, Nago-shi, Okinawa 905-0004, Japan
| | - Kuniaki Nerome
- The Institute of Biological Resources, 893-2, Nakayama, Nago-shi, Okinawa 905-0004, Japan
- Corresponding author.
| |
Collapse
|
5
|
Tu L, Sun X, Yang L, Zhang T, Zhang X, Li X, Dong B, Liu Y, Yang M, Wang L, Yu Y. TGF-β2 interfering oligonucleotides used as adjuvants for microbial vaccines. J Leukoc Biol 2020; 108:1673-1692. [PMID: 32794350 DOI: 10.1002/jlb.5a0420-491r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/28/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022] Open
Abstract
The success of using immune checkpoint inhibitors to treat cancers implies that inhibiting an immunosuppressive cytokine, such as TGF-β2, could be a strategy to develop novel adjuvants for microbial vaccines. To develop nucleic acid based TGF-β2 inhibitors, we designed three antisense oligonucleotides, designated as TIO1, TIO2, and TIO3, targeting the conserve regions identical in human and mouse TGF-β2 mRNA 3'-untranslated region. In cultured immune cells, TIO3 and TIO1 significantly reduced the TGF-β2 mRNA expression and protein production. In mice, the TIO3 and TIO1, when formulated in various microbial vaccines, significantly enhanced the antibody response to the vaccines, and the TIO3-adjuvanted influenza virus vaccine induced effective protection against the influenza virus challenge. In the immunized mice, TIO3 formulated in microbial vaccines dramatically reduced surface-bound TGF-β2 expression on CD4+ T cells and CD19+ B cells in the lymph node (LN) cells and spleen cells; up-regulated the expression of CD40, CD80, CD86, and MHC II molecules on CD19+ B cells and CD11c+ dendritic cells; and promoted IFN-γ production in CD4+ T cells and CD8+ T cells in the LN cells. Overall, TIO3 or TIO1 could be used as a novel type of adjuvant for facilitating the microbial vaccines to elicit more vigorous and persistent antibody response by interfering with TGF-β2 expression.
Collapse
Affiliation(s)
- Liqun Tu
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin, China
| | - Xiaomeng Sun
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin, China
| | - Lei Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin, China
| | - Tiefeng Zhang
- Department of Molecular Biology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin, China
| | - Xian Zhang
- Department of Molecular Biology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin, China
| | - Xin Li
- Department of Molecular Biology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin, China
| | - Boqi Dong
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin, China
| | - Ye Liu
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin, China
| | - Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin, China
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin, China
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Calzas C, Chevalier C. Innovative Mucosal Vaccine Formulations Against Influenza A Virus Infections. Front Immunol 2019; 10:1605. [PMID: 31379823 PMCID: PMC6650573 DOI: 10.3389/fimmu.2019.01605] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/27/2019] [Indexed: 12/11/2022] Open
Abstract
Despite efforts made to develop efficient preventive strategies, infections with influenza A viruses (IAV) continue to cause serious clinical and economic problems. Current licensed human vaccines are mainly inactivated whole virus particles or split-virion administered via the parenteral route. These vaccines provide incomplete protection against IAV in high-risk groups and are poorly/not effective against the constant antigenic drift/shift occurring in circulating strains. Advances in mucosal vaccinology and in the understanding of the protective anti-influenza immune mechanisms suggest that intranasal immunization is a promising strategy to fight against IAV. To date, human mucosal anti-influenza vaccines consist of live attenuated strains administered intranasally, which elicit higher local humoral and cellular immune responses than conventional parenteral vaccines. However, because of inconsistent protective efficacy and safety concerns regarding the use of live viral strains, new vaccine candidates are urgently needed. To prime and induce potent and long-lived protective immune responses, mucosal vaccine formulations need to ensure the immunoavailability and the immunostimulating capacity of the vaccine antigen(s) at the mucosal surfaces, while being minimally reactogenic/toxic. The purpose of this review is to compile innovative delivery/adjuvant systems tested for intranasal administration of inactivated influenza vaccines, including micro/nanosized particulate carriers such as lipid-based particles, virus-like particles and polymers associated or not with immunopotentiatory molecules including microorganism-derived toxins, Toll-like receptor ligands and cytokines. The capacity of these vaccines to trigger specific mucosal and systemic humoral and cellular responses against IAV and their (cross)-protective potential are considered.
Collapse
Affiliation(s)
- Cynthia Calzas
- VIM, UR892, Equipe Virus Influenza, INRA, University PARIS-SACLAY, Jouy-en-Josas, France
| | - Christophe Chevalier
- VIM, UR892, Equipe Virus Influenza, INRA, University PARIS-SACLAY, Jouy-en-Josas, France
| |
Collapse
|
7
|
Wu H, Bao Y, Wang X, Zhou D, Wu W. Alkyl polyglycoside, a highly promising adjuvant in intranasal split influenza vaccines. Hum Vaccin Immunother 2017; 13:1-9. [PMID: 28129034 DOI: 10.1080/21645515.2016.1278098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Influenza viral infections are significant global public health concerns due to the morbidity and mortality associated with acute respiratory disease, secondary complications, and pandemic threats; thus, continuous efforts have been made to develop potent influenza vaccines. In this study, 3 different mucosal adjuvants-alkyl polyglycoside (APG), gellan gum, and chitosan (CS)-were evaluated for their efficacy in intranasal A/H1N1 or B split influenza vaccines administered to BALB/c mice. Protective immunity was monitored by serum analysis for IgG, hemagglutination inhibition (HI), and neutralizing antibody levels, as well as mucosal IgA levels in nasal and pulmonary lavage fluids. Survival, body weight, lung viral titer, and pulmonary immunopathology were also examined following lethal influenza challenge. Notably, all adjuvants amplified the IgG and IgA immune responses (not detected in immunization of influenza B) and increased survival rate compared with controls administered adjuvant-free intranasal vaccines. Alternatively, intramuscular immunization stimulated IgG production, but had no effect on IgA levels. Our collective analysis identified that APG was the most effective intranasal adjuvant, as all mice survived influenza challenge with limited body weight loss, viral titer, and pulmonary pathology, similar to those observed with intramuscular vaccination. This evidence supports that APG can elicit both systemic and mucosal immunity, and may be an effective adjuvant in intranasal split influenza A/H1N1 and B vaccines.
Collapse
Affiliation(s)
- Hui Wu
- a National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry , Shanghai , China
| | - Yuanyuan Bao
- a National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry , Shanghai , China
| | - Xiang Wang
- b Vaccine Research Center, Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai , China
| | - Dongming Zhou
- b Vaccine Research Center, Institut Pasteur of Shanghai, Chinese Academy of Sciences , Shanghai , China
| | - Wenzhe Wu
- a National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry , Shanghai , China
| |
Collapse
|
8
|
Soema PC, Kompier R, Amorij JP, Kersten GFA. Current and next generation influenza vaccines: Formulation and production strategies. Eur J Pharm Biopharm 2015; 94:251-63. [PMID: 26047796 DOI: 10.1016/j.ejpb.2015.05.023] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
Vaccination is the most effective method to prevent influenza infection. However, current influenza vaccines have several limitations. Relatively long production times, limited vaccine capacity, moderate efficacy in certain populations and lack of cross-reactivity are important issues that need to be addressed. We give an overview of the current status and novel developments in the landscape of influenza vaccines from an interdisciplinary point of view. The feasibility of novel vaccine concepts not only depends on immunological or clinical outcomes, but also depends on biotechnological aspects, such as formulation and production methods, which are frequently overlooked. Furthermore, the next generation of influenza vaccines is addressed, which hopefully will bring cross-reactive influenza vaccines. These developments indicate that an exciting future lies ahead in the influenza vaccine field.
Collapse
Affiliation(s)
- Peter C Soema
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands; Division of Drug Delivery and Technology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | - Ronald Kompier
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands; FluConsult, Noordwijk, The Netherlands
| | - Jean-Pierre Amorij
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands.
| | - Gideon F A Kersten
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands; Division of Drug Delivery and Technology, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| |
Collapse
|
9
|
Newsted D, Fallahi F, Golshani A, Azizi A. Advances and challenges in mucosal adjuvant technology. Vaccine 2015; 33:2399-405. [PMID: 25865473 DOI: 10.1016/j.vaccine.2015.03.096] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/17/2015] [Accepted: 03/26/2015] [Indexed: 12/23/2022]
Abstract
Adjuvants play attractive roles in enhancement of immune response during vaccination; however, due to several challenges, only a limited number of adjuvants are licensed by health authorities. The lack of an effective mucosal adjuvant is even more significant as none of the licensed adjuvants revealed a strong enhancement in immune system after mucosal administration. Over the past two decades, several mucosal adjuvants have been developed to deliver antigens to the target cells in the mucosal immune system and increase specific immune responses. However, the safety and efficacy of these adjuvants for testing in human trials is still an important issue, requiring further study. In this article, we briefly review the challenges associated with most common mucosal adjuvants and discuss potential strategies for targeting the mucosal immune system.
Collapse
Affiliation(s)
- Daniel Newsted
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON, Canada
| | | | - Ashkan Golshani
- Department of Biology, Carleton University, 1125 Colonel by Drive, Ottawa, ON, Canada
| | - Ali Azizi
- Department of Pathology and Laboratory Medicine, University of Ottawa, 451 Smyth Rd, Ottawa, ON, Canada; Department of Biotechnology, University of Ontario Institute of Technology, Toronto, ON, Canada.
| |
Collapse
|