1
|
Liu Y, Xu Y, Xu H, Amilijiang W, Wang H. Developing and applying a virus-induced gene silencing system for functional genomics in walnut (Juglans regia L.) mediated by tobacco rattle virus. Gene 2025; 936:149087. [PMID: 39542283 DOI: 10.1016/j.gene.2024.149087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Walnut (Juglans regia L.) is a high-value tree species planted worldwide, but the incomplete less developed genetic transformation system limits its gene function analysis. In this study, virus-induced gene silencing (VIGS) mediated by tobacco rattle virus (TRV) technology was applied to walnut seedlings to degrade the transcript of target gene. Different infiltration methods were used to explore the effects of infection mode, Agrobacterium cell density, silencing fragment length, and walnut cultivars. The results showed that spray infiltration of seedlings resulted in a photobleaching phenotype of the whole plant. Leaf injection was a more effective way of infiltration. The optimal combination was the Agrobacterium cell density at OD600 = 1.1 with target fragment = 255 bp for the treatment of walnut early-fruiting cultivar 'Xiangling.' This combination can reach up to 48 % of gene silencing efficiency. Based on this optimized VIGS system, silencing a walnut chlorophyll synthesis-related gene, JrPOR (Protochlorophyllide reductase), to further validate the system's effect. The results showed that the expression of JrPOR was significantly repressed, and the chlorophyll level of the silenced plants was significantly decreased compared with the control. The above results indicate that the walnut TRV-VIGS system has been successfully established and can be used for reverse genetic studies, providing an option for verifying gene function in walnut.
Collapse
Affiliation(s)
- Yaoxin Liu
- Huazhong Agriculture University College of Horticulture and Forestry Sciences, Wuhan 430070, China
| | - Yongjie Xu
- Hubei Academy of Forestry Science, Woody Grain and Oil Forest Engineering Technology Research Center of Hubei Province, Wuhan 430075, China
| | - Haodong Xu
- Huazhong Agriculture University College of Horticulture and Forestry Sciences, Wuhan 430070, China
| | - Wulamurusuli Amilijiang
- Huazhong Agriculture University College of Horticulture and Forestry Sciences, Wuhan 430070, China
| | - Hua Wang
- Huazhong Agriculture University College of Horticulture and Forestry Sciences, Wuhan 430070, China.
| |
Collapse
|
2
|
Pandey V, Srivastava A, Ali A, Gupta R, Shahid MS, Gaur RK. Predicting candidate miRNAs for targeting begomovirus to induce sequence-specific gene silencing in chilli plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1460540. [PMID: 39376242 PMCID: PMC11456425 DOI: 10.3389/fpls.2024.1460540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024]
Abstract
The begomoviruses are the most economically damaging pathogens that pose a serious risk to India's chilli crop and have been associated with the chilli leaf curl disease (ChiLCD). Chilli cultivars infected with begomovirus have suffered significant decreases in biomass output, negatively impacting their economic characteristics. We used the C-mii tool to predict twenty plant miRNA families from SRA chilli transcriptome data (retrieved from the NCBI and GenBank databases). Five target prediction algorithms, i.e., C-mii, miRanda, psRNATarget, RNAhybrid, and RNA22, were applied to identify and evaluate chilli miRNAs (microRNAs) as potential therapeutic targets against ten begomoviruses that cause ChiLCD. In this study, the top five chilli miRNAs which were identified by all five algorithms were thoroughly examined. Moreover, we also noted strong complementarities between these miRNAs and the AC1 (REP), AC2 (TrAP) and betaC1 genes. Three computational approaches (miRanda, RNA22, and psRNATarget) identified the consensus hybridization site for CA-miR838 at locus 2052. The top predicted targets within ORFs were indicated by CA-miR2673 (a and b). Through Circos algorithm, we identified novel targets and create the miRNA-mRNA interaction network using the R program. Furthermore, free energy calculation of the miRNA-target duplex revealed that thermodynamic stability was optimal for miR838 and miR2673 (a and b). To the best of our knowledge, this was the first instance of miRNA being predicted from chilli transcriptome information that had not been reported in miRbase previously. Consequently, the anticipated biological results substantially assist in developing chilli plants resistant to ChiLCD.
Collapse
Affiliation(s)
- Vineeta Pandey
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Aarshi Srivastava
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Akhtar Ali
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| | - Ramwant Gupta
- Department of Botany, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-khoud, Oman
| | - Rajarshi Kumar Gaur
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
3
|
Bhattacharjee B, Hallan V. Geminivirus-Derived Vectors as Tools for Functional Genomics. Front Microbiol 2022; 13:799345. [PMID: 35432267 PMCID: PMC9010885 DOI: 10.3389/fmicb.2022.799345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
A persistent issue in the agricultural sector worldwide is the intensive damage caused to crops by the geminivirus family of viruses. The diverse types of viruses, rapid virus evolution rate, and broad host range make this group of viruses one of the most devastating in nature, leading to millions of dollars' worth of crop damage. Geminiviruses have a small genome and can be either monopartite or bipartite, with or without satellites. Their ability to independently replicate within the plant without integration into the host genome and the relatively easy handling make them excellent candidates for plant bioengineering. This aspect is of great importance as geminiviruses can act as natural nanoparticles in plants which can be utilized for a plethora of functions ranging from vaccine development systems to geminivirus-induced gene silencing (GIGS), through deconstructed viral vectors. Thus, the investigation of these plant viruses is pertinent to understanding their crucial roles in nature and subsequently utilizing them as beneficial tools in functional genomics. This review, therefore, highlights some of the characteristics of these viruses that can be deemed significant and the subsequent successful case studies for exploitation of these potentially significant pathogens for role mining in functional biology.
Collapse
Affiliation(s)
- Bipasha Bhattacharjee
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Plant Virology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vipin Hallan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Plant Virology Laboratory, Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
4
|
Paudel L, Kerr S, Prentis P, Tanurdžić M, Papanicolaou A, Plett JM, Cazzonelli CI. Horticultural innovation by viral-induced gene regulation of carotenogenesis. HORTICULTURE RESEARCH 2022; 9:uhab008. [PMID: 35043183 PMCID: PMC8769041 DOI: 10.1093/hr/uhab008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 06/14/2023]
Abstract
Multipartite viral vectors provide a simple, inexpensive and effective biotechnological tool to transiently manipulate (i.e. reduce or increase) gene expression in planta and characterise the function of genetic traits. The development of virus-induced gene regulation (VIGR) systems usually involve the targeted silencing or overexpression of genes involved in pigment biosynthesis or degradation in plastids, thereby providing rapid visual assessment of success in establishing RNA- or DNA-based VIGR systems in planta. Carotenoids pigments provide plant tissues with an array of yellow, orange, and pinkish-red colours. VIGR-induced transient manipulation of carotenoid-related gene expression has advanced our understanding of carotenoid biosynthesis, regulation, accumulation and degradation, as well as plastid signalling processes. In this review, we describe mechanisms of VIGR, the importance of carotenoids as visual markers of technology development, and knowledge gained through manipulating carotenogenesis in model plants as well as horticultural crops not always amenable to transgenic approaches. We outline how VIGR can be utilised in plants to fast-track the characterisation of gene function(s), accelerate fruit tree breeding programs, edit genomes, and biofortify plant products enriched in carotenoid micronutrients for horticultural innovation.
Collapse
Affiliation(s)
- Lucky Paudel
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Stephanie Kerr
- Centre for Agriculture and the Bioeconomy (CAB), Queensland University of Technology, 2 George Street, Brisbane City, QLD 4000, Australia
- School of Biology and Environmental Sciences, Faculty of Science,
Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Peter Prentis
- Centre for Agriculture and the Bioeconomy (CAB), Queensland University of Technology, 2 George Street, Brisbane City, QLD 4000, Australia
- School of Biology and Environmental Sciences, Faculty of Science,
Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Miloš Tanurdžić
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| |
Collapse
|
5
|
Sahu AK, Sanan-Mishra N. Interaction between βC1 of satellite and coat protein of Chili leaf curl virus plays a crucial role in suppression of host RNA silencing. Appl Microbiol Biotechnol 2021; 105:8329-8342. [PMID: 34651252 DOI: 10.1007/s00253-021-11624-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
The monopartite Chili leaf curl virus (ChiLCV) and its β-satellite (ChiLCB) have been found to co-exist in infected plants. The ability of βC1 protein to suppress RNA silencing was investigated using an in-house developed in-planta reversal of silencing assay, using Nicotiana tabacum lines harboring green fluorescent protein (GFP) silenced by short hairpin GFP (ShGFP). Transient expression of recombinant βC1 complemented and increased the suppressor activity of ChiLCV coat protein (CP), and this was confirmed by molecular analysis. In silico analysis followed by a yeast two-hybrid screen-identified ChiLCV-CP as the interacting partner of the ChiLCB-βC1 protein. Subcellular localization through confocal analysis revealed that when βC1 and ChiLCV-CP were co-present, the fluorescence was localized in the cytoplasm indicating that nuclear localization of both proteins was obstructed. The cytoplasmic compartmentalization of the two viral suppressors of RNA silencing may be responsible for the enhanced suppression of the host gene silencing. This study presents evidence on the interaction of ChiLCV-CP and βC1 proteins and indicates that ChiLCB may support the ChiLCV in overcoming host gene silencing to cause Chili leaf curl disease. KEY POINTS: • CP of ChiLCV and βC1 of ChiLCB contain RNA silencing suppression activity • The RNA silencing suppression activity of ChiLCB-βC1 complements that of ChiLCV-CP • There is a direct interaction between ChiLCB-βC1 and ChiLCV-CP.
Collapse
Affiliation(s)
- Anurag Kumar Sahu
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
6
|
Veluthambi K, Sunitha S. Targets and Mechanisms of Geminivirus Silencing Suppressor Protein AC2. Front Microbiol 2021; 12:645419. [PMID: 33897657 PMCID: PMC8062710 DOI: 10.3389/fmicb.2021.645419] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Geminiviruses are plant DNA viruses that infect a wide range of plant species and cause significant losses to economically important food and fiber crops. The single-stranded geminiviral genome encodes a small number of proteins which act in an orchestrated manner to infect the host. The fewer proteins encoded by the virus are multifunctional, a mechanism uniquely evolved by the viruses to balance the genome-constraint. The host-mediated resistance against incoming virus includes post-transcriptional gene silencing, transcriptional gene silencing, and expression of defense responsive genes and other cellular regulatory genes. The pathogenicity property of a geminiviral protein is linked to its ability to suppress the host-mediated defense mechanism. This review discusses what is currently known about the targets and mechanism of the viral suppressor AC2/AL2/transcriptional activator protein (TrAP) and explore the biotechnological applications of AC2.
Collapse
Affiliation(s)
- Karuppannan Veluthambi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Sukumaran Sunitha
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
7
|
Sanan-Mishra N, Abdul Kader Jailani A, Mandal B, Mukherjee SK. Secondary siRNAs in Plants: Biosynthesis, Various Functions, and Applications in Virology. FRONTIERS IN PLANT SCIENCE 2021; 12:610283. [PMID: 33737942 PMCID: PMC7960677 DOI: 10.3389/fpls.2021.610283] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/18/2021] [Indexed: 05/13/2023]
Abstract
The major components of RNA silencing include both transitive and systemic small RNAs, which are technically called secondary sRNAs. Double-stranded RNAs trigger systemic silencing pathways to negatively regulate gene expression. The secondary siRNAs generated as a result of transitive silencing also play a substantial role in gene silencing especially in antiviral defense. In this review, we first describe the discovery and pathways of transitivity with emphasis on RNA-dependent RNA polymerases followed by description on the short range and systemic spread of silencing. We also provide an in-depth view on the various size classes of secondary siRNAs and their different roles in RNA silencing including their categorization based on their biogenesis. The other regulatory roles of secondary siRNAs in transgene silencing, virus-induced gene silencing, transitivity, and trans-species transfer have also been detailed. The possible implications and applications of systemic silencing and the different gene silencing tools developed are also described. The details on mobility and roles of secondary siRNAs derived from viral genome in plant defense against the respective viruses are presented. This entails the description of other compatible plant-virus interactions and the corresponding small RNAs that determine recovery from disease symptoms, exclusion of viruses from shoot meristems, and natural resistance. The last section presents an overview on the usefulness of RNA silencing for management of viral infections in crop plants.
Collapse
Affiliation(s)
- Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - A. Abdul Kader Jailani
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Bikash Mandal
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Sunil K. Mukherjee
- Advanced Center for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Sunil K. Mukherjee,
| |
Collapse
|
8
|
Xiao Z, Xing M, Liu X, Fang Z, Yang L, Zhang Y, Wang Y, Zhuang M, Lv H. An efficient virus-induced gene silencing (VIGS) system for functional genomics in Brassicas using a cabbage leaf curl virus (CaLCuV)-based vector. PLANTA 2020; 252:42. [PMID: 32870402 DOI: 10.1007/s00425-020-03454-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
CaLCuV-based VIGS effectively works in cabbage and contributes to efficient functional genomics research in Brassica crop species. Virus-induced gene silencing (VIGS), a posttranscriptional gene silencing method, is an effective technique for analysing the functions of genes in plants. However, no VIGS vectors have been available for Brassica oleracea until now. Here, tobacco rattle virus (TRV), pTYs and cabbage leaf curl virus (CaLCuV) gene-silencing vectors (PCVA/PCVB) were chosen to improve the VIGS system in cabbage using the phytoene desaturase (PDS) gene as an efficient visual indicator of VIGS. We successfully silenced the expression of PDS and observed photobleaching phenomena in cabbage in response to pTYs and CaLCuV, with the latter being more easy to operate and less expensive. The parameters potentially affecting the silencing efficiency of VIGS by CaLCuV in cabbage, including the targeting fragment strategy, inoculation method and incubation temperature, were then compared. The optimized CaLCuV-based VIGS system involves the following: an approximately 500 bp insert sequence, an Agrobacterium OD600 of 1.0, use of the vacuum osmosis method applied at the bud stage, and an incubation temperature of 22 °C. Using these parameters, we achieved a stable silencing efficiency of 65%. To further test the effectiveness of the system, we selected the Mg-chelatase H subunit (ChlH) gene in cabbage and knocked down its expression, and we observed yellow leaves, as expected. We successfully applied the CaLCuV-based VIGS system to two other representative Brassica crop species, B. rapa and B. nigra, and thus expanded the application scope of this system. Our VIGS system described here will contribute to efficient functional genomics research in Brassica crop species.
Collapse
Affiliation(s)
- Zhiliang Xiao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Miaomiao Xing
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Xing Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China.
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China.
| |
Collapse
|
9
|
Rana VS, Popli S, Saurav GK, Raina HS, Jamwal R, Chaubey R, Ramamurthy VV, Natarajan K, Rajagopal R. Implication of the Whitefly, Bemisia tabaci, Collagen Protein in Begomoviruses Acquisition and Transmission. PHYTOPATHOLOGY 2019; 109:1481-1493. [PMID: 31017531 DOI: 10.1094/phyto-03-18-0082-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Begomoviruses are the largest group of plant viruses transmitted exclusively by the whitefly, Bemisia tabaci (Gennadius), in a persistent, circulative, and nonpropagative manner. Begomoviruses in association with B. tabaci cause enormous loss to world agricultural crops. Transmission, retention, and circulation of begomovirus in B. tabaci are facilitated by its interaction with several proteins of the insect and its endosymbionts. However, very few such proteins have been identified from B. tabaci that are involved in this specific interaction. Here, we have performed yeast two-hybrid assay between B. tabaci complementary DNA expression library and the coat protein (CP) of tomato leaf curl New Delhi virus (ToLCNDV) and cotton leaf curl Rajasthan virus (CLCuV). Collagen was the common protein found to be interacting with both of the viruses. The collagen protein was found to be localized in gut layers of B. tabaci. Additionally, pull-down and dot-blot assays confirmed the association of endogenous collagen with ToLCNDV CP. Immunolocalization analysis also showed colocalization of ToLCNDV particles and collagen within insect gut. Finally, B. tabaci fed on anticollagen antibody and exhibited ∼46% reduction in ToLCNDV transmission, suggesting a supportive role for collagen in virus transmission.
Collapse
Affiliation(s)
- Vipin Singh Rana
- 1Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India 110007
- 2Department of Veterinary Medicine, University of Maryland, College Park, MD, U.S.A
| | - Sonam Popli
- 1Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India 110007
- 3Department of Medical Microbiology and Immunology, College of Medicine, University of Toledo, Toledo, OH, U.S.A
| | - Gunjan Kumar Saurav
- 1Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India 110007
| | - Harpreet Singh Raina
- 1Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India 110007
- 4Department of Zoology, Shri Guru Tegh Bahadur Khalsa College, University of Delhi, Delhi, India 110007
| | - Rohit Jamwal
- 1Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India 110007
| | - Rahul Chaubey
- 5Division of Entomology, Indian Agricultural Research Institute, New Delhi, India 110012
| | - V V Ramamurthy
- 5Division of Entomology, Indian Agricultural Research Institute, New Delhi, India 110012
| | - K Natarajan
- 6Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India 110007
| | - Raman Rajagopal
- 1Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi, India 110007
| |
Collapse
|
10
|
Ramesh SV, Sahu PP, Prasad M, Praveen S, Pappu HR. Geminiviruses and Plant Hosts: A Closer Examination of the Molecular Arms Race. Viruses 2017; 9:E256. [PMID: 28914771 PMCID: PMC5618022 DOI: 10.3390/v9090256] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/02/2017] [Accepted: 09/06/2017] [Indexed: 11/24/2022] Open
Abstract
Geminiviruses are plant-infecting viruses characterized by a single-stranded DNA (ssDNA) genome. Geminivirus-derived proteins are multifunctional and effective regulators in modulating the host cellular processes resulting in successful infection. Virus-host interactions result in changes in host gene expression patterns, reprogram plant signaling controls, disrupt central cellular metabolic pathways, impair plant's defense system, and effectively evade RNA silencing response leading to host susceptibility. This review summarizes what is known about the cellular processes in the continuing tug of war between geminiviruses and their plant hosts at the molecular level. In addition, implications for engineered resistance to geminivirus infection in the context of a greater understanding of the molecular processes are also discussed. Finally, the prospect of employing geminivirus-based vectors in plant genome engineering and the emergence of powerful genome editing tools to confer geminivirus resistance are highlighted to complete the perspective on geminivirus-plant molecular interactions.
Collapse
Affiliation(s)
- Shunmugiah V Ramesh
- ICAR-Indian Institute of Soybean Research, Indian Council of Agricultural Research, Indore 452001, India.
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA.
| | - Pranav P Sahu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi110067, India.
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi110067, India.
| | - Shelly Praveen
- Division of Plant Pathology, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India.
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA.
| |
Collapse
|
11
|
Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV, Sánchez-León S, Baltes NJ, Starker C, Barro F, Gao C, Voytas DF. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:1251-1262. [PMID: 27943461 PMCID: PMC8439346 DOI: 10.1111/tpj.13446] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/17/2016] [Accepted: 11/24/2016] [Indexed: 05/17/2023]
Abstract
The ability to edit plant genomes through gene targeting (GT) requires efficient methods to deliver both sequence-specific nucleases (SSNs) and repair templates to plant cells. This is typically achieved using Agrobacterium T-DNA, biolistics or by stably integrating nuclease-encoding cassettes and repair templates into the plant genome. In dicotyledonous plants, such as Nicotinana tabacum (tobacco) and Solanum lycopersicum (tomato), greater than 10-fold enhancements in GT frequencies have been achieved using DNA virus-based replicons. These replicons transiently amplify to high copy numbers in plant cells to deliver abundant SSNs and repair templates to achieve targeted gene modification. In the present work, we developed a replicon-based system for genome engineering of cereal crops using a deconstructed version of the wheat dwarf virus (WDV). In wheat cells, the replicons achieve a 110-fold increase in expression of a reporter gene relative to non-replicating controls. Furthermore, replicons carrying CRISPR/Cas9 nucleases and repair templates achieved GT at an endogenous ubiquitin locus at frequencies 12-fold greater than non-viral delivery methods. The use of a strong promoter to express Cas9 was critical to attain these high GT frequencies. We also demonstrate gene-targeted integration by homologous recombination (HR) in all three of the homoeoalleles (A, B and D) of the hexaploid wheat genome, and we show that with the WDV replicons, multiplexed GT within the same wheat cell can be achieved at frequencies of ~1%. In conclusion, high frequencies of GT using WDV-based DNA replicons will make it possible to edit complex cereal genomes without the need to integrate GT reagents into the genome.
Collapse
Affiliation(s)
- Javier Gil-Humanes
- Department of Genetics, Cell Biology, and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Calyxt Inc., New Brighton, MN 55112, USA
| | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Liang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiwei Shan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Carmen V. Ozuna
- Institute for Sustainable Agriculture, CSIC, E-14080, Córdoba, Spain
| | | | - Nicholas J. Baltes
- Department of Genetics, Cell Biology, and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Calyxt Inc., New Brighton, MN 55112, USA
| | - Colby Starker
- Department of Genetics, Cell Biology, and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Francisco Barro
- Institute for Sustainable Agriculture, CSIC, E-14080, Córdoba, Spain
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology, and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Jailani AAK, Kumar A, Mandal B, Sivasudha T, Roy A. Agroinfection of tobacco by croton yellow vein mosaic virus and designing of a replicon vector for expression of foreign gene in plant. Virusdisease 2016; 27:277-286. [PMID: 28466040 PMCID: PMC5394710 DOI: 10.1007/s13337-016-0326-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 01/18/2023] Open
Abstract
Croton yellow vein mosaic virus (CYVMV, genus Begomovirus family Geminiviridae) is a proliferating begomovirus in the Indian sub-continent. The infectious constructs in binary vector was developed against the CYVMV genome and its associated betasatellite. Agroinoculation of the genomic construct of CYVMV produced leaf curl symptoms alone in three species of tobacco, Nicotiana tabacum, N. benthamiana and N. glutinosa. Co-inoculation of betasatellite enhanced the severity of the disease and reduced the incubation time. Based on the infectious clone, a replicon vector pCro, with only the ability to replicate inside the plant was developed. In pCro vector, CP and V2 ORFs from genome of CYVMV was deleted, which resulted localised replication of the molecule with no visible symptoms. Besides the partial CYVMV genome, pCro also has a cassette containing a double 35S promoter, multiple cloning sites and a NOS terminator to overexpress any foreign protein in plant. Episomal release of the replicon from the binary vector backbone after agroinoculation was detected by PCR. A GFP gene was cloned in pCro vector (pCro-GFP) and agroinoculated to N. tabacum resulted in localized expression of GFP at 5 dpi. The CYVMV replicon vector will be a useful tool for studying functional genomics, vaccine expression and gene silencing in plant.
Collapse
Affiliation(s)
- A. Abdul Kader Jailani
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, 620 024 Tamil Nadu India
| | - Alok Kumar
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - T. Sivasudha
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, 620 024 Tamil Nadu India
| | - Anirban Roy
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
13
|
Rana VS, Popli S, Saurav GK, Raina HS, Chaubey R, Ramamurthy VV, Rajagopal R. A Bemisia tabaci midgut protein interacts with begomoviruses and plays a role in virus transmission. Cell Microbiol 2015; 18:663-78. [PMID: 26488331 DOI: 10.1111/cmi.12538] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 10/03/2015] [Accepted: 10/19/2015] [Indexed: 11/30/2022]
Abstract
Begomoviruses are a major group of plant viruses, transmitted exclusively by Bemisia tabaci (Gennadius) in a persistent circulative non-propagative manner. The information regarding molecular and cellular basis underlying Begomovirus - whitefly interaction is very scarce. Evidences have suggested that the insect gut possesses some crucial protein receptors that allow specific entry of virus into the insect haemolymph. We have performed yeast two hybrid gut cDNA expression library screening against coat protein of Tomato leaf curl New Delhi virus (ToLCV) and Cotton leaf curl Rajasthan virus (CLCuV) as bait. Midgut protein (MGP) was the common protein found interacting with both ToLCV and CLCuV. MGP was localized in whole mount B. tabaci as well as in dissected guts through confocal microscopy. Pull down and dot blot assays confirmed in vitro interaction between ToLCV/CLCuV coat protein and MGP. Immunolocalization analysis also showed colocalization of ToLCV/CLCuV particles and MGP within insect's gut. Finally, anti-MGP antibody fed B. tabaci, exhibited 70% reduction in ToLCV transmission, suggesting a supportive role for MGP in virus transmission.
Collapse
Affiliation(s)
- Vipin Singh Rana
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Sonam Popli
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | | | | | - Rahul Chaubey
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - V V Ramamurthy
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - R Rajagopal
- Department of Zoology, University of Delhi, Delhi, 110007, India
| |
Collapse
|
14
|
Čermák T, Baltes NJ, Čegan R, Zhang Y, Voytas DF. High-frequency, precise modification of the tomato genome. Genome Biol 2015; 16:232. [PMID: 26541286 PMCID: PMC4635538 DOI: 10.1186/s13059-015-0796-9] [Citation(s) in RCA: 344] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 10/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The use of homologous recombination to precisely modify plant genomes has been challenging, due to the lack of efficient methods for delivering DNA repair templates to plant cells. Even with the advent of sequence-specific nucleases, which stimulate homologous recombination at predefined genomic sites by creating targeted DNA double-strand breaks, there are only a handful of studies that report precise editing of endogenous genes in crop plants. More efficient methods are needed to modify plant genomes through homologous recombination, ideally without randomly integrating foreign DNA. RESULTS Here, we use geminivirus replicons to create heritable modifications to the tomato genome at frequencies tenfold higher than traditional methods of DNA delivery (i.e., Agrobacterium). A strong promoter was inserted upstream of a gene controlling anthocyanin biosynthesis, resulting in overexpression and ectopic accumulation of pigments in tomato tissues. More than two-thirds of the insertions were precise, and had no unanticipated sequence modifications. Both TALENs and CRISPR/Cas9 achieved gene targeting at similar efficiencies. Further, the targeted modification was transmitted to progeny in a Mendelian fashion. Even though donor molecules were replicated in the vectors, no evidence was found of persistent extra-chromosomal replicons or off-target integration of T-DNA or replicon sequences. CONCLUSIONS High-frequency, precise modification of the tomato genome was achieved using geminivirus replicons, suggesting that these vectors can overcome the efficiency barrier that has made gene targeting in plants challenging. This work provides a foundation for efficient genome editing of crop genomes without the random integration of foreign DNA.
Collapse
Affiliation(s)
- Tomáš Čermák
- Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| | - Nicholas J Baltes
- Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| | - Radim Čegan
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-612 65, Brno, Czech Republic.
| | - Yong Zhang
- Department of Biotechnology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, 216 Main Building No. 4, Section 2, North Jianshe Road, Chengdu, 610054, P.R. China.
| | - Daniel F Voytas
- Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| |
Collapse
|
15
|
Singh A, Taneja J, Dasgupta I, Mukherjee SK. Development of plants resistant to tomato geminiviruses using artificial trans-acting small interfering RNA. MOLECULAR PLANT PATHOLOGY 2015; 16:724-34. [PMID: 25512230 PMCID: PMC6638473 DOI: 10.1111/mpp.12229] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
RNA interference (RNAi), a conserved RNA-mediated gene regulatory mechanism in eukaryotes, plays an important role in plant growth and development, and as an antiviral defence system in plants. As a counter-strategy, plant viruses encode RNAi suppressors to suppress the RNAi pathways and consequently down-regulate plant defence. In geminiviruses, the proteins AC2, AC4 and AV2 are known to act as RNAi suppressors. In this study, we have designed a gene silencing vector using the features of trans-acting small interfering RNA (tasiRNA), which is simple and can be used to target multiple genes at a time employing a single-step cloning procedure. This vector was used to target two RNAi suppressor proteins (AC2 and AC4) of the geminivirus, Tomato leaf curl New Delhi virus (ToLCNDV). The vector containing fragments of ToLCNDV AC2 and AC4 genes, on agro-infiltration, produced copious quantities of AC2 and AC4 specific siRNA in both tobacco and tomato plants. On challenge inoculation of the agro-infiltrated plants with ToLCNDV, most plants showed an absence of symptoms and low accumulation of viral DNA. Transgenic tobacco plants were raised using the AC2 and AC4 tasiRNA-generating constructs, and T1 plants, obtained from the primary transgenic plants, were tested for resistance separately against ToLCNDV and Tomato leaf curl Gujarat virus. Most plants showed an absence of symptoms and low accumulation of the corresponding viruses, the resistance being generally proportional to the amounts of siRNA produced against AC2 and AC4 genes. This is the first report of the use of artificial tasiRNA to generate resistance against an important plant virus.
Collapse
Affiliation(s)
- Archana Singh
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Jyoti Taneja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Sunil Kumar Mukherjee
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| |
Collapse
|
16
|
Mukhopadhyay P, Tyagi AK. OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways. Sci Rep 2015; 5:9998. [PMID: 25925167 PMCID: PMC4415230 DOI: 10.1038/srep09998] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 03/25/2015] [Indexed: 01/22/2023] Open
Abstract
Class-I TCP transcription factors are plant-specific developmental regulators. In this study, the role of one such rice gene, OsTCP19, in water-deficit and salt stress response was explored. Besides a general upregulation by abiotic stresses, this transcript was more abundant in tolerant than sensitive rice genotypes during early hours of stress. Stress, tissue and genotype-dependent retention of a small in-frame intron in this transcript was also observed. Overexpression of OsTCP19 in Arabidopsis caused upregulation of IAA3, ABI3 and ABI4 and downregulation of LOX2, and led to developmental abnormalities like fewer lateral root formation. Moreover, decrease in water loss and reactive oxygen species, and hyperaccumulation of lipid droplets in the transgenics contributed to better stress tolerance both during seedling establishment and in mature plants. OsTCP19 was also shown to directly regulate a rice triacylglycerol biosynthesis gene in transient assays. Genes similar to those up- or downregulated in the transgenics were accordingly found to coexpress positively and negatively with OsTCP19 in Rice Oligonucleotide Array Database. Interactions of OsTCP19 with OsABI4 and OsULT1 further suggest its function in modulation of abscisic acid pathways and chromatin structure. Thus, OsTCP19 appears to be an important node in cell signaling which crosslinks stress and developmental pathways.
Collapse
Affiliation(s)
- Pradipto Mukhopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi. 110067, India
| | - Akhilesh Kumar Tyagi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi. 110067, India
| |
Collapse
|
17
|
Richter KS, Ende L, Jeske H. Rad54 is not essential for any geminiviral replication mode in planta. PLANT MOLECULAR BIOLOGY 2015; 87:193-202. [PMID: 25492528 DOI: 10.1007/s11103-014-0270-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/02/2014] [Indexed: 06/04/2023]
Abstract
The circular single-stranded DNA of phytopathogenic geminiviruses is propagated by three modes: complementary strand replication (CSR), rolling circle replication (RCR) and recombination-dependent replication (RDR), which need host plant factors to be carried out. In addition to necessary host polymerases, proteins of the homologous recombination repair pathway may be considered essential, since geminiviruses are particularly prone to recombination. Among several others, Rad54 was suggested to be necessary for the RCR of Mungbean yellow mosaic India virus. This enzyme is a double-stranded DNA-dependent ATPase and chromatin remodeller and was found to bind and modulate the viral replication-initiator protein in vitro and in Saccharomyces cerevisiae. In contrast to the previous report, we scrutinized the requirement of Rad54 in planta for two distinct fully infectious geminiviruses with respect to the three replication modes. Euphorbia yellow mosaic virus and Cleome leaf crumple virus were inoculated into Rad54-deficient and wildtype Arabidopsis thaliana plant lines to compare the occurrence of viral DNA forms. Replication intermediates were displayed in the time course of infection by one and two-dimensional agarose gel electrophoresis and Southern hybridization. The experiments showed that Rad54 was neither essential for CSR, RCR nor RDR, and it had no significant influence on virus titers during systemic infection.
Collapse
Affiliation(s)
- Kathrin S Richter
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70550, Stuttgart, Germany
| | | | | |
Collapse
|
18
|
Mishra SK, Chilakamarthi U, Deb JK, Mukherjee SK. Unfolding of in planta activity of anti-rep ribozyme in presence of a RNA silencing suppressor. FEBS Lett 2014; 588:1967-72. [PMID: 24735726 PMCID: PMC7164126 DOI: 10.1016/j.febslet.2014.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/03/2014] [Accepted: 04/03/2014] [Indexed: 12/17/2022]
Abstract
Antisense RNA ribozymes have intrinsic endonucleolytic activity to effect cleavage of the target RNA. However, this activity in vivo is often controlled by the dominance of antisense or other double-stranded RNA mechanism. In this work, we demonstrate the in planta activity of a hammerhead ribozyme designed to target rep-mRNA of a phytopathogen Mungbean Yellow Mosaic India virus (MYMIV) as an antiviral agent. We also found RNA-silencing is induced on introduction of catalytically active as well as inactive ribozymes. Using RNA-silencing suppressors (RSS), we demonstrate that the endonucleolytic activity of ribozymes is a true phenomenon, even while a mutated version may demonstrate a similar down-regulation of the target RNA. This helps to ease the confusion over the action mechanism of ribozymes in vivo.
Collapse
Affiliation(s)
- Sumona Karjee Mishra
- Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| | - Ushasri Chilakamarthi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110 016, India
| | - J K Deb
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110 016, India
| | - Sunil Kumar Mukherjee
- Plant Molecular Biology Division, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India; Department of Genetics, University of Delhi, South Campus, Benito Juarez Marg, New Delhi 110021, India
| |
Collapse
|
19
|
Sunitha S, Shanmugapriya G, Balamani V, Veluthambi K. Mungbean yellow mosaic virus (MYMV) AC4 suppresses post-transcriptional gene silencing and an AC4 hairpin RNA gene reduces MYMV DNA accumulation in transgenic tobacco. Virus Genes 2013; 46:496-504. [PMID: 23417222 DOI: 10.1007/s11262-013-0889-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/04/2013] [Indexed: 01/16/2023]
Abstract
Mungbean yellow mosaic virus (MYMV) is a legume-infecting geminivirus that causes yellow mosaic disease in blackgram, mungbean, soybean, Frenchbean and mothbean. AC4/C4, which is nested completely within the Rep gene, is less conserved among geminiviruses. Much less is known about its role in viral pathogenesis other than its known role in the suppression of host-mediated gene silencing. Transient expression of MYMV AC4 by agroinfiltration suppressed post-transcriptional gene silencing in Nicotiana benthamiana 16c expressing green fluorescence protein, at a level comparable to MYMV TrAP expression. AC4 full-length gene and an inverted repeat of AC4 (comprising the full-length AC4 sequence in sense and antisense orientations with an intervening intron) which makes a hairpin RNA (hpRNA) upon transcription were introduced into tobacco by Agrobacterium-mediated leaf disc transformation. Leaf discs of the transgenic plants were agroinoculated with partial dimers of MYMV and used to study the effect of the AC4-sense and AC4 hpRNA genes on MYMV DNA accumulation. Leaf discs of two transgenic plants that express the AC4-sense gene displayed an increase in MYMV DNA accumulation. Leaf discs of six transgenic plants containing the AC4 hpRNA gene accumulated small-interfering RNAs (siRNAs) specific to AC4, and upon agroinoculation with MYMV they exhibited a severe reduction in the accumulation of MYMV DNA. Thus, the MYMV AC4 hpRNA gene has emerged as a good candidate to engineer resistance against MYMV in susceptible plants.
Collapse
Affiliation(s)
- Sukumaran Sunitha
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, India
| | | | | | | |
Collapse
|
20
|
Czosnek H, Eybishtz A, Sade D, Gorovits R, Sobol I, Bejarano E, Rosas-Díaz T, Lozano-Durán R. Discovering host genes involved in the infection by the Tomato Yellow Leaf Curl Virus complex and in the establishment of resistance to the virus using Tobacco Rattle Virus-based post transcriptional gene silencing. Viruses 2013; 5:998-1022. [PMID: 23524390 PMCID: PMC3705308 DOI: 10.3390/v5030998] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 02/02/2023] Open
Abstract
The development of high-throughput technologies allows for evaluating gene expression at the whole-genome level. Together with proteomic and metabolomic studies, these analyses have resulted in the identification of plant genes whose function or expression is altered as a consequence of pathogen attacks. Members of the Tomato yellow leaf curl virus (TYLCV) complex are among the most important pathogens impairing production of agricultural crops worldwide. To understand how these geminiviruses subjugate plant defenses, and to devise counter-measures, it is essential to identify the host genes affected by infection and to determine their role in susceptible and resistant plants. We have used a reverse genetics approach based on Tobacco rattle virus-induced gene silencing (TRV-VIGS) to uncover genes involved in viral infection of susceptible plants, and to identify genes underlying virus resistance. To identify host genes with a role in geminivirus infection, we have engineered a Nicotiana benthamiana line, coined 2IRGFP, which over-expresses GFP upon virus infection. With this system, we have achieved an accurate description of the dynamics of virus replication in space and time. Upon silencing selected N. benthamiana genes previously shown to be related to host response to geminivirus infection, we have identified eighteen genes involved in a wide array of cellular processes. Plant genes involved in geminivirus resistance were studied by comparing two tomato lines: one resistant (R), the other susceptible (S) to the virus. Sixty-nine genes preferentially expressed in R tomatoes were identified by screening cDNA libraries from infected and uninfected R and S genotypes. Out of the 25 genes studied so far, the silencing of five led to the total collapse of resistance, suggesting their involvement in the resistance gene network. This review of our results indicates that TRV-VIGS is an exquisite reverse genetics tool that may provide new insights into the molecular mechanisms underlying plant infection and resistance to infection by begomoviruses.
Collapse
Affiliation(s)
- Henryk Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; E-mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +972-8-9489249; Fax: +972- 8 9489899
| | - Assaf Eybishtz
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; E-mail:
| | - Dagan Sade
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; E-mail:
| | - Rena Gorovits
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; E-mail:
| | - Iris Sobol
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; E-mail:
| | - Eduardo Bejarano
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain; E-mail:
| | - Tábata Rosas-Díaz
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain; E-mail:
| | - Rosa Lozano-Durán
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain; E-mail:
| |
Collapse
|
21
|
Borah BK, Dasgupta I. Begomovirus research in India: a critical appraisal and the way ahead. J Biosci 2013; 37:791-806. [PMID: 22922204 DOI: 10.1007/s12038-012-9238-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Begomoviruses are a large group of whitefly-transmitted plant viruses containing single-stranded circular DNA encapsidated in geminate particles. They are responsible for significant yield losses in a wide variety of crops in India. Research on begomoviruses has focussed on the molecular characterization of the viruses, their phylogenetic analyses, infectivities on host plants, DNA replication, transgenic resistance, promoter analysis and development of virus-based gene silencing vectors. There have been a number of reports of satellite molecules associated with begomoviruses. This article aims to summarize the major developments in begomoviral research in India in the last approximately 15 years and identifies future areas that need more attention.
Collapse
Affiliation(s)
- Basanta K Borah
- Department of Plant Molecular Biology, University of Delhi South Campus, Delhi 110 021, India
| | | |
Collapse
|
22
|
Suyal G, Mukherjee SK, Srivastava PS, Choudhury NR. Arabidopsis thaliana MCM2 plays role(s) in mungbean yellow mosaic India virus (MYMIV) DNA replication. Arch Virol 2012; 158:981-92. [PMID: 23242774 DOI: 10.1007/s00705-012-1563-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/24/2012] [Indexed: 02/02/2023]
Abstract
Geminiviruses are plant pathogens with single-stranded (ss) DNA genomes of about 2.7 kb in size. They replicate primarily via rolling-circle replication (RCR) with the help of a few virally encoded factors and various host-cell machineries. The virally encoded replication initiator protein (Rep) is essential for geminivirus replication. In this study, by interaction screening of an Arabidopsis thaliana cDNA library, we have identified a host factor, MCM2, that interacts with the Rep protein of the geminivirus mungbean yellow mosaic India virus (MYMIV). Using yeast two-hybrid, β-galactosidase and co-immunoprecipitation assays, we demonstrated an interaction between MYMIV-Rep and the host factor AtMCM2. We investigated the possible role of AtMCM2 in geminiviral replication using a yeast-based geminivirus DNA replication restoration assay and observed that the AtMCM2 protein complemented the mcm2∆ mutation of S. cerevisiae. Our data suggest the involvement of AtMCM2 in the replication of MYMIV ex vivo. The role of MCM2 in replication was confirmed in planta by a transient replication assay in both wild-type and mutant Arabidopsis plants through agroinoculation. Our data provide evidence for the involvement of AtMCM2 in geminiviral DNA replication, presumably in conjunction with other host factors, and suggest its importance in MYMIV DNA replication.
Collapse
Affiliation(s)
- Geetika Suyal
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology ICGEB, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| | | | | | | |
Collapse
|
23
|
Huang C, Qian Y, Li Z, Zhou X. Virus-induced gene silencing and its application in plant functional genomics. SCIENCE CHINA-LIFE SCIENCES 2012; 55:99-108. [PMID: 22415680 DOI: 10.1007/s11427-012-4280-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 12/13/2011] [Indexed: 12/13/2022]
Abstract
Virus-induced gene silencing is regarded as a powerful and efficient tool for the analysis of gene function in plants because it is simple, rapid and transformation-free. It has been used to perform both forward and reverse genetics to identify plant functional genes. Many viruses have been developed into virus-induced gene silencing vectors and gene functions involved in development, biotic and abiotic stresses, metabolism, and cellular signaling have been reported. In this review, we discuss the development and application of virus-induced gene silencing in plant functional genomics.
Collapse
Affiliation(s)
- Changjun Huang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | | | | | | |
Collapse
|
24
|
Duan CG, Fang YY, Zhou BJ, Zhao JH, Hou WN, Zhu H, Ding SW, Guo HS. Suppression of Arabidopsis ARGONAUTE1-mediated slicing, transgene-induced RNA silencing, and DNA methylation by distinct domains of the Cucumber mosaic virus 2b protein. THE PLANT CELL 2012; 24:259-74. [PMID: 22247253 PMCID: PMC3289565 DOI: 10.1105/tpc.111.092718] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 11/23/2011] [Accepted: 12/21/2011] [Indexed: 05/18/2023]
Abstract
Unique among the known plant and animal viral suppressors of RNA silencing, the 2b protein interacts directly with both small interfering RNA (siRNA) and ARGONAUTE1 (AGO1) and AGO4 proteins and is targeted to the nucleolus. However, it is largely unknown which regions of the 111-residue 2b protein determine these biochemical properties and how they contribute to its diverse silencing suppressor activities. Here, we identified a functional nucleolar localization signal encoded within the 61-amino acid N-terminal double-stranded RNA (dsRNA) binding domain (dsRBD) that exhibited high affinity for short and long dsRNA. However, physical interaction of 2b with AGOs required an essential 33-residue region C-terminal to the dsRBD and was sufficient to inhibit the in vitro AGO1 Slicer activity independently of its dsRNA binding activities. Furthermore, the direct 2b-AGO interaction was not essential for the 2b suppression of posttranscriptional gene silencing (PTGS) and RNA-directed DNA methylation (RdDM) in vivo. Lastly, we found that the 2b-AGO interactions in vivo also required the nucleolar targeting of 2b and had the potential to redistribute both the 2b and AGO proteins in nucleus. These findings together suggest that 2b may suppress PTGS and RdDM in vivo by binding and sequestering siRNA and the long dsRNA precursor in a process that is facilitated by its interactions with AGOs in the nucleolus.
Collapse
Affiliation(s)
- Cheng-Guo Duan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuan-Yuan Fang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bang-Jun Zhou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Na Hou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shou-Wei Ding
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Address correspondence to
| |
Collapse
|
25
|
Kaliappan K, Choudhury NR, Suyal G, Mukherjee SK. A novel role for RAD54: this host protein modulates geminiviral DNA replication. FASEB J 2011; 26:1142-60. [PMID: 22171001 DOI: 10.1096/fj.11-188508] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Geminiviruses primarily encode only few factors, such as replication initiator protein (Rep), and need various host cellular machineries for rolling-circle replication (RCR) and/or recombination-dependent replication (RDR). We have identified a host factor, RAD54, in a screen for Rep-interacting partners and observed its role in DNA replication of the geminivirus mungbean yellow mosaic India virus (MYMIV). We identified the interacting domains ScRAD54 and MYMIV-Rep and observed that ScRAD54 enhanced MYMIV-Rep nicking, ATPase, and helicase activities. An in vitro replication assay demonstrated that the geminiviral DNA replication reaction depends on the viral Rep protein, viral origin of replication sequences, and host cell-cycle proteins. Rad54-deficient yeast nuclear extract did not support in vitro viral DNA replication, while exogenous addition of the purified ScRAD54 protein enhanced replication. The role of RAD54 in in planta replication was confirmed by the transient replication assay; i.e., agroinoculation studies. RAD54 is a well-known recombination/repair protein that uses its DNA-dependent ATPase activity in conjunction with several other host factors. However, this study demonstrates for the first time that the eukaryotic rolling-circle replicon depends on the RAD54 protein.
Collapse
Affiliation(s)
- Kosalai Kaliappan
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110 067, India
| | | | | | | |
Collapse
|
26
|
Saxena S, Singh N, Ranade SA, Babu SG. Strategy for a generic resistance to geminiviruses infecting tomato and papaya through in silico siRNA search. Virus Genes 2011; 43:409-34. [PMID: 21822672 DOI: 10.1007/s11262-011-0649-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/21/2011] [Indexed: 01/21/2023]
Abstract
Use of siRNA is a powerful methodology to particularly knockdown the targeted genes in a sequence specific manner. The potential of siRNA can be harnessed for silencing specific geminiviral genes in papaya and tomato plant hosts, thus making them resistant to the respective viruses. The challenge is in designing exogenous siRNA which can trigger silencing of viral genes irrespective of the genetic variability in different viral isolates and at the same time the selected siRNA does not target any plant gene (off target silencing). In this study, we have designed siRNA from the most conserved regions of viral coat protein (AV1) and replicase (AC1) genes retrieved from different isolates of geminiviruses infecting papaya (PLCV), and tomato (TLCV & TLCV, Northern India), so as to give a broad spectrum resistance and efficient silencing as it is highly homology-dependent strategy. Software siRNA finder (Ambion) was used on the selected conserved sequences in order to select only those putative siRNA oligonucleotides which fulfill all the basic criteria required as per the algorithm. Finally, a cross search using BLAST was performed to confirm that the designed siRNAs do not have any homology to plant genome sequences. The putative siRNA sequences thus designed to target essential genes of geminiviruses and introduced into the plants may facilitate developing papaya and tomato crops with generic resistance to geminiviruses.
Collapse
Affiliation(s)
- Sangeeta Saxena
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, VidyaVihar, Lucknow, India
| | | | | | | |
Collapse
|
27
|
Abstract
Virus-induced gene silencing (VIGS) is a technology that exploits an RNA-mediated antivirus defense mechanism in plants and has been shown to have great potential in plant reverse genetics. When the virus vector carries sequences of plant genes, virus infection triggers VIGS that results in the degradation of endogenous mRNAs homologous to the plant genes. The system is well established in Nicotiana benthamiana and several reliable VIGS vectors have been developed for other plant species including important agricultural crops. Here, we describe the use of VIGS technology to determine gene function and plant virus vectors for induction of VIGS in plants.
Collapse
|
28
|
Pratap D, Kashikar AR, Mukherjee SK. Molecular characterization and infectivity of a Tomato leaf curl New Delhi virus variant associated with newly emerging yellow mosaic disease of eggplant in India. Virol J 2011; 8:305. [PMID: 21676270 PMCID: PMC3125359 DOI: 10.1186/1743-422x-8-305] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 06/16/2011] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Begomoviruses have emerged as serious problem for vegetable and fiber crops in the recent past, frequently in tropical and subtropical region of the world. The association of begomovirus with eggplant yellow mosaic disease is hitherto unknown apart from one report from Thailand. A survey in Nagpur, Central India, in 2009-2010 showed severe incidence of eggplant yellow mosaic disease. Here, we have identified and characterized a begomovirus responsible for the newly emerging yellow mosaic disease of eggplant in India. RESULTS The complete DNA-A and DNA-B genomic components of the causative virus were cloned and sequenced. Nucleotide sequence analysis of DNA-A showed that it shared highest 97.6% identity with Tomato leaf curl New Delhi virus-India[India:Udaipur:Okra:2007] and lowest 87.9% identity with Tomato leaf curl New Delhi virus-India[India:NewDelhi:Papaya:2005], while DNA-B showed highest 94.1% identity with ToLCNDV-IN[IN:UD:Ok:07] and lowest 76.2% identity with ToLCNDV-India[India:Lucknow]. Thus, it appears that this begomovirus is a variant of ubiquitous ToLCNDV and hence, we suggest the name ToLCNDV-India[India:Nagpur:Eggplant:2009] for this variant. The pathogenicity of ToLCNDV-IN[IN:Nag:Egg:09] isolate was confirmed by agroinfiltraion and dimeric clones of DNA-A and DNA-B induced characteristic yellow mosaic symptoms in eggplants and leaf curling in tomato plants. CONCLUSION This is the first report of a ToLCNDV variant moving to a new agriculturally important host, eggplant and causing yellow mosaic disease. This is also a first experimental demonstration of Koch's postulate for a begomovirus associated with eggplant yellow mosaic disease.
Collapse
Affiliation(s)
- Dharmendra Pratap
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | - Sunil K Mukherjee
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
29
|
Naqvi AR, Sarwat M, Pradhan B, Choudhury NR, Haq QMR, Mukherjee SK. Differential expression analyses of host genes involved in systemic infection of Tomato leaf curl New Delhi virus (ToLCNDV). Virus Res 2011; 160:395-9. [PMID: 21600246 DOI: 10.1016/j.virusres.2011.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 05/03/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
Abstract
Tomato leaf curl viruses (ToLCV) infect tomato plants and eventually cause several phenotypic defects, notably in the leaves in the form of upward curling. The entry of virus triggers plants' basal defense responses which eventually introduce temporal changes in the transcriptome to evade the pathogen attack. In this study, we have identified about 20 tomato ESTs using subtractive hybridization that were induced in tomato leaves upon agro-infection with the constructs bearing the dimers of Tomato leaf curl New Delhi virus (ToLCNDV) DNA-A and DNA-B components. The induced ESTs belonged to the class of genes that play crucial roles in innate immunity, plants metabolism and ethylene signaling. The expression of few of these ESTs was validated by northern blot analysis and two out of six selected genes expressed exclusively in the infected leaf tissues. Besides leaves, the expression status of selected genes was checked in a wide variety of tissues (flower, fruit, stem and root) of both healthy and infected plants by RT-PCR. These results suggest that the flower and fruit tissues, similar to leaves, exhibited induction of most of the genes while the stem and root tissues suffered from down-regulation. Overall, these results indicate that the hosts' transcriptome undergoes considerable changes in response to viral infection.
Collapse
Affiliation(s)
- Afsar Raza Naqvi
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110 025, India
| | | | | | | | | | | |
Collapse
|
30
|
Pasumarthy KK, Mukherjee SK, Choudhury NR. The presence of tomato leaf curl Kerala virus AC3 protein enhances viral DNA replication and modulates virus induced gene-silencing mechanism in tomato plants. Virol J 2011; 8:178. [PMID: 21496351 PMCID: PMC3102638 DOI: 10.1186/1743-422x-8-178] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 04/18/2011] [Indexed: 12/21/2022] Open
Abstract
Background Geminiviruses encode few viral proteins. Most of the geminiviral proteins are multifunctional and influence various host cellular processes for the successful viral infection. Though few viral proteins like AC1 and AC2 are well characterized for their multiple functions, role of AC3 in the successful viral infection has not been investigated in detail. Results We performed phage display analysis with the purified recombinant AC3 protein with Maltose Binding Protein as fusion tag (MBP-AC3). Putative AC3 interacting peptides identified through phage display were observed to be homologous to peptides of proteins from various metabolisms. We grouped these putative AC3 interacting peptides according to the known metabolic function of the homologous peptide containing proteins. In order to check if AC3 influences any of these particular metabolic pathways, we designed vectors for assaying DNA replication and virus induced gene-silencing of host gene PCNA. Investigation with these vectors indicated that AC3 enhances viral replication in the host plant tomato. In the PCNA gene-silencing experiment, we observed that the presence of functional AC3 ORF strongly manifested the stunted phenotype associated with the virus induced gene-silencing of PCNA in tomato plants. Conclusions Through the phage display analysis proteins from various metabolic pathways were identified as putative AC3 interacting proteins. By utilizing the vectors developed, we could analyze the role of AC3 in viral DNA replication and host gene-silencing. Our studies indicate that AC3 is also a multifunctional protein.
Collapse
Affiliation(s)
- Kalyan K Pasumarthy
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | | |
Collapse
|
31
|
Pandey P, Mukhopadhya S, Naqvi AR, Mukherjee SK, Shekhawat GS, Choudhury NR. Molecular characterization of two distinct monopartite begomoviruses infecting tomato in India. Virol J 2010; 7:337. [PMID: 21092241 PMCID: PMC3002923 DOI: 10.1186/1743-422x-7-337] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 11/23/2010] [Indexed: 11/30/2022] Open
Abstract
Background Tomato leaf curl viruses, which are the members of the genus Begomovirus, have emerged as devastating pathogens worldwide causing huge economic losses and threatening production of crops like cassava, cotton, grain legumes and vegetables. Even though the ToLCV isolates from Northern India have been shown to possess bipartite genome (designated as DNA A and DNA B), those from Australia, Taiwan and Southern India have a single genomic component (DNA A). We describe here the genetic diversity of two isolates of monopartite Tomato leaf curl virus infecting tomato in two extreme regions (North and South) of Indian subcontinent. Results The rolling circle amplification (RCA) products obtained from symptomatic samples were digested, cloned and sequenced. The complete DNA sequence of two Tomato leaf curl virus isolates identified as ToLCV-CTM (India, New Delhi, 2005) and ToLCVK3/K5 (India, Kerala, 2008) are reported here. These isolates had the characteristic features of Begomovirus genome organization with six conserved open reading frames (ORFs). The ToLCV-K3 and ToLCV-K5 isolates may be the strains of the same virus since they show sequence homology of 97% over their entire genome. This, according to the guidelines established by the ICTV Geminiviridae Study-Group is higher than threshold (92%) for delineation of different viral variants and hence single, average value has been assigned for all their analyses presented here. The ToLCV-CTM and ToLCV-K3/K5 viruses were found to be monopartite, as neither DNA-B component nor betasatellite associated with begomovirus species, were detected. The complete nucleotide sequence of DNA-A genome of CTM exhibited highest sequence homology (88%) to Croton yellow vein mosaic virus (AJ507777), and of isolates K3/K5 (88.5%) to Tomato leaf curl Pakistan virus (DQ116884). This is less than the threshold value for demarcation of species in the genus Begomovirus. Conclusion K3/K5 and CTM are considered to be novel isolates of Tomato leaf curl virus. Sequence analyses and phylogenetic study indicate that these two ToLCV isolates might have evolved by recombination between viruses related to two or more viral ancestors. The existence of different ToLCV isolates having high genome diversity in India poses a threat to the tomato production in the Asian continent.
Collapse
Affiliation(s)
- Prerna Pandey
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | | | | | | | | |
Collapse
|
32
|
The 7a accessory protein of severe acute respiratory syndrome coronavirus acts as an RNA silencing suppressor. J Virol 2010; 84:10395-401. [PMID: 20631126 DOI: 10.1128/jvi.00748-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RNA silencing suppressors (RSSs) are well studied for plant viruses but are not well defined to date for animal viruses. Here, we have identified an RSS from a medically important positive-sense mammalian virus, Severe acute respiratory syndrome coronavirus. The viral 7a accessory protein suppressed both transgene and virus-induced gene silencing by reducing the levels of small interfering RNA (siRNA). The suppression of silencing was analyzed by two independent assays, and the middle region (amino acids [aa] 32 to 89) of 7a was responsible for suppression. Finally, the RNA suppression property and the enhancement of heterologous replicon activity by the 7a protein were confirmed for animal cell lines.
Collapse
|