1
|
Frazzini S, Riva F, Amadori M. Therapeutic and Prophylactic Use of Oral, Low-Dose IFNs in Species of Veterinary Interest: Back to the Future. Vet Sci 2021; 8:109. [PMID: 34208413 PMCID: PMC8231284 DOI: 10.3390/vetsci8060109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
Cytokines are important molecules that orchestrate the immune response. Given their role, cytokines have been explored as drugs in immunotherapy in the fight against different pathological conditions such as bacterial and viral infections, autoimmune diseases, transplantation and cancer. One of the problems related to their administration consists in the definition of the correct dose to avoid severe side effects. In the 70s and 80s different studies demonstrated the efficacy of cytokines in veterinary medicine, but soon the investigations were abandoned in favor of more profitable drugs such as antibiotics. Recently, the World Health Organization has deeply discouraged the use of antibiotics in order to reduce the spread of multi-drug resistant microorganisms. In this respect, the use of cytokines to prevent or ameliorate infectious diseases has been highlighted, and several studies show the potential of their use in therapy and prophylaxis also in the veterinary field. In this review we aim to review the principles of cytokine treatments, mainly IFNs, and to update the experiences encountered in animals.
Collapse
Affiliation(s)
- Sara Frazzini
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Federica Riva
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Massimo Amadori
- Rete Nazionale di Immunologia Veterinaria, 25125 Brescia, Italy;
| |
Collapse
|
2
|
Engineer probiotic bifidobacteria for food and biomedical applications - Current status and future prospective. Biotechnol Adv 2020; 45:107654. [DOI: 10.1016/j.biotechadv.2020.107654] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/14/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022]
|
3
|
De-Pu Z, Li-Sha G, Guang-Yi C, Xiaohong G, Chao X, Cheng Z, Wen-Wu Z, Jia L, Jia-Feng L, Maoping C, Yue-Chun L. The cholinergic anti-inflammatory pathway ameliorates acute viral myocarditis in mice by regulating CD4 + T cell differentiation. Virulence 2019; 9:1364-1376. [PMID: 30176160 PMCID: PMC6141146 DOI: 10.1080/21505594.2018.1482179] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Many studies have found that abnormalities in the proportion and differentiation of CD4+ T cells (Th cells) are closely related to the pathogenesis of viral myocarditis (VMC). Our previous research indicates that the cholinergic anti-inflammatory pathway (CAP) attenuates the inflammatory response of VMC and downregulates the expression of cytokines in Th1 and Th17 cells. This suggests that the cholinergic anti-inflammatory pathway likely attenuates the inflammatory response in VMC by altering Th cell differentiation. The aim of this study is to investigate the effect of CAP on CD4+ T cell differentiation in VMC mice. CD4+ T cells in the spleen of VMC mice were obtained and cultured in the presence of nicotine or methyllycaconitine (MLA). Cells were harvested and analyzed for the percentage of each Th cell subset by flow cytometry and transcription factor release by Western blot. Then, we detected the effect of CAP on the differentiation of Th cells in vivo. Nicotine or MLA was used to activate and block CAP, respectively, in acute virus-induced myocarditis. Nicotine treatment increased the proportion of Th2 and Treg cells, decreased the proportion of Th1 and Th17 cells in the spleen, reduced the level of proinflammatory cytokines, and attenuated the severity of myocardium lesions and cellular infiltration in viral myocarditis. MLA administration had the opposite effect. Our result demonstrated that CAP effectively protects the myocardium from virus infection, which may be attributable to the regulation of Th cell differentiation.
Collapse
Affiliation(s)
- Zhou De-Pu
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Ge Li-Sha
- b Department of Pediatric Emergency , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Chen Guang-Yi
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Gu Xiaohong
- c Children's Heart Center and Department of Pediatrics , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Xing Chao
- d Department of Clinical Laboratory , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Zheng Cheng
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Zhang Wen-Wu
- e Department of Intensive Care Unit , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Li Jia
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Lin Jia-Feng
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Chu Maoping
- c Children's Heart Center and Department of Pediatrics , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Li Yue-Chun
- a Department of Cardiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| |
Collapse
|
4
|
Berry CM. Understanding Interferon Subtype Therapy for Viral Infections: Harnessing the Power of the Innate Immune System. Cytokine Growth Factor Rev 2016; 31:83-90. [PMID: 27544015 DOI: 10.1016/j.cytogfr.2016.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 12/25/2022]
Abstract
Type I and III interferons (IFNs) of the innate immune system belong to a polygenic family, however the individual subtype mediators of the antiviral response in viral infections have been hindered by a lack of reagents. Evaluation studies using different IFN subtypes have distinguished distinct protein properties with different efficacies towards different viruses, opening promising avenues for immunotherapy. This review largely focuses on the application of IFN-α/β and IFN-λ therapies for viral infections, influenza, herpes, HIV and hepatitis. Such IFN subtype therapies may help to cure patients with virus infections where no vaccine exists. The ability of cell types to secrete a number of IFN subtypes from a multi-gene family may be an intuitive counterattack on viruses that evade IFN subtype responses. Hence, clinical use of virus-targeted IFN subtypes may restore antiviral immunity in viral infections. Accumulating evidence suggests that individual IFN subtypes have differential efficacies in selectively activating immune cell subsets to enhance antiviral immune responses leading to production of sustained B and T cell memory. Cytokine therapy can augment innate immunity leading to clearance of acute virus infections but such treatments may have limited effects on chronic virus infections that establish lifelong latency. Therefore, exploiting individual IFN subtypes to select those with the ability to sculpt protective responses as well as reinstating those targeted by viral evasion mechanisms may inform development of improved antiviral therapy.
Collapse
Affiliation(s)
- Cassandra M Berry
- School of Veterinary and Life Sciences, Molecular and Biomedical Sciences, Murdoch University, South Street, Murdoch, Perth, Western Australia, Australia.
| |
Collapse
|
5
|
Methods for Testing Immunological Factors. DRUG DISCOVERY AND EVALUATION: PHARMACOLOGICAL ASSAYS 2016. [PMCID: PMC7122208 DOI: 10.1007/978-3-319-05392-9_45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hypersensitivity reactions can be elicited by various factors: either immunologically induced, i.e., allergic reactions to natural or synthetic compounds mediated by IgE, or non-immunologically induced, i.e., activation of mediator release from cells through direct contact, without the induction of, or the mediation through immune responses. Mediators responsible for hypersensitivity reactions are released from mast cells. An important preformed mediator of allergic reactions found in these cells is histamine. Specific allergens or the calcium ionophore 48/80 induce release of histamine from mast cells. The histamine concentration can be determined with the o-phthalaldehyde reaction.
Collapse
|
6
|
Intracellular production of IFN-alpha 2b in Lactococcus lactis. Biotechnol Lett 2013; 36:581-5. [PMID: 24185903 DOI: 10.1007/s10529-013-1390-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 10/17/2013] [Indexed: 02/07/2023]
Abstract
Human interferon alpha (IFN-α) was expressed in two strains of Lactococcus lactis by aid of two promoters (P32 and Pnis) giving rise to two recombinant strains: MG:IFN and NZ:IFN, respectively. The expression of IFN was confirmed by ELISA and western blotting. Highest production was achieved using glucose for growth of both recombinant strains with nisin, used for induction of the recombinant strain with Pnis promoter, at 30 ng/ml. The optimum time for MG:IFN was 9 h and for NZ:IFN was 4.5 h. The highest productions by MG:IFN and NZ:IFN were 1.9 and 2.4 μg IFN/l, respectively. Both of the expressed IFNs showed bioactivities of 1.9 × 10(6) IU/mg that were acceptable for further clinical studies.
Collapse
|
7
|
Guglielmetti S, Mayo B, Álvarez-Martín P. Mobilome and genetic modification of bifidobacteria. Benef Microbes 2013; 4:143-66. [PMID: 23271067 DOI: 10.3920/bm2012.0031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Until recently, proper development of molecular studies in Bifidobacterium species has been hampered by growth difficulties, because of their exigent nutritive requirements, oxygen sensitivity and lack of efficient genetic tools. These studies, however, are critical to uncover the cross-talk between bifidobacteria and their hosts' cells and to prove unequivocally the supposed beneficial effects provided through the endogenous bifidobacterial populations or after ingestion as probiotics. The genome sequencing projects of different bifidobacterial strains have provided a wealth of genetic data that will be of much help in deciphering the molecular basis of the physiological properties of bifidobacteria. To this end, the purposeful development of stable cloning and expression vectors based on robust replicons - either from temperate phages or resident plasmids - is still needed. This review addresses the current knowledge on the mobile genetic elements of bifidobacteria (prophages, plasmids and transposons) and summarises the different types of vectors already available, together with the transformation procedures for introducing DNA into the cells. It also covers recent molecular studies performed with such vectors and incipient results on the genetic modification of these organisms, establishing the basis that would allow the use of bifidobacteria for future biotechnological applications.
Collapse
Affiliation(s)
- S Guglielmetti
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Sezione di Microbiologia Industriale, Università degli studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | | | | |
Collapse
|
8
|
Shao C, Tian G, Huang Y, Liang W, Zheng H, Wei J, Wei C, Yang C, Wang H, Zeng W. Thymosin alpha-1-transformed Bifidobacterium promotes T cell proliferation and maturation in mice by oral administration. Int Immunopharmacol 2013; 15:646-53. [DOI: 10.1016/j.intimp.2012.12.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 12/30/2012] [Accepted: 12/31/2012] [Indexed: 11/26/2022]
|
9
|
Abstract
PURPOSE OF REVIEW To present recent findings on the pathogenesis of coxsackievirus B3 (CVB3) myocarditis based on animal models, with a focus on the role of T helper (Th) immune responses in disease progression. RECENT FINDINGS Acute CVB3 myocarditis is known to be increased by Th1 immune responses, but recent findings indicate that Th1-type immunity protects against acute myocarditis by reducing viral replication and prevents the progression to chronic myocarditis and dilated cardiomyopathy (DCM) by inhibiting Th2 responses. Th2 responses reduce acute myocarditis by inhibiting Th1 responses via regulatory T cells and anti-inflammatory cytokines, but can be deleterious when they induce acute cardiac remodeling leading to chronic myocarditis/DCM. Th2-skewed immune responses allow resistant strains of mice to progress from myocarditis to DCM. In contrast, Th17 responses are elevated during acute and chronic myocarditis and have been found to contribute to cardiac remodeling and DCM. SUMMARY Recent data indicate that elevated Th2 and Th17 responses during acute CVB3 myocarditis are critical for the progression from myocarditis to DCM and heart failure because of their ability to induce cardiac remodeling. Th1 responses protect against CVB3 myocarditis by inhibiting Th2 responses and viral replication, but increase acute inflammation.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
| | | | | |
Collapse
|