1
|
Supekar K, de Los Angeles C, Ryali S, Kushan L, Schleifer C, Repetto G, Crossley NA, Simon T, Bearden CE, Menon V. Robust and replicable functional brain signatures of 22q11.2 deletion syndrome and associated psychosis: a deep neural network-based multi-cohort study. Mol Psychiatry 2024; 29:2951-2966. [PMID: 38605171 DOI: 10.1038/s41380-024-02495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 04/13/2024]
Abstract
A major genetic risk factor for psychosis is 22q11.2 deletion (22q11.2DS). However, robust and replicable functional brain signatures of 22q11.2DS and 22q11.2DS-associated psychosis remain elusive due to small sample sizes and a focus on small single-site cohorts. Here, we identify functional brain signatures of 22q11.2DS and 22q11.2DS-associated psychosis, and their links with idiopathic early psychosis, using one of the largest multi-cohort data to date. We obtained multi-cohort clinical phenotypic and task-free fMRI data from 856 participants (101 22q11.2DS, 120 idiopathic early psychosis, 101 idiopathic autism, 123 idiopathic ADHD, and 411 healthy controls) in a case-control design. A novel spatiotemporal deep neural network (stDNN)-based analysis was applied to the multi-cohort data to identify functional brain signatures of 22q11.2DS and 22q11.2DS-associated psychosis. Next, stDNN was used to test the hypothesis that the functional brain signatures of 22q11.2DS-associated psychosis overlap with idiopathic early psychosis but not with autism and ADHD. stDNN-derived brain signatures distinguished 22q11.2DS from controls, and 22q11.2DS-associated psychosis with very high accuracies (86-94%) in the primary cohort and two fully independent cohorts without additional training. Robust distinguishing features of 22q11.2DS-associated psychosis emerged in the anterior insula node of the salience network and the striatum node of the dopaminergic reward pathway. These features also distinguished individuals with idiopathic early psychosis from controls, but not idiopathic autism or ADHD. Our results reveal that individuals with 22q11.2DS exhibit a highly distinct functional brain organization compared to controls. Additionally, the brain signatures of 22q11.2DS-associated psychosis overlap with those of idiopathic early psychosis in the salience network and dopaminergic reward pathway, providing substantial empirical support for the theoretical aberrant salience-based model of psychosis. Collectively, our findings, replicated across multiple independent cohorts, advance the understanding of 22q11.2DS and associated psychosis, underscoring the value of 22q11.2DS as a genetic model for probing the neurobiological underpinnings of psychosis and its progression.
Collapse
Affiliation(s)
- Kaustubh Supekar
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Carlo de Los Angeles
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Srikanth Ryali
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Leila Kushan
- Department of Psychiatry and Behavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Charlie Schleifer
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gabriela Repetto
- Center for Genetics and Genomics, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Nicolas A Crossley
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Tony Simon
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, USA
- MIND Institute, University of California, Davis, Sacramento, CA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Behavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Brain microstructural abnormalities in 22q11.2 deletion syndrome: A systematic review of diffusion tensor imaging studies. Eur Neuropsychopharmacol 2021; 52:96-135. [PMID: 34358796 DOI: 10.1016/j.euroneuro.2021.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 01/16/2023]
Abstract
22q11.2 deletion syndrome (22q11DS) is a severe genetic syndrome characterized by cognitive deficits and neuropsychiatric disorders, particularly schizophrenia. Neuroimaging alterations have been extensively reported in 22q11DS, both in gray and white matter structures. However, a considerable variability among the results affects the generalizability of the findings to date. Herein, we reviewed diffusion tensor imaging (DTI) findings in 22q11DS, their association with psychosis and cognition, and the implications of DTI studies on neurodevelopment in 22q11DS. We also investigated differences between 22q11DS and schizophrenic patients without 22q11DS. Using an online search of PubMed and Embase, we identified studies investigating DTI findings in 22q11DS. After selecting eligible studies in accordance with the preferred reporting items for systematic reviews and meta-analyses guideline, we included thirty-one studies. Overall, 22q11DS patients show altered structural connectivity and disrupted microstructural organization of most cortical and subcortical structures and white matter tracts. Moreover, despite a significant heterogeneity in the results, reduced diffusivity measures and elevated fractional anisotropy were observed. However controversial, compared to typically developing children, 22q11DS patients reached the peak of fractional anisotropy (FA) and the trough of radial diffusivity (RD) at an older age, which shows neurodevelopmental delay. DTI measures were also associated with psychotic symptoms and cognitive deficits. In conclusion, this study provides a comprehensive review of microstructural alterations in 22q11DS. Future larger investigations on this syndrome could potentially lead to the detection of early diagnostic imaging markers for genetically induced schizophrenia, thus improving the treatment and, ultimately, the outcome.
Collapse
|
3
|
Villalón-Reina JE, Martínez K, Qu X, Ching CRK, Nir TM, Kothapalli D, Corbin C, Sun D, Lin A, Forsyth JK, Kushan L, Vajdi A, Jalbrzikowski M, Hansen L, Jonas RK, van Amelsvoort T, Bakker G, Kates WR, Antshel KM, Fremont W, Campbell LE, McCabe KL, Daly E, Gudbrandsen M, Murphy CM, Murphy D, Craig M, Emanuel B, McDonald-McGinn DM, Vorstman JA, Fiksinski AM, Koops S, Ruparel K, Roalf D, Gur RE, Eric Schmitt J, Simon TJ, Goodrich-Hunsaker NJ, Durdle CA, Doherty JL, Cunningham AC, van den Bree M, Linden DEJ, Owen M, Moss H, Kelly S, Donohoe G, Murphy KC, Arango C, Jahanshad N, Thompson PM, Bearden CE. Altered white matter microstructure in 22q11.2 deletion syndrome: a multisite diffusion tensor imaging study. Mol Psychiatry 2020; 25:2818-2831. [PMID: 31358905 PMCID: PMC6986984 DOI: 10.1038/s41380-019-0450-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 03/09/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023]
Abstract
22q11.2 deletion syndrome (22q11DS)-a neurodevelopmental condition caused by a hemizygous deletion on chromosome 22-is associated with an elevated risk of psychosis and other developmental brain disorders. Prior single-site diffusion magnetic resonance imaging (dMRI) studies have reported altered white matter (WM) microstructure in 22q11DS, but small samples and variable methods have led to contradictory results. Here we present the largest study ever conducted of dMRI-derived measures of WM microstructure in 22q11DS (334 22q11.2 deletion carriers and 260 healthy age- and sex-matched controls; age range 6-52 years). Using harmonization protocols developed by the ENIGMA-DTI working group, we identified widespread reductions in mean, axial and radial diffusivities in 22q11DS, most pronounced in regions with major cortico-cortical and cortico-thalamic fibers: the corona radiata, corpus callosum, superior longitudinal fasciculus, posterior thalamic radiations, and sagittal stratum (Cohen's d's ranging from -0.9 to -1.3). Only the posterior limb of the internal capsule (IC), comprised primarily of corticofugal fibers, showed higher axial diffusivity in 22q11DS. 22q11DS patients showed higher mean fractional anisotropy (FA) in callosal and projection fibers (IC and corona radiata) relative to controls, but lower FA than controls in regions with predominantly association fibers. Psychotic illness in 22q11DS was associated with more substantial diffusivity reductions in multiple regions. Overall, these findings indicate large effects of the 22q11.2 deletion on WM microstructure, especially in major cortico-cortical connections. Taken together with findings from animal models, this pattern of abnormalities may reflect disrupted neurogenesis of projection neurons in outer cortical layers.
Collapse
Affiliation(s)
- Julio E. Villalón-Reina
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Kenia Martínez
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Universidad Complutense, School of Medicine, IiSGM, Madrid, Spain ,grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain ,grid.119375.80000000121738416Universidad Europea de Madrid, Madrid, Spain
| | - Xiaoping Qu
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Christopher R. K. Ching
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA USA
| | - Talia M. Nir
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Deydeep Kothapalli
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Conor Corbin
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - Daqiang Sun
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA USA ,grid.417119.b0000 0001 0384 5381Department of Mental Health, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA USA
| | - Amy Lin
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA USA
| | - Jennifer K. Forsyth
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Psychology, University of California at Los Angeles, Los Angeles, CA USA
| | - Leila Kushan
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA USA
| | - Ariana Vajdi
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA USA
| | - Maria Jalbrzikowski
- grid.21925.3d0000 0004 1936 9000Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA
| | - Laura Hansen
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA USA
| | - Rachel K. Jonas
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA USA
| | - Therese van Amelsvoort
- grid.5012.60000 0001 0481 6099Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, Netherlands
| | - Geor Bakker
- grid.5012.60000 0001 0481 6099Department of Psychiatry & Neuropsychology, Maastricht University, Maastricht, Netherlands
| | - Wendy R. Kates
- grid.411023.50000 0000 9159 4457Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY USA
| | - Kevin M. Antshel
- grid.264484.80000 0001 2189 1568Department of Psychology, Syracuse University, Syracuse, NY USA
| | - Wanda Fremont
- grid.411023.50000 0000 9159 4457Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY USA
| | - Linda E. Campbell
- grid.266842.c0000 0000 8831 109XPriority Research Centre GrowUpWell, University of Newcastle, Newcastle, Australia ,grid.266842.c0000 0000 8831 109XSchool of Psychology, University of Newcastle, Newcastle, Australia
| | - Kathryn L. McCabe
- grid.266842.c0000 0000 8831 109XSchool of Psychology, University of Newcastle, Newcastle, Australia ,grid.27860.3b0000 0004 1936 9684UC Davis MIND Institute and Department of Psychiatry and Behavioral Sciences, Davis, CA USA
| | - Eileen Daly
- grid.13097.3c0000 0001 2322 6764Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, King’s College London, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Maria Gudbrandsen
- grid.13097.3c0000 0001 2322 6764Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, King’s College London, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Clodagh M. Murphy
- grid.13097.3c0000 0001 2322 6764Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, King’s College London, Institute of Psychiatry, Psychology & Neuroscience, London, UK ,grid.451052.70000 0004 0581 2008Behavioural and Developmental Psychiatry Clinical Academic Group, Behavioural Genetics Clinic, National Adult Autism and ADHD Service, South London and Maudsley Foundation NHS Trust, London, UK
| | - Declan Murphy
- grid.13097.3c0000 0001 2322 6764Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, King’s College London, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Michael Craig
- grid.13097.3c0000 0001 2322 6764Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, King’s College London, Institute of Psychiatry, Psychology & Neuroscience, London, UK ,grid.415717.10000 0001 2324 5535National Autism Unit, Bethlem Royal Hospital, Bethlem, UK
| | - Beverly Emanuel
- grid.25879.310000 0004 1936 8972Division of Human Genetics, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Donna M. McDonald-McGinn
- grid.25879.310000 0004 1936 8972Division of Human Genetics, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Jacob A.S. Vorstman
- grid.7692.a0000000090126352Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.42327.300000 0004 0473 9646Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Ania M. Fiksinski
- grid.7692.a0000000090126352Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands ,grid.155956.b0000 0000 8793 5925Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON Canada ,grid.231844.80000 0004 0474 0428The Dalglish Family 22q Clinic for 22q11.2 Deletion Syndrome, Toronto General Hospital, University Health Network, Toronto, ON Canada
| | - Sanne Koops
- grid.7692.a0000000090126352Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kosha Ruparel
- grid.25879.310000 0004 1936 8972Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
| | - David Roalf
- grid.25879.310000 0004 1936 8972Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
| | - Raquel E. Gur
- grid.239552.a0000 0001 0680 8770Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania and Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - J. Eric Schmitt
- grid.25879.310000 0004 1936 8972Departments of Radiology and Psychiatry, University of Pennsylvania, Philadelphia, PA USA
| | - Tony J. Simon
- grid.27860.3b0000 0004 1936 9684UC Davis MIND Institute and Department of Psychiatry and Behavioral Sciences, Davis, CA USA
| | - Naomi J. Goodrich-Hunsaker
- grid.27860.3b0000 0004 1936 9684UC Davis MIND Institute and Department of Psychiatry and Behavioral Sciences, Davis, CA USA ,grid.253294.b0000 0004 1936 9115Brigham Young University, Provo, UT USA ,grid.223827.e0000 0001 2193 0096Department of Neurology, University of Utah, Salt Lake City, UT USA
| | - Courtney A. Durdle
- grid.27860.3b0000 0004 1936 9684UC Davis MIND Institute and Department of Psychiatry and Behavioral Sciences, Davis, CA USA
| | - Joanne L. Doherty
- grid.5600.30000 0001 0807 5670MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, Wales UK ,grid.5600.30000 0001 0807 5670The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, Wales UK
| | - Adam C. Cunningham
- grid.5600.30000 0001 0807 5670MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, Wales UK
| | - Marianne van den Bree
- grid.5600.30000 0001 0807 5670MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, Wales UK
| | - David E. J. Linden
- grid.5600.30000 0001 0807 5670MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, Wales UK ,grid.5600.30000 0001 0807 5670The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, Wales UK
| | - Michael Owen
- grid.5600.30000 0001 0807 5670MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, Wales UK
| | - Hayley Moss
- grid.5600.30000 0001 0807 5670MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, Wales UK
| | - Sinead Kelly
- grid.38142.3c000000041936754XDepartment of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Gary Donohoe
- grid.6142.10000 0004 0488 0789Centre for Neuroimaging and Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| | - Kieran C. Murphy
- grid.4912.e0000 0004 0488 7120Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Universidad Complutense, School of Medicine, IiSGM, Madrid, Spain ,grid.469673.90000 0004 5901 7501Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain ,grid.119375.80000000121738416Universidad Europea de Madrid, Madrid, Spain
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA.
| | - Paul M. Thompson
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA ,grid.42505.360000 0001 2156 6853Departments of Neurology, Psychiatry, Radiology, Engineering, Pediatrics and Ophthalmology, University of Southern California, Los Angeles, CA USA
| | - Carrie E. Bearden
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Psychology, University of California at Los Angeles, Los Angeles, CA USA
| |
Collapse
|
4
|
Abstract
Recent large-scale genomic studies have confirmed that schizophrenia is a polygenic syndrome and have implicated a number of biological pathways in its aetiology. Both common variants individually of small effect and rarer but more penetrant genetic variants have been shown to play a role in the pathogenesis of the disorder. No simple Mendelian forms of the condition have been identified, but progress has been made in stratifying risk on the basis of the polygenic burden of common variants individually of small effect, and the contribution of rarer variants of larger effect such as Copy Number Variants (CNVs). Pathway analysis of risk-associated variants has begun to identify specific biological processes implicated in risk for the disorder, including elements of the glutamatergic NMDA receptor complex and post synaptic density, voltage-gated calcium channels, targets of the Fragile X Mental Retardation Protein (FMRP targets) and immune pathways. Genetic studies have also been used to drive genomic imaging approaches to the investigation of brain markers associated with risk for the disorder. Genomic imaging approaches have been applied both to investigate the effect of polygenic risk and to study the impact of individual higher-penetrance variants such as CNVs. Both genomic and genomic imaging approaches offer potential for the stratification of patients and at-risk groups and the development of better biomarkers of risk and treatment response; however, further research is needed to integrate this work and realise the full potential of these approaches.
Collapse
|
5
|
Sanders AFP, Hobbs DA, Stephenson DD, Laird RD, Beaton EA. Working Memory Impairments in Chromosome 22q11.2 Deletion Syndrome: The Roles of Anxiety and Stress Physiology. J Autism Dev Disord 2017; 47:992-1005. [PMID: 28083777 DOI: 10.1007/s10803-016-3011-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Stress and anxiety have a negative impact on working memory systems by competing for executive resources and attention. Broad memory deficits, anxiety, and elevated stress have been reported in individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS). We investigated anxiety and physiological stress reactivity in relation to visuospatial working memory impairments in 20 children with 22q11.2DS and 32 typically developing (TD) children ages 7 to 16. Children with 22q11.2DS demonstrated poorer working memory, reduced post-stress respiratory sinus arrhythmia recovery, and overall increased levels of cortisol in comparison to TD children. Anxiety, but not physiological stress responsivity, mediated the relationship between 22q11.2DS diagnosis and visuospatial working memory impairment. Findings indicate that anxiety exacerbates impaired working memory in children with 22q11.2DS.
Collapse
Affiliation(s)
- Ashley F P Sanders
- Department of Psychology, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA, 70148, USA
| | - Diana A Hobbs
- Department of Psychology, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA, 70148, USA
| | - David D Stephenson
- Department of Psychology, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA, 70148, USA
| | - Robert D Laird
- Department of Psychology, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA, 70148, USA
| | - Elliott A Beaton
- Department of Psychology, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA, 70148, USA.
| |
Collapse
|
6
|
Attentional Control in Adolescent Mice Assessed with a Modified Five Choice Serial Reaction Time Task. Sci Rep 2017; 7:9936. [PMID: 28855580 PMCID: PMC5577211 DOI: 10.1038/s41598-017-10112-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/04/2017] [Indexed: 12/30/2022] Open
Abstract
Adolescence is a critical period for the development of higher-order cognitive functions. Unlike in humans, very limited tools are available to assess such cognitive abilities in adolescent rodents. We implemented a modified 5-Choice Serial Reaction Time Task (5CSRTT) to selectively measure attentiveness, impulsivity, broad monitoring, processing speed and distractibility in adolescent mice. 21-day old C57BL/6J mice reliably acquired this task with no sex-dependent differences in 10–12 days. A protocol previously used in adults was less effective to assess impulsiveness in adolescents, but revealed increased vulnerability in females. Next, we distinctively assessed selective, divided and broad monitoring attention modeling the human Spatial Attentional Resource Allocation Task (SARAT). Finally, we measured susceptibility to distractions using non-predictive cues that selectively disrupted attention. These paradigms were also applied to two genetically modified lines: the dopamine transporter (DAT) and catechol-O-methyltransferase (COMT) heterozygous. Adolescent DAT hypo-functioning mice showed attentional deficits and higher impulsivity as found in adults. In contrast to adults, adolescent COMT hypo-functioning mice showed decreased impulsivity and attentional resilience to distractors. These paradigms open new avenues to study the establishment of higher-order cognitive functions in mice, as well as an effective tool for drug-testing and genetic screenings focused on adolescence.
Collapse
|
7
|
Dubourg L, Schneider M, Padula MC, Chambaz L, Schaer M, Eliez S. Implication of reward alterations in the expression of negative symptoms in 22q11.2 deletion syndrome: a behavioural and DTI study. Psychol Med 2017; 47:1442-1453. [PMID: 28112057 DOI: 10.1017/s0033291716003482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Alterations of the reward system have been proposed as one of the core mechanisms underlying the expression of negative symptoms in schizophrenia. Specifically, deficits in specific reward components and white matter (WM) integrity of the reward system have been highlighted. The putative link between negative symptoms and the hedonic experience, or structural connectivity of the reward system has never been examined in the 22q11.2 deletion syndrome (22q11DS), a condition with increased risk for psychosis. METHOD Anticipatory and consummatory dimensions of pleasure were assessed in participants with 22q11DS (N = 54) and healthy controls (N = 55). In patients with 22q11DS, the association between pleasure scores and positive or negative symptoms was investigated. Furthermore, WM integrity of the accumbofrontal tract was quantified using diffusion tensor imaging (DTI). Associations between DTI measures, pleasure dimensions and negative symptoms were examined. RESULTS Patients with 22q11DS showed reduced anticipatory and consummatory pleasure compared to controls. Furthermore, anticipatory pleasure scores were negatively correlated to negative and positive symptoms in 22q11DS. WM microstructural changes of the accumbofrontal tract in terms of increased fractional anisotropy and reduced radial anisotropy were also identified in patients. However, no significant correlation between the DTI measures and pleasure dimensions or psychotic symptoms was observed. CONCLUSIONS This study revealed that participants with 22q11DS differed in their experience of pleasure compared to controls. The anticipatory pleasure component appears to be related to negative and positive symptom severity in patients. Alterations of WM integrity of the accumbofrontal tract seem to be related to myelination abnormalities in 22q11DS patients.
Collapse
Affiliation(s)
- L Dubourg
- Department of Psychiatry,Office Médico-Pédagogique Research Unit, School of Medicine, University of Geneva,Geneva,Switzerland
| | - M Schneider
- Department of Psychiatry,Office Médico-Pédagogique Research Unit, School of Medicine, University of Geneva,Geneva,Switzerland
| | - M C Padula
- Department of Psychiatry,Office Médico-Pédagogique Research Unit, School of Medicine, University of Geneva,Geneva,Switzerland
| | - L Chambaz
- Department of Psychiatry,Office Médico-Pédagogique Research Unit, School of Medicine, University of Geneva,Geneva,Switzerland
| | - M Schaer
- Department of Psychiatry,Office Médico-Pédagogique Research Unit, School of Medicine, University of Geneva,Geneva,Switzerland
| | - S Eliez
- Department of Psychiatry,Office Médico-Pédagogique Research Unit, School of Medicine, University of Geneva,Geneva,Switzerland
| |
Collapse
|
8
|
Tylee DS, Kikinis Z, Quinn TP, Antshel KM, Fremont W, Tahir MA, Zhu A, Gong X, Glatt SJ, Coman IL, Shenton ME, Kates WR, Makris N. Machine-learning classification of 22q11.2 deletion syndrome: A diffusion tensor imaging study. NEUROIMAGE-CLINICAL 2017; 15:832-842. [PMID: 28761808 PMCID: PMC5522376 DOI: 10.1016/j.nicl.2017.04.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 11/27/2022]
Abstract
Chromosome 22q11.2 deletion syndrome (22q11.2DS) is a genetic neurodevelopmental syndrome that has been studied intensively in order to understand relationships between the genetic microdeletion, brain development, cognitive function, and the emergence of psychiatric symptoms. White matter microstructural abnormalities identified using diffusion tensor imaging methods have been reported to affect a variety of neuroanatomical tracts in 22q11.2DS. In the present study, we sought to combine two discovery-based approaches: (1) white matter query language was used to parcellate the brain's white matter into tracts connecting pairs of 34, bilateral cortical regions and (2) the diffusion imaging characteristics of the resulting tracts were analyzed using a machine-learning method called support vector machine in order to optimize the selection of a set of imaging features that maximally discriminated 22q11.2DS and comparison subjects. With this unique approach, we both confirmed previously-recognized 22q11.2DS-related abnormalities in the inferior longitudinal fasciculus (ILF), and identified, for the first time, 22q11.2DS-related anomalies in the middle longitudinal fascicle and the extreme capsule, which may have been overlooked in previous, hypothesis-guided studies. We further observed that, in participants with 22q11.2DS, ILF metrics were significantly associated with positive prodromal symptoms of psychosis.
Collapse
Key Words
- (-fp), fronto-parietal aspect
- (-to), temporo-occipital aspect
- (-tp), temporo-parietal aspect
- (22q11.2DS), 22q11.2 deletion syndrome
- (AD), axial diffusivity
- (DTI), diffusion tensor imaging
- (DWI), diffusion weighted image
- (EmC), extreme capsule
- (FA), fractional anisotropy
- (FOV), field of view
- (GDS), Gordon Diagnostic Systems
- (ILF), inferior longitudinal fasciculus
- (MdLF), middle longitudinal fascicle
- (RD), radial diffusivity
- (ROI), region of interest
- (SIPS), Structured Interview for Prodromal Syndromes
- (SRS), Social Responsiveness Scale
- (STG), superior temporal gyrus
- (SVM), support vector machine
- (UKF), Unscented Kalman Filter
- (WAIS-III), Wechsler Adult Intelligence Scale – 3rd edition
- (WMQL), white matter query language
- (dTP), dorsal temporal pole
- 22q11.2 deletion syndrome
- Callosal asymmetry
- Diffusion tensor imaging
- Extreme capsule
- Inferior longitudinal fasciculus
- Machine-learning
- Middle longitudinal fascicle
- Support vector machine
- Velocardiofacial syndrome
- White matter query language
Collapse
Affiliation(s)
- Daniel S Tylee
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA
| | - Zora Kikinis
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Thomas P Quinn
- Bioinformatics Core Research Group, Deakin University, Geelong, Victoria, Australia
| | | | - Wanda Fremont
- Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Muhammad A Tahir
- Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA
| | - Anni Zhu
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xue Gong
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen J Glatt
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Ioana L Coman
- Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Harvard Medical School, Brockton, MA, USA.
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Nikos Makris
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Thompson CA, Karelis J, Middleton FA, Gentile K, Coman IL, Radoeva PD, Mehta R, Fremont WP, Antshel KM, Faraone SV, Kates WR. Associations between neurodevelopmental genes, neuroanatomy, and ultra high risk symptoms of psychosis in 22q11.2 deletion syndrome. Am J Med Genet B Neuropsychiatr Genet 2017; 174:295-314. [PMID: 28139055 DOI: 10.1002/ajmg.b.32515] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 11/07/2016] [Indexed: 11/06/2022]
Abstract
22q11.2 deletion syndrome is a neurogenetic disorder resulting in the deletion of over 40 genes. Up to 40% of individuals with 22q11.2DS develop schizophrenia, though little is known about the underlying mechanisms. We hypothesized that allelic variation in functional polymorphisms in seven genes unique to the deleted region would affect lobar brain volumes, which would predict risk for psychosis in youth with 22q11.2DS. Participants included 56 individuals (30 males) with 22q11.2DS. Anatomic MR images were collected and processed using Freesurfer. Participants were genotyped for 10 SNPs in the COMT, DGCR8, GNB1L, PIK4CA, PRODH, RTN4R, and ZDHHC8 genes. All subjects were assessed for ultra high risk symptoms of psychosis. Allelic variation of the rs701428 SNP of RTN4R was significantly associated with volumetric differences in gray matter of the lingual gyrus and cuneus of the occipital lobe. Moreover, occipital gray matter volumes were robustly associated with ultra high risk symptoms of psychosis in the presence of the G allele of rs701428. Our results suggest that RTN4R, a relatively under-studied gene at the 22q11 locus, constitutes a susceptibility gene for psychosis in individuals with this syndrome through its alteration of the architecture of the brain. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carlie A Thompson
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Jason Karelis
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Frank A Middleton
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York.,Department of Neuroscience, SUNY Upstate Medical University, Syracuse, New York
| | - Karen Gentile
- Department of Neuroscience, SUNY Upstate Medical University, Syracuse, New York
| | - Ioana L Coman
- Department of Computer Science, SUNY Oswego, Oswego, New York
| | - Petya D Radoeva
- Department of Psychiatry, University of Washington, Seattle, Washington
| | - Rashi Mehta
- Department of Radiology, SUNY Upstate Medical University, Syracuse, New York
| | - Wanda P Fremont
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Kevin M Antshel
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York.,Department of Psychology, Syracuse University, Syracuse, New York
| | - Stephen V Faraone
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
10
|
Radoeva PD, Bansal R, Antshel KM, Fremont W, Peterson BS, Kates WR. Longitudinal study of cerebral surface morphology in youth with 22q11.2 deletion syndrome, and association with positive symptoms of psychosis. J Child Psychol Psychiatry 2017; 58:305-314. [PMID: 27786353 PMCID: PMC5340081 DOI: 10.1111/jcpp.12657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11DS) is a genetic disorder that greatly increases risk of developing schizophrenia. We previously characterized cerebral surface morphology trajectories from late childhood to mid adolescence in a cohort of youth with 22q11DS. Herein, we extend the study period into early adulthood, and describe further the trajectories associated with severe psychiatric symptoms in this cohort. METHODS Participants included 76 youth with 22q11DS and 30 unaffected siblings, assessed at three timepoints, during which high resolution, anatomic magnetic resonance images were acquired. High-dimensional, nonlinear warping algorithms were applied to images in order to derive characteristics of cerebral surface morphology for each participant at each timepoint. Repeated-measures, linear regressions using a mixed model were conducted, while covarying for age and sex. RESULTS Alterations in cerebral surface morphology during late adolescence/early adulthood in individuals with 22q11DS were observed in the lateral frontal, orbitofrontal, temporal, parietal, occipital, and cerebellar regions. An Age x Diagnosis interaction revealed that relative to unaffected siblings, individuals with 22q11DS showed age-related surface protrusions in the prefrontal cortex (which remained stable or increased during early adulthood), and surface indentations in posterior regions (which seemed to level off during late adolescence). Symptoms of psychosis were associated with a trajectory of surface indentations in the orbitofrontal and parietal regions. CONCLUSIONS These results advance our understanding of cerebral maturation in individuals with 22q11DS, and provide clinically relevant information about the psychiatric phenotype associated with the longitudinal trajectory of cortical surface morphology in youth with this genetic syndrome.
Collapse
Affiliation(s)
- Petya D. Radoeva
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Ravi Bansal
- Children’s Hospital Los Angeles and the Keck School of Medicine at the University of Southern California, Los Angeles, California, USA
| | - Kevin M. Antshel
- Department of Psychology, Syracuse University, Syracuse, New York, USA
| | - Wanda Fremont
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Bradley S. Peterson
- Children’s Hospital Los Angeles and the Keck School of Medicine at the University of Southern California, Los Angeles, California, USA
| | - Wendy R. Kates
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
11
|
Bostelmann M, Schneider M, Padula MC, Maeder J, Schaer M, Scariati E, Debbané M, Glaser B, Menghetti S, Eliez S. Visual memory profile in 22q11.2 microdeletion syndrome: are there differences in performance and neurobiological substrates between tasks linked to ventral and dorsal visual brain structures? A cross-sectional and longitudinal study. J Neurodev Disord 2016; 8:41. [PMID: 27843501 PMCID: PMC5105283 DOI: 10.1186/s11689-016-9174-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/25/2016] [Indexed: 01/21/2023] Open
Abstract
Background Children affected by the 22q11.2 deletion syndrome (22q11.2DS) have a specific neuropsychological profile with strengths and weaknesses in several cognitive domains. Specifically, previous evidence has shown that patients with 22q11.2DS have more difficulties memorizing faces and visual-object characteristics of stimuli. In contrast, they have better performance in visuo-spatial memory tasks. The first focus of this study was to replicate these results in a larger sample of patients affected with 22q11.2DS and using a range of memory tasks. Moreover, we analyzed if the deficits were related to brain morphology in the structures typically underlying these abilities (ventral and dorsal visual streams). Finally, since the longitudinal development of visual memory is not clearly characterized in 22q11.2DS, we investigated its evolution from childhood to adolescence. Methods Seventy-one patients with 22q11.2DS and 49 control individuals aged between 9 and 16 years completed the Benton Visual Retention Test (BVRT) and specific subtests assessing visual memory from the Children’s Memory Scale (CMS). The BVRT was used to compute spatial and object memory errors. For the CMS, specific subtests were classified into ventral, dorsal, and mixed subtests. Longitudinal data were obtained from a subset of 26 patients and 22 control individuals. Results Cross-sectional results showed that patients with 22q11.2DS were impaired in all visual memory measures, with stronger deficits in visual-object memory and memory of faces, compared to visuo-spatial memory. No correlations between morphological brain impairments and visual memory were found in patients with 22q11.2DS. Longitudinal findings revealed that participants with 22q11.2DS made more object memory errors than spatial memory errors at baseline. This difference was no longer significant at follow-up. Conclusions Individuals with 22q11.2DS have impairments in visual memory abilities, with more pronounced difficulties in memorizing faces and visual-object characteristics. From childhood to adolescence, the visual cognitive profile of patients with 22q11.2DS seems globally stable even though some processes show an evolution with time. We hope that our results will help clinicians and caregivers to better understand the memory difficulties of young individuals with 22q11.2DS. This has a particular importance at school to facilitate recommendations concerning intervention strategies for these young patients.
Collapse
Affiliation(s)
- Mathilde Bostelmann
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland ; Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Maude Schneider
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland ; Center for Contextual Psychiatry, Department of Neuroscience, KU Leuven, Leuven, Belgium
| | - Maria Carmela Padula
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Johanna Maeder
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Marie Schaer
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland ; Stanford Cognitive and Systems Neuroscience Laboratory, Stanford University School of Medicine, California, USA
| | - Elisa Scariati
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Martin Debbané
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland ; Adolescence Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland ; Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Bronwyn Glaser
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Sarah Menghetti
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Stephan Eliez
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland ; Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Scariati E, Schaer M, Karahanoglu I, Schneider M, Richiardi J, Debbané M, Van De Ville D, Eliez S. Large-scale functional network reorganization in 22q11.2 deletion syndrome revealed by modularity analysis. Cortex 2016; 82:86-99. [PMID: 27371790 DOI: 10.1016/j.cortex.2016.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 02/16/2016] [Accepted: 06/03/2016] [Indexed: 12/11/2022]
Abstract
The 22q11.2 deletion syndrome (22q11DS) is associated with cognitive impairments and a 41% risk of developing schizophrenia. While several studies performed on patients with 22q11DS showed the presence of abnormal functional connectivity in this syndrome, how these alterations affect large-scale network organization is still unknown. Here we performed a network modularity analysis on whole-brain functional connectomes derived from the resting-state fMRI of 40 patients with 22q11DS and 41 healthy control participants, aged between 9 and 30 years old. We then split the sample at 18 years old to obtain two age subgroups and repeated the modularity analyses. We found alterations of modular communities affecting the visuo-spatial network and the anterior cingulate cortex (ACC) in both age groups. These results corroborate previous structural and functional studies in 22q11DS that showed early impairment of visuo-spatial processing regions. Furthermore, as ACC has been linked to the development of psychotic symptoms in 22q11DS, the early impairment of its functional connectivity provide further support that ACC alterations may provide potential biomarkers for an increased risk of schizophrenia. Finally, we found an abnormal modularity partition of the dorsolateral prefrontal cortex (DLPFC) only in adults with 22q11DS, suggesting the presence of an abnormal development of functional network communities during adolescence in 22q11DS.
Collapse
Affiliation(s)
- Elisa Scariati
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva 8, Switzerland.
| | - Marie Schaer
- Stanford Cognitive and Systems Neuroscience Laboratory, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Isik Karahanoglu
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva 8, Switzerland; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Medical Image Processing Lab, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maude Schneider
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva 8, Switzerland
| | - Jonas Richiardi
- Laboratory for Neurology and imaging of Cognition, Department of Fundamental Neurosciences, University of Geneva, Switzerland
| | - Martin Debbané
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva 8, Switzerland; Adolescence Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; Medical Image Processing Lab, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stephan Eliez
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Geneva 8, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
13
|
Scariati E, Padula MC, Schaer M, Eliez S. Long-range dysconnectivity in frontal and midline structures is associated to psychosis in 22q11.2 deletion syndrome. J Neural Transm (Vienna) 2016; 123:823-39. [PMID: 27094177 DOI: 10.1007/s00702-016-1548-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/04/2016] [Indexed: 12/23/2022]
Abstract
Patients affected by 22q11.2 deletion syndrome (22q11DS) present a characteristic cognitive and psychiatric profile and have a genetic predisposition to develop schizophrenia. Although brain morphological alterations have been shown in the syndrome, they do not entirely account for the complex clinical picture of the patients with 22q11DS and for their high risk of psychotic symptoms. Since Friston proposed the "disconnection hypothesis" in 1998, schizophrenia is commonly considered as a disorder of brain connectivity. In this study, we review existing evidence pointing to altered brain structural and functional connectivity in 22q11DS, with a specific focus on the role of dysconnectivity in the emergence of psychotic symptoms. We show that widespread alterations of structural and functional connectivity have been described in association with 22q11DS. Moreover, alterations involving long-range association tracts as well as midline structures, such as the corpus callosum and the cingulate gyrus, have been associated with psychotic symptoms in this population. These results suggest common mechanisms for schizophrenia in syndromic and non-syndromic populations. Future directions for investigations are also discussed.
Collapse
Affiliation(s)
- E Scariati
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Rue David-Dufour 1, Case Postale 50, 1211, Genève 8, Switzerland.
| | - M C Padula
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Rue David-Dufour 1, Case Postale 50, 1211, Genève 8, Switzerland.
| | - M Schaer
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Rue David-Dufour 1, Case Postale 50, 1211, Genève 8, Switzerland.,Stanford Cognitive and Systems Neuroscience Laboratory, Stanford University, Stanford, CA, USA
| | - S Eliez
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Rue David-Dufour 1, Case Postale 50, 1211, Genève 8, Switzerland.,Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Váša F, Griffa A, Scariati E, Schaer M, Urben S, Eliez S, Hagmann P. An affected core drives network integration deficits of the structural connectome in 22q11.2 deletion syndrome. NEUROIMAGE-CLINICAL 2015; 10:239-49. [PMID: 26870660 PMCID: PMC4711395 DOI: 10.1016/j.nicl.2015.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/06/2015] [Accepted: 11/24/2015] [Indexed: 01/01/2023]
Abstract
Chromosome 22q11.2 deletion syndrome (22q11DS) is a genetic disease known to lead to cerebral structural alterations, which we study using the framework of the macroscopic white-matter connectome. We create weighted connectomes of 44 patients with 22q11DS and 44 healthy controls using diffusion tensor magnetic resonance imaging, and perform a weighted graph theoretical analysis. After confirming global network integration deficits in 22q11DS (previously identified using binary connectomes), we identify the spatial distribution of regions responsible for global deficits. Next, we further characterize the dysconnectivity of the deficient regions in terms of sub-network properties, and investigate their relevance with respect to clinical profiles. We define the subset of regions with decreased nodal integration (evaluated using the closeness centrality measure) as the affected core (A-core) of the 22q11DS structural connectome. A-core regions are broadly bilaterally symmetric and consist of numerous network hubs — chiefly parietal and frontal cortical, as well as subcortical regions. Using a simulated lesion approach, we demonstrate that these core regions and their connections are particularly important to efficient network communication. Moreover, these regions are generally densely connected, but less so in 22q11DS. These specific disturbances are associated to a rerouting of shortest network paths that circumvent the A-core in 22q11DS, “de-centralizing” the network. Finally, the efficiency and mean connectivity strength of an orbito-frontal/cingulate circuit, included in the affected regions, correlate negatively with the extent of negative symptoms in 22q11DS patients, revealing the clinical relevance of present findings. The identified A-core overlaps numerous regions previously identified as affected in 22q11DS as well as in schizophrenia, which approximately 30–40% of 22q11DS patients develop. Graph theory confirms reduced integration in 22q11.2 deletion syndrome (22q11DS). An “affected core” (A-core) of hub regions drives global integration deficits. The A-core is generally densely connected, but less so in 22q11DS. Shortest network paths are rerouted around the A-core in 22q11DS. Connectivity of a subset of A-core regions correlates with negative symptoms.
Collapse
Affiliation(s)
- František Váša
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Alessandra Griffa
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Elisa Scariati
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Marie Schaer
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Geneva, Switzerland; Stanford Cognitive and Systems Neuroscience Laboratory, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sébastien Urben
- Service Universitaire de Psychiatrie de l'Enfant et de l'Adolescent (SUPEA), Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Stephan Eliez
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
15
|
Abstract
22q11.2 Deletion syndrome (22q11.2DS) is a chromosomal microdeletion that affects approximately 40 to 50 genes and affects various organs and systems throughout the body. Detection is typically achieved by fluorescence in situ hybridization after diagnosis of one of the major features of the deletion or via chromosomal microarray or noninvasive prenatal testing. The physical phenotype can include congenital heart defects, palatal and pharyngeal anomalies, hypocalcemia/hypoparathyroidism, skeletal abnormalities, and cranial/brain anomalies, although prevalence rates of all these features are variable. Cognitive function is impaired to some degree in most individuals, with prevalence rates of greater than 90% for motor/speech delays and learning disabilities. Attention, executive function, working memory, visual-spatial abilities, motor skills, and social cognition/social skills are affected. The deletion is also associated with an increased risk for behavioral disorders and psychiatric illness. The early onset of psychiatric symptoms common to 22q11.2DS disrupts the development and quality of life of individuals with the syndrome and is also a potential risk factor for later development of a psychotic disorder. This review discusses prevalence, phenotypic features, and management of psychiatric disorders commonly diagnosed in children and adolescents with 22q11.2DS, including autism spectrum disorders, attention deficit/hyperactivity disorder, anxiety disorders, mood disorders, and schizophrenia/psychotic disorders. Guidelines for the clinical assessment and management of psychiatric disorders in youth with this syndrome are provided, as are treatment guidelines for the use of psychiatric medications.
Collapse
|
16
|
Padula MC, Schaer M, Scariati E, Schneider M, Van De Ville D, Debbané M, Eliez S. Structural and functional connectivity in the default mode network in 22q11.2 deletion syndrome. J Neurodev Disord 2015; 7:23. [PMID: 26236404 PMCID: PMC4522079 DOI: 10.1186/s11689-015-9120-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 06/25/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The neural endophenotype associated with 22q11.2 deletion syndrome (22q11DS) includes deviant cortical development and alterations in brain connectivity. Resting-state functional magnetic resonance imaging (fMRI) findings also reported disconnectivity within the default mode network (DMN). In this study, we explored the relationship between functional and structural DMN connectivity and their changes with age in patients with 22q11DS in comparison to control participants. Given previous evidence of an association between DMN disconnectivity and the manifestation of psychotic symptoms, we further investigated this relationship in our group of patients with 22q11DS. METHODS T1-weighted, diffusion, and resting-state fMRI scans were acquired from 41 patients with 22q11DS and 43 control participants aged 6 to 28 years. A data-driven approach based on independent component analysis (ICA) was used to identify the DMN and to define regions of interest for the structural and functional connectivity analysis. Prodromal psychotic symptoms were assessed in adolescents and adults using the positive symptom scores of the Structured Interview of Prodromal Syndromes (SIPS). Connectivity measures were compared between groups and correlated with age. Repeating the between-group analysis in three different age bins further assessed the presence of age-related alterations in DMN connectivity. Structural and functional connectivity measures were then correlated with the SIPS scores. RESULTS A simultaneous reduction of functional and structural connectivity between core medial nodes of the DMN was observed. Furthermore, structural connectivity measures significantly increased with age in the control group but not in patients with 22q11DS, suggesting the presence of an age-related alteration of the DMN structural connections. No correlations were found between the DMN disconnectivity and expression of prodromal symptoms in 22q11DS. CONCLUSIONS These findings indicate the presence of functional and structural DMN disconnectivity in 22q11DS and that patients with 22q11DS fail to develop normal structural connections between medial DMN nodes. This suggests the presence of altered neurodevelopmental trajectories in 22q11DS.
Collapse
Affiliation(s)
- Maria Carmela Padula
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Rue David-Dufour 1, Case Postale 50, 1211 Genève 8, Switzerland
| | - Marie Schaer
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Rue David-Dufour 1, Case Postale 50, 1211 Genève 8, Switzerland ; Stanford Cognitive and Systems Neuroscience Laboratory, Stanford University, Stanford, CA USA
| | - Elisa Scariati
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Rue David-Dufour 1, Case Postale 50, 1211 Genève 8, Switzerland
| | - Maude Schneider
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Rue David-Dufour 1, Case Postale 50, 1211 Genève 8, Switzerland
| | - Dimitri Van De Ville
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland ; Medical Image Processing Lab, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Martin Debbané
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Rue David-Dufour 1, Case Postale 50, 1211 Genève 8, Switzerland ; Adolescence Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, Geneva, Switzerland ; Research Department of Clinical, Educational and Health Psychology, University College London, London, U K
| | - Stephan Eliez
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Rue David-Dufour 1, Case Postale 50, 1211 Genève 8, Switzerland ; Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Vinette SA, Bray S. Variation in functional connectivity along anterior-to-posterior intraparietal sulcus, and relationship with age across late childhood and adolescence. Dev Cogn Neurosci 2015; 13:32-42. [PMID: 25951196 PMCID: PMC6989812 DOI: 10.1016/j.dcn.2015.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 04/12/2015] [Accepted: 04/13/2015] [Indexed: 11/23/2022] Open
Abstract
The intraparietal sulcus (IPS), a region in the dorsal attention network (DAN), has been implicated in multi-sensory attention and working memory. Working memory and attention develop across childhood; changes in functional connectivity within the DAN may relate to this maturation. Previous findings regarding fronto-parietal intrinsic functional connectivity age-effects were mixed. Our study aimed to circumvent limitations of previous work using a large cross-sectional sample, 183 typically developing participants 6.5-20 years, from the Autism Brain Imaging Data Exchange, and seed regions along the anterior-to-posterior axis of the IPS. These seeds, IPS0-4, were entered into functional connectivity models. Group-level models investigated differential connectivity along the IPS and relationships with age. Anterior IPS3/4 exhibited greater connectivity with sensorimotor/pre-motor regions. Posterior IPS0/1 demonstrated greater connectivity with dorsal and ventral visual regions. Positive age-effects were found between IPS3-4 and visual regions. Negative age-effects were found between IPS and superior parietal and medial orbitofrontal cortices. Follow-up region of interest analyses were used to estimate age-effects for DAN and anticorrelated default mode network regions. Results suggest age-effects on IPS functional connectivity are relatively modest, and may differ pre- and across-adolescence. Studying typical age-related connectivity variability within this network may help to understand neurodevelopmental disorders marked by impaired attention.
Collapse
Affiliation(s)
- Sarah A Vinette
- Alberta Children's Hospital Research Institute, Room 293, Heritage Medical Research Building, 3330 Hospital Drive, NW, Calgary, AB, Canada T2N 4N1; Department of Radiology, Cumming School of Medicine, University of Calgary, Room 812, North Tower, Foothills Medical Centre, 1403 - 29th Street NW, Calgary, AB, Canada T2N 2T9; Child and Adolescent Imaging Research Program, Alberta Children's Hospital, 2888 Shaganappi Trail NW, Calgary, AB, Canada T3B 6A8.
| | - Signe Bray
- Alberta Children's Hospital Research Institute, Room 293, Heritage Medical Research Building, 3330 Hospital Drive, NW, Calgary, AB, Canada T2N 4N1; Department of Radiology, Cumming School of Medicine, University of Calgary, Room 812, North Tower, Foothills Medical Centre, 1403 - 29th Street NW, Calgary, AB, Canada T2N 2T9; Department of Paediatrics, Cumming School of Medicine, University of Calgary, 2888 Shaganappi Trail NW, Calgary, AB, Canada T3B 6A8; Child and Adolescent Imaging Research Program, Alberta Children's Hospital, 2888 Shaganappi Trail NW, Calgary, AB, Canada T3B 6A8.
| |
Collapse
|
18
|
Deng Y, Goodrich-Hunsaker NJ, Cabaral M, Amaral DG, Buonocore MH, Harvey D, Kalish K, Carmichael O, Schumann CM, Lee A, Dougherty RF, Perry LM, Wandell BA, Simon TJ. Disrupted fornix integrity in children with chromosome 22q11.2 deletion syndrome. Psychiatry Res 2015; 232:106-14. [PMID: 25748884 PMCID: PMC4404209 DOI: 10.1016/j.pscychresns.2015.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/30/2014] [Accepted: 02/04/2015] [Indexed: 01/25/2023]
Abstract
The fornix is the primary subcortical output fiber system of the hippocampal formation. In children with 22q11.2 deletion syndrome (22q11.2DS), hippocampal volume reduction has been commonly reported, but few studies as yet have evaluated the integrity of the fornix. Therefore, we investigated the fornix of 45 school-aged children with 22q11.2DS and 38 matched typically developing (TD) children. Probabilistic diffusion tensor imaging (DTI) tractography was used to reconstruct the body of the fornix in each child׳s brain native space. Compared with children, significantly lower fractional anisotropy (FA) and higher radial diffusivity (RD) was observed bilaterally in the body of the fornix in children with 22q11.2DS. Irregularities were especially prominent in the posterior aspect of the fornix where it emerges from the hippocampus. Smaller volumes of the hippocampal formations were also found in the 22q11.2DS group. The reduced hippocampal volumes were correlated with lower fornix FA and higher fornix RD in the right hemisphere. Our findings provide neuroanatomical evidence of disrupted hippocampal connectivity in children with 22q11.2DS, which may help to further understand the biological basis of spatial impairments, affective regulation, and other factors related to the ultra-high risk for schizophrenia in this population.
Collapse
Affiliation(s)
- Yi Deng
- Department of Psychiatry and Behavioral Sciences and the MIND Institute, University of California, Davis, Sacramento, CA 95817, USA
| | - Naomi J. Goodrich-Hunsaker
- Department of Psychiatry and Behavioral Sciences and the MIND Institute, University of California, Davis, Sacramento, CA 95817, USA
| | - Margarita Cabaral
- Department of Psychiatry and Behavioral Sciences and the MIND Institute, University of California, Davis, Sacramento, CA 95817, USA
| | - David G. Amaral
- Department of Psychiatry and Behavioral Sciences and the MIND Institute, University of California, Davis, Sacramento, CA 95817, USA
| | - Michael H. Buonocore
- Department of Radiology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA 95616, USA
| | - Kristopher Kalish
- Graduate Group in Computer Science, University of California, Davis, CA 95616, USA
| | - Owen Carmichael
- Graduate Group in Computer Science, University of California, Davis, CA 95616, USA, Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Cynthia M. Schumann
- Department of Psychiatry and Behavioral Sciences and the MIND Institute, University of California, Davis, Sacramento, CA 95817, USA
| | - Aaron Lee
- Department of Psychiatry and Behavioral Sciences and the MIND Institute, University of California, Davis, Sacramento, CA 95817, USA
| | | | - Lee M. Perry
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Brian A. Wandell
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Tony J. Simon
- Department of Psychiatry and Behavioral Sciences and the MIND Institute, University of California, Davis, Sacramento, CA 95817, USA,Address correspondence to Dr Tony J. Simon, MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95817, USA. Telephone: (916)-703-0407. Facsimile: (916)-703-0244.
| |
Collapse
|
19
|
Kates WR, Olszewski AK, Gnirke MH, Kikinis Z, Nelson J, Antshel KM, Fremont W, Radoeva PD, Middleton FA, Shenton ME, Coman IL. White matter microstructural abnormalities of the cingulum bundle in youths with 22q11.2 deletion syndrome: associations with medication, neuropsychological function, and prodromal symptoms of psychosis. Schizophr Res 2015; 161:76-84. [PMID: 25066496 PMCID: PMC4277733 DOI: 10.1016/j.schres.2014.07.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND The 22q11.2 deletion syndrome (22q11.2DS) is regarded as an etiologically homogenous model for understanding neuroanatomic disruptions associated with a high risk for schizophrenia. This study utilized diffusion tensor imaging (DTI) to analyze white matter microstructure in individuals with 22q11.2DS. We focused on the cingulum bundle (CB), previously shown to be disrupted in patients with schizophrenia and associated with symptoms of psychosis. METHODS White matter microstructure was assessed in the anterior, superior, and posterior CB using the tractography algorithm in DTIStudio. Neuropsychological function, presence of prodromal symptoms of psychosis, and medication history were assessed in all participants. RESULTS Relative to controls, young adults with 22q11.2DS showed alterations in most DTI metrics of the CB. Alterations were associated with positive prodromal symptoms of psychosis. However, when individuals with 22q11.2DS were divided by usage of antipsychotics/mood stabilizers, the medicated and non-medicated groups differed significantly in axial diffusivity of the anterior CB and in fractional anisotropy of the superior CB. DTI metrics did not differ between the medicated group and the control group. CONCLUSIONS Results suggest that the microstructure of the CB is altered in individuals with 22q11.2DS, and that those alterations may underlie positive prodromal symptoms of psychosis. Our findings further provide preliminary evidence that antipsychotic/mood stabilizer usage may have a reparative effect on white matter microstructure in prodromal 22q11.2DS, independent of the potential effects of psychosis. Future studies of white matter pathology in individuals with 22q11.2DS should test for potential effects of medication on white matter microstructure.
Collapse
Affiliation(s)
- Wendy R Kates
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, NY, United States.
| | - Amy K Olszewski
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, NY, United States
| | - Matthew H Gnirke
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, NY, United States
| | - Zora Kikinis
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua Nelson
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, NY, United States
| | - Kevin M Antshel
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, NY, United States; Department of Psychology, Syracuse University, Syracuse, NY, United States
| | - Wanda Fremont
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, NY, United States
| | - Petya D Radoeva
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, NY, United States
| | - Frank A Middleton
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, NY, United States; Department of Neuroscience and Physiology, State University of New York at Upstate Medical University, Syracuse, NY, United States
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; VA Boston Healthcare System, Brockton Division, Brockton, MA, United States
| | - Ioana L Coman
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
20
|
Kikinis Z, Makris N, Finn CT, Bouix S, Lucia D, Coleman MJ, Tworog-Dube E, Kikinis R, Kucherlapati R, Shenton ME, Kubicki M. Genetic contributions to changes of fiber tracts of ventral visual stream in 22q11.2 deletion syndrome. Brain Imaging Behav 2014; 7:316-25. [PMID: 23612843 DOI: 10.1007/s11682-013-9232-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Patients with 22q11.2 deletion syndrome (22q11.2DS) represent a population at high risk for developing schizophrenia, as well as learning disabilities. Deficits in visuo-spatial memory are thought to underlie some of the cognitive disabilities. Neuronal substrates of visuo-spatial memory include the inferior fronto-occipital fasciculus (IFOF) and the inferior longitudinal fasciculus (ILF), two tracts that comprise the ventral visual stream. Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) is an established method to evaluate white matter (WM) connections in vivo. DT-MRI scans of nine 22q11.2DS young adults and nine matched healthy subjects were acquired. Tractography of the IFOF and the ILF was performed. DT-MRI indices, including Fractional anisotropy (FA, measure of WM changes), axial diffusivity (AD, measure of axonal changes) and radial diffusivity (RD, measure of myelin changes) of each of the tracts and each group were measured and compared. The 22q11.2DS group showed statistically significant reductions of FA in IFOF in the left hemisphere. Additionally, reductions of AD were found in the IFOF and the ILF in both hemispheres. These findings might be the consequence of axonal changes, which is possibly due to fewer, thinner, or less organized fibers. No changes in RD were detected in any of the tracts delineated, which is in contrast to findings in schizophrenia patients where increases in RD are believed to be indicative of demyelination. We conclude that reduced axonal changes may be key to understanding the underlying pathology of WM leading to the visuo-spatial phenotype in 22q11.2DS.
Collapse
Affiliation(s)
- Zora Kikinis
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, 1249 Boylston Street, Boston, MA, 02115, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shapiro HM, Tassone F, Choudhary NS, Simon TJ. The development of cognitive control in children with chromosome 22q11.2 deletion syndrome. Front Psychol 2014; 5:566. [PMID: 24959159 PMCID: PMC4050531 DOI: 10.3389/fpsyg.2014.00566] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/22/2014] [Indexed: 11/13/2022] Open
Abstract
Chromosome 22q11.2 Deletion Syndrome (22q11.2DS) is caused by the most common human microdeletion, and it is associated with cognitive impairments across many domains. While impairments in cognitive control have been described in children with 22q11.2DS, the nature and development of these impairments are not clear. Children with 22q11.2DS and typically developing children (TD) were tested on four well-validated tasks aimed at measuring specific foundational components of cognitive control: response inhibition, cognitive flexibility, and working memory. Molecular assays were also conducted in order to examine genotype of catechol-O-methyltransferase (COMT), a gene located within the deleted region in 22q11.2DS and hypothesized to play a role in cognitive control. Mixed model regression analyses were used to examine group differences, as well as age-related effects on cognitive control component processes in a cross-sectional analysis. Regression models with COMT genotype were also conducted in order to examine potential effects of the different variants of the gene. Response inhibition, cognitive flexibility, and working memory were impaired in children with 22q11.2DS relative to TD children, even after accounting for global intellectual functioning (as measured by full-scale IQ). When compared with TD individuals, children with 22q11.2DS demonstrated atypical age-related patterns of response inhibition and cognitive flexibility. Both groups demonstrated typical age-related associations with working memory. The results of this cross-sectional analysis suggest a specific aberration in the development of systems mediating response inhibition in a sub-set of children with 22q11.2DS. It will be important to follow up with longitudinal analyses to directly examine these developmental trajectories, and correlate neurocognitive variables with clinical and adaptive outcome measures.
Collapse
Affiliation(s)
- Heather M Shapiro
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California at Davis Sacramento, CA, USA
| | - Flora Tassone
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California at Davis Sacramento, CA, USA ; Department of Biochemistry and Molecular Medicine, University of California at Davis Sacramento, CA, USA
| | - Nimrah S Choudhary
- Department of Biochemistry and Molecular Medicine, University of California at Davis Sacramento, CA, USA
| | - Tony J Simon
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California at Davis Sacramento, CA, USA
| |
Collapse
|
22
|
Wong LM, Riggins T, Harvey D, Cabaral M, Simon TJ. Children with chromosome 22q11.2 deletion syndrome exhibit impaired spatial working memory. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2014; 119:115-32. [PMID: 24679349 PMCID: PMC4036086 DOI: 10.1352/1944-7558-119.2.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS) have been shown to have impairments in processing spatiotemporal information. The authors examined whether children with 22q11.2DS exhibit impairments in spatial working memory performance due to these weaknesses, even when controlling for maintenance of attention. Children with 22q11.2DS (n = 47) and typically developing controls (n = 49) ages 6-15 years saw images within a grid and after a delay, then indicated the positions of the images in the correct temporal order. Children with 22q11.2DS made more spatial and temporal errors than controls. Females with 22q11.2DS made more spatial and temporal errors than males. These results extend findings of impaired spatiotemporal processing into the memory domain in 22q11.2DS by documenting their influence on working memory performance.
Collapse
Affiliation(s)
- Ling M Wong
- MIND Institute and University of California, Davis, Psychiatry and Behavioral Sciences, 2825 50th Street, Rm. 1357, Sacramento, CA 95616, USA
| | | | | | | | | |
Collapse
|
23
|
Scariati E, Schaer M, Richiardi J, Schneider M, Debbané M, Van De Ville D, Eliez S. Identifying 22q11.2 Deletion Syndrome and Psychosis Using Resting-State Connectivity Patterns. Brain Topogr 2014; 27:808-21. [DOI: 10.1007/s10548-014-0356-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 02/12/2014] [Indexed: 11/30/2022]
|
24
|
Abstract
Recently, there has been a wealth of research into structural and functional brain connectivity, and how they change over development. While we are far from a complete understanding, these studies have yielded important insights into human brain development. There is an ever growing variety of methods for assessing connectivity, each with its own advantages. Here we review research on the development of structural and/or functional brain connectivity in both typically developing subjects and subjects with neurodevelopmental disorders. Space limitations preclude an exhaustive review of brain connectivity across all developmental disorders, so we review a representative selection of recent findings on brain connectivity in autism, Fragile X, 22q11.2 deletion syndrome, Williams syndrome, Turner syndrome, and ADHD. Major strides have been made in understanding the developmental trajectory of the human connectome, offering insight into characteristic features of brain development and biological processes involved in developmental brain disorders. We also discuss some common themes, including hemispheric specialization - or asymmetry - and sex differences. We conclude by discussing some promising future directions in connectomics, including the merger of imaging and genetics, and a deeper investigation of the relationships between structural and functional connectivity.
Collapse
Affiliation(s)
- Emily L Dennis
- Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA School of Medicine, 635 Charles Young Drive South, Suite 225, Los Angeles, CA 90095-7334, USA.
| | - Paul M Thompson
- Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA School of Medicine, 635 Charles Young Drive South, Suite 225, Los Angeles, CA 90095-7334, USA
| |
Collapse
|
25
|
White matter abnormalities in 22q11.2 deletion syndrome: preliminary associations with the Nogo-66 receptor gene and symptoms of psychosis. Schizophr Res 2014; 152:117-23. [PMID: 24321711 PMCID: PMC3909835 DOI: 10.1016/j.schres.2013.11.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/05/2013] [Accepted: 11/10/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND This study utilized diffusion tensor imaging (DTI) to analyze white matter tractography in the anterior limb of the internal capsule (ALIC), fornix, and uncinate fasciculus (UF) of individuals with 22q11.2 deletion syndrome and controls. Aberrations in these tracts have been previously associated with schizophrenia. With up to 25% of individuals with 22q11.2DS developing schizophrenia in adulthood, we hypothesized reduction in structural integrity of these tracts, including an association with prodromal symptoms of psychosis. We further predicted an association between allelic variation in a functional polymorphism of the Nogo-66 receptor gene and 22q11.2DS white matter integrity. METHODS Tractography was conducted using fiber assignment by streamline tracking algorithm in DTI Studio. Subjects were genotyped for the rs701428 SNP of the Nogo-66 receptor gene, and assessed for presence of prodromal symptoms. RESULTS We found significant group differences between 22q11.2DS and controls in DTI metrics for all three tracts. DTI metrics of ALIC and UF were associated with prodromal symptoms in 22q11.2DS. Further, ALIC DTI metrics were associated with allelic variation of the rs701428 SNP of the Nogo-66 receptor gene in 22q11.2DS. CONCLUSIONS Alterations in DTI metrics suggest white matter microstructural anomalies of the ALIC, fornix, and UF in 22q11.2DS. Structural differences in ALIC appear to be associated with the Nogo-66 receptor gene, which has been linked to myelin-mediated axonal growth inhibition. Moreover, the association between psychosis symptoms and ALIC and UF metrics suggests that the Nogo-66 receptor gene may represent a susceptibility gene for psychosis through its disruption of white matter microstructure and myelin-associated axonal growth.
Collapse
|
26
|
Dennis EL, Thompson PM. Mapping connectivity in the developing brain. Int J Dev Neurosci 2013; 31:525-42. [PMID: 23722009 PMCID: PMC3800504 DOI: 10.1016/j.ijdevneu.2013.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 05/14/2013] [Indexed: 02/07/2023] Open
Abstract
Recently, there has been a wealth of research into structural and functional brain connectivity, and how they change over development. While we are far from a complete understanding, these studies have yielded important insights into human brain development. There is an ever growing variety of methods for assessing connectivity, each with its own advantages. Here we review research on the development of structural and/or functional brain connectivity in both typically developing subjects and subjects with neurodevelopmental disorders. Space limitations preclude an exhaustive review of brain connectivity across all developmental disorders, so we review a representative selection of recent findings on brain connectivity in autism, Fragile X, 22q11.2 deletion syndrome, Williams syndrome, Turner syndrome, and ADHD. Major strides have been made in understanding the developmental trajectory of the human connectome, offering insight into characteristic features of brain development and biological processes involved in developmental brain disorders. We also discuss some common themes, including hemispheric specialization - or asymmetry - and sex differences. We conclude by discussing some promising future directions in connectomics, including the merger of imaging and genetics, and a deeper investigation of the relationships between structural and functional connectivity.
Collapse
Affiliation(s)
- Emily L Dennis
- Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA School of Medicine, 635 Charles Young Drive South, Suite 225, Los Angeles, CA 90095-7334, USA.
| | | |
Collapse
|
27
|
Villalon-Reina J, Jahanshad N, Beaton E, Toga AW, Thompson PM, Simon TJ. White matter microstructural abnormalities in girls with chromosome 22q11.2 deletion syndrome, Fragile X or Turner syndrome as evidenced by diffusion tensor imaging. Neuroimage 2013; 81:441-454. [PMID: 23602925 DOI: 10.1016/j.neuroimage.2013.04.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 04/03/2013] [Accepted: 04/10/2013] [Indexed: 12/19/2022] Open
Abstract
Children with chromosome 22q11.2 deletion syndrome (22q11.2DS), Fragile X syndrome (FXS), or Turner syndrome (TS) are considered to belong to distinct genetic groups, as each disorder is caused by separate genetic alterations. Even so, they have similar cognitive and behavioral dysfunctions, particularly in visuospatial and numerical abilities. To assess evidence for common underlying neural microstructural alterations, we set out to determine whether these groups have partially overlapping white matter abnormalities, relative to typically developing controls. We scanned 101 female children between 7 and 14years old: 25 with 22q11.2DS, 18 with FXS, 17 with TS, and 41 aged-matched controls using diffusion tensor imaging (DTI). Anisotropy and diffusivity measures were calculated and all brain scans were nonlinearly aligned to population and site-specific templates. We performed voxel-based statistical comparisons of the DTI-derived metrics between each disease group and the controls, while adjusting for age. Girls with 22q11.2DS showed lower fractional anisotropy (FA) than controls in the association fibers of the superior and inferior longitudinal fasciculi, the splenium of the corpus callosum, and the corticospinal tract. FA was abnormally lower in girls with FXS in the posterior limbs of the internal capsule, posterior thalami, and precentral gyrus. Girls with TS had lower FA in the inferior longitudinal fasciculus, right internal capsule and left cerebellar peduncle. Partially overlapping neurodevelopmental anomalies were detected in all three neurogenetic disorders. Altered white matter integrity in the superior and inferior longitudinal fasciculi and thalamic to frontal tracts may contribute to the behavioral characteristics of all of these disorders.
Collapse
Affiliation(s)
- Julio Villalon-Reina
- Imaging Genetics Center, Laboratory of Neuro Imaging, Dept. of Neurology, University of California Los Angeles, School of Medicine, Los Angeles, CA 90095, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Laboratory of Neuro Imaging, Dept. of Neurology, University of California Los Angeles, School of Medicine, Los Angeles, CA 90095, USA
| | - Elliott Beaton
- Stress, Cognition, and Affective Neuroscience Laboratory, Department of Psychology, University of New Orleans, New Orleans, LA, 70148
| | - Arthur W Toga
- Laboratory of Neuro Imaging, Dept. of Neurology, University of California Los Angeles, School of Medicine, Los Angeles, CA 90095, USA
| | - Paul M Thompson
- Imaging Genetics Center, Laboratory of Neuro Imaging, Dept. of Neurology, University of California Los Angeles, School of Medicine, Los Angeles, CA 90095, USA.
| | - Tony J Simon
- Dept. of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, 95618, USA; MIND Institute, Dept. of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, 95618, USA
| |
Collapse
|
28
|
Ottet MC, Schaer M, Cammoun L, Schneider M, Debbané M, Thiran JP, Eliez S. Reduced fronto-temporal and limbic connectivity in the 22q11.2 deletion syndrome: vulnerability markers for developing schizophrenia? PLoS One 2013; 8:e58429. [PMID: 23533586 PMCID: PMC3606218 DOI: 10.1371/journal.pone.0058429] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/06/2013] [Indexed: 11/18/2022] Open
Abstract
The 22q11.2 deletion syndrome (22q11DS) is a widely recognized genetic model allowing the study of neuroanatomical biomarkers that underlie the risk for developing schizophrenia. Recent advances in magnetic resonance image analyses enable the examination of structural connectivity integrity, scarcely used in the 22q11DS field. This framework potentially provides evidence for the disconnectivity hypothesis of schizophrenia in this high-risk population. In the present study, we quantify the whole brain white matter connections in 22q11DS using deterministic tractography. Diffusion Tensor Imaging was acquired in 30 affected patients and 30 age- and gender-matched healthy participants. The Human Connectome technique was applied to register white matter streamlines with cortical anatomy. The number of fibers (streamlines) was used as a measure of connectivity for comparison between groups at the global, lobar and regional level. All statistics were corrected for age and gender. Results showed a 10% reduction of the total number of fibers in patients compared to controls. After correcting for this global reduction, preserved connectivity was found within the right frontal and right parietal lobes. The relative increase in the number of fibers was located mainly in the right hemisphere. Conversely, an excessive reduction of connectivity was observed within and between limbic structures. Finally, a disproportionate reduction was shown at the level of fibers connecting the left fronto-temporal regions. We could therefore speculate that the observed disruption to fronto-temporal connectivity in individuals at risk of schizophrenia implies that fronto-temporal disconnectivity, frequently implicated in the pathogenesis of schizophrenia, could precede the onset of symptoms and, as such, constitutes a biomarker of the vulnerability to develop psychosis. On the contrary, connectivity alterations in the limbic lobe play a role in a wide range of psychiatric disorders and therefore seem to be less specific in defining schizophrenia.
Collapse
Affiliation(s)
- Marie-Christine Ottet
- Office Médico-Pédagogique (OMP), University of Geneva School of Medicine, Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
29
|
Vicario CM, Yates MJ, Nicholls MER. Shared deficits in space, time, and quantity processing in childhood genetic disorders. Front Psychol 2013; 4:43. [PMID: 23405055 PMCID: PMC3566548 DOI: 10.3389/fpsyg.2013.00043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/20/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Carmelo M Vicario
- School of Psychology, University of Queensland Brisbane, QLD, Australia
| | | | | |
Collapse
|
30
|
Shapiro HM, Wong LM, Simon TJ. A cross-sectional analysis of the development of response inhibition in children with chromosome 22q11.2 deletion syndrome. Front Psychiatry 2013; 4:81. [PMID: 23966958 PMCID: PMC3736116 DOI: 10.3389/fpsyt.2013.00081] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 07/22/2013] [Indexed: 12/22/2022] Open
Abstract
Chromosome 22q11.2 deletion syndrome (22q11.2DS) is a neurogenetic disorder that is associated with cognitive impairments and significantly elevated risk for developing schizophrenia. While impairments in response inhibition are central to executive dysfunction in schizophrenia, the nature and development of such impairments in children with 22q11.2DS, a group at high risk for the disorder, are not clear. Here we used a classic Go/No-Go paradigm to quantify proactive (anticipatory stopping) and reactive (actual stopping) response inhibition in 47 children with 22q11.2DS and 36 typically developing (TD) children, all ages 7-14. A cross-sectional design was used to examine age-related associations with response inhibition. When compared with TD individuals, children with 22q11.2DS demonstrated typical proactive response inhibition at all ages. By contrast, reactive response inhibition was impaired in children with 22q11.2DS relative to TD children. While older age predicted better reactive response inhibition in TD children, there was no age-related association with reactive response inhibition in children with 22q11.2DS. Closer examination of individual performance data revealed a wide range of performance abilities in older children with 22q11.2DS; some typical and others highly impaired. The results of this cross-sectional analysis suggest an impaired developmental trajectory of reactive response inhibition in some children with 22q11.2DS that might be related to atypical development of neuroanatomical systems underlying this cognitive process. As part of a larger study, this investigation might help identify risk factors for conversion to schizophrenia and lead to early diagnosis and preventive intervention.
Collapse
Affiliation(s)
- Heather M Shapiro
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis , Sacramento, CA , USA
| | | | | |
Collapse
|
31
|
Kikinis Z, Asami T, Bouix S, Finn CT, Ballinger T, Tworog-Dube E, Kucherlapati R, Kikinis R, Shenton ME, Kubicki M. Reduced fractional anisotropy and axial diffusivity in white matter in 22q11.2 deletion syndrome: a pilot study. Schizophr Res 2012; 141:35-9. [PMID: 22863550 PMCID: PMC3462006 DOI: 10.1016/j.schres.2012.06.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 06/18/2012] [Accepted: 06/25/2012] [Indexed: 02/03/2023]
Abstract
Individuals with 22q11.2 deletion syndrome (22q11.2DS) evince a 30% incidence of schizophrenia. We compared the white matter (WM) of 22q11.2DS patients without schizophrenia to a group of matched healthy controls using Tract-Based-Spatial-Statistics (TBSS). We found localized reduction of Fractional Anisotropy (FA) and Axial Diffusivity (AD; measure of axonal integrity) in WM underlying the left parietal lobe. No changes in Radial Diffusivity (RD; measure of myelin integrity) were observed. Of note, studies in chronic schizophrenia patients report reduced FA, no changes in AD, and increases in RD in WM. Our findings suggest different WM microstructural pathology in 22q11.2DS than in patients with schizophrenia.
Collapse
Affiliation(s)
- Z. Kikinis
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,USA
| | - T. Asami
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,USA
| | - S. Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,USA
| | - C. T. Finn
- Department of Psychiatry, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - T. Ballinger
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,USA
| | - E. Tworog-Dube
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - R. Kucherlapati
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - R. Kikinis
- Surgical Planning Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - M. E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,USA
,Surgical Planning Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
,Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School Brockton, MA, USA
| | - M. Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,USA
,Surgical Planning Laboratory, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
,Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School Brockton, MA, USA
| |
Collapse
|
32
|
Debbané M, Lazouret M, Lagioia A, Schneider M, Van De Ville D, Eliez S. Resting-state networks in adolescents with 22q11.2 deletion syndrome: associations with prodromal symptoms and executive functions. Schizophr Res 2012; 139:33-9. [PMID: 22704643 DOI: 10.1016/j.schres.2012.05.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/30/2012] [Accepted: 05/24/2012] [Indexed: 01/22/2023]
Abstract
Atypical functional connectivity in the maturing brains of 22q11.2 deletion syndrome (22q11DS) may contribute to the expression of early psychotic symptoms commonly reported by these youths. This study's objective was to examine functional connectivity in cerebral networks at rest (Resting-State Networks; RSNs) and their relationship to symptomatic and neuropsychological characteristics putting them at very high risk factor for developing psychosis. Twenty-seven adolescents with 22q11DS and 33 typically developing control adolescents matched for age, gender and handedness underwent an 8-minute resting state functional MRI session. RSNs identification procedure employed Independent Component Analysis (ICA). We tested for potential group differences in functional connectivity within-networks. Then, we examined relationships between network connectivity and symptomatic/neuropsychological characteristics in the 22q11DS group. A total of nine resting-state networks were identified. Between-group differences suggested both increased and decreased functional connectivity in the 22q11DS group, involving the default-mode, sensorimotor, visuo-spatial, and high level visual networks. Finally, atypical connectivity in the default-mode network, specifically within the left superior frontal gyrus region, correlated with prodromal symptom intensity and neuropsychological performances in the 22q11DS group. The results suggest that atypical functional connectivity may sustain both increased vulnerability to psychosis and characteristic cognitive impairments in 22q11DS.
Collapse
Affiliation(s)
- Martin Debbané
- Office Médico-Pédagogique Research Unit, Department of Psychiatry, University of Geneva School of Medicine, Switzerland.
| | | | | | | | | | | |
Collapse
|
33
|
Radoeva PD, Coman IL, Antshel KM, Fremont W, McCarthy CS, Kotkar A, Wang D, Shprintzen RJ, Kates WR. Atlas-based white matter analysis in individuals with velo-cardio-facial syndrome (22q11.2 deletion syndrome) and unaffected siblings. Behav Brain Funct 2012; 8:38. [PMID: 22853778 PMCID: PMC3533822 DOI: 10.1186/1744-9081-8-38] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 07/11/2012] [Indexed: 11/30/2022] Open
Abstract
Background Velo-cardio-facial syndrome (VCFS, MIM#192430, 22q11.2 Deletion Syndrome) is a genetic disorder caused by a deletion of about 40 genes at the q11.2 band of one copy of chromosome 22. Individuals with VCFS present with deficits in cognition and social functioning, high risk of psychiatric disorders, volumetric reductions in gray and white matter (WM) and some alterations of the WM microstructure. The goal of the current study was to characterize the WM microstructural differences in individuals with VCFS and unaffected siblings, and the correlation of WM microstructure with neuropsychological performance. We hypothesized that individuals with VCFS would have decreased indices of WM microstructure (fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD)), particularly in WM tracts to the frontal lobe, and that these measures would be correlated with cognitive functioning. Methods Thirty-three individuals with VCFS (21 female) and 16 unaffected siblings (8 female) participated in DTI scanning and neuropsychological testing. We performed an atlas-based analysis, extracted FA, AD, and RD measures for 54 WM tracts (27 in each hemisphere) for each participant, and used MANOVAs to compare individuals with VCFS to siblings. For WM tracts that were statistically significantly different between VCFS and siblings (pFDR < 0.05), we assessed the correlations between DTI and neuropsychological measures. Results In VCFS individuals as compared to unaffected siblings, we found decreased FA in the uncinate fasciculus, and decreased AD in multiple WM tracts (bilateral superior and posterior corona radiata, dorsal cingulum, inferior fronto-occipital fasciculus, superior longitudinal fasciculus, superior cerebellar peduncle, posterior thalamic radiation, and left anterior corona radiata, retrolenticular part of the internal capsule, external capsule, sagittal stratum). We also found significant correlations of AD with measures of executive function, IQ, working memory, and/or social cognition. Conclusions Our results suggest that individuals with VCFS display abnormal WM connectivity in a widespread cerebro-anatomical network, involving tracts from/to all cerebral lobes and the cerebellum. Future studies could focus on the WM developmental trajectory in VCFS, the association of WM alterations with psychiatric disorders, and the effects of candidate 22q11.2 genes on WM anomalies.
Collapse
Affiliation(s)
- Petya D Radoeva
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The aim is to discuss the clinical features of psychiatric illness in 22q11.2 deletion syndrome (22q11DS), and to review current evidence that a core neuropsychiatric phenotype could underlie the full spectrum of different presentations. RECENT FINDINGS Individuals carrying the 22q11.2 microdeletion are at risk for diverse psychiatric diagnoses across the lifespan, including schizophrenia in a significant minority, and anxiety or mood disorder in the majority. Symptoms and cognitive disruptions can be grouped into domains: attention-executive deficits, social-cognitive deficits, anxiety-affective dysregulation, and psychotic phenomena. These domains do not respect the boundaries of traditional diagnostic categories, and can be consistently recognized in children, adolescents and adults. There is early evidence that some symptom-domain disruptions may predict adult psychiatric morbidity. SUMMARY If a core neuropsychiatric phenotype does exist in 22q11DS, its detection is likely to require dimensional assessment of subtle aspects of cognitive and emotional processing, not encompassed by current diagnostic systems. A core phenotype would account for disruptions across multiple symptom domains, directly reflecting genetic and neurobiological mechanisms. Relative severity of a core phenotype would predict risk for multiple psychiatric disorders, and could, therefore, be an important target for therapeutic and preventive interventions. A core phenotype meeting these criteria has not yet been defined for 22q11DS.
Collapse
|
35
|
A cross-sectional study of the development of volitional control of spatial attention in children with chromosome 22q11.2 deletion syndrome. J Neurodev Disord 2012; 4:5. [PMID: 22958432 PMCID: PMC3374293 DOI: 10.1186/1866-1955-4-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 02/15/2012] [Indexed: 11/10/2022] Open
Abstract
Background Chromosome 22q11.2 deletion syndrome (22q11.2DS) results from a 1.5- to 3-megabase deletion on the long arm of chromosome 22 and occurs in approximately 1 in 4000 live births. Previous studies indicate that children with 22q11.2DS are impaired on tasks involving spatial attention. However, the degree to which these impairments are due to volitionally generated (endogenous) or reflexive (exogenous) orienting of attention is unclear. Additionally, the efficacy of these component attention processes throughout child development in 22q11.2DS has yet to be examined. Methods Here we compared the performance of a wide age range (7 to 14 years) of children with 22q11.2DS to typically developing (TD) children on a comprehensive visual cueing paradigm to dissociate the contributions of endogenous and exogenous attentional impairments. Paired and two-sample t-tests were used to compare outcome measures within a group or between groups. Additionally, repeated measures regression models were fit to the data in order to examine effects of age on performance. Results We found that children with 22q11.2DS were impaired on a cueing task with an endogenous cue, but not on the same task with an exogenous cue. Additionally, it was younger children exclusively who were impaired on endogenous cueing when compared to age-matched TD children. Older children with 22q11.2DS performed comparably to age-matched TD peers on the endogenous cueing task. Conclusions These results suggest that endogenous but not exogenous orienting of attention is selectively impaired in children with 22q11.2DS. Additionally, the age effect on cueing in children with 22q11.2DS suggests a possible altered developmental trajectory of endogenous cueing.
Collapse
|
36
|
Hunsaker MR. Comprehensive neurocognitive endophenotyping strategies for mouse models of genetic disorders. Prog Neurobiol 2012; 96:220-41. [PMID: 22266125 PMCID: PMC3289520 DOI: 10.1016/j.pneurobio.2011.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/06/2011] [Accepted: 12/20/2011] [Indexed: 01/21/2023]
Abstract
There is a need for refinement of the current behavioral phenotyping methods for mouse models of genetic disorders. The current approach is to perform a behavioral screen using standardized tasks to define a broad phenotype of the model. This phenotype is then compared to what is known concerning the disorder being modeled. The weakness inherent in this approach is twofold: First, the tasks that make up these standard behavioral screens do not model specific behaviors associated with a given genetic mutation but rather phenotypes affected in various genetic disorders; secondly, these behavioral tasks are insufficiently sensitive to identify subtle phenotypes. An alternate phenotyping strategy is to determine the core behavioral phenotypes of the genetic disorder being studied and develop behavioral tasks to evaluate specific hypotheses concerning the behavioral consequences of the genetic mutation. This approach emphasizes direct comparisons between the mouse and human that facilitate the development of neurobehavioral biomarkers or quantitative outcome measures for studies of genetic disorders across species.
Collapse
Affiliation(s)
- Michael R Hunsaker
- Department of Neurological Surgery, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
37
|
Simon TJ. Clues to the foundations of numerical cognitive impairments: evidence from genetic disorders. Dev Neuropsychol 2011; 36:788-805. [PMID: 21761998 DOI: 10.1080/87565641.2010.549879] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Several neurodevelopmental disorders of known genetic etiology generate phenotypes that share the characteristic of numerical and mathematical cognitive impairments. This article reviews some of the main findings that suggest a possible key role that spatial and temporal information processing impairments may play in the atypical development of numerical cognitive competence. The question of what neural substrate might underlie these impairments is also addressed, as are the challenges for interpreting neural structure/cognitive function mapping in atypically developing populations.
Collapse
Affiliation(s)
- Tony J Simon
- MIND Institute, University of California Davis, Sacramento, California 95817, USA.
| |
Collapse
|
38
|
White matter abnormalities in adults with 22q11 deletion syndrome with and without schizophrenia. Schizophr Res 2011; 132:75-83. [PMID: 21831603 DOI: 10.1016/j.schres.2011.07.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 07/12/2011] [Accepted: 07/15/2011] [Indexed: 11/23/2022]
Abstract
Dysfunction of cerebral white matter (WM) is a potential factor underlying the neurobiology of schizophrenia. People with 22q11 deletion syndrome have altered brain morphology and increased risk for schizophrenia, therefore decreased WM integrity may be related to schizophrenia in 22q11DS. We measured fractional anisotropy (FA) and WM volume in 27 adults with 22q11DS with schizophrenia (n=12, 22q11DS SCZ+) and without schizophrenia (n=15, 22q11DS SCZ-), 12 individuals with idiopathic schizophrenia and 31 age-matched healthy controls. We found widespread decreased WM volume in posterior and temporal brain areas and decreased FA in areas of the frontal cortex in the whole 22q11DS group compared to healthy controls. In 22q11DS SCZ+ compromised WM integrity included inferior frontal areas of parietal and occipital lobe. Idiopathic schizophrenia patients showed decreased FA in inferior frontal and insular regions compared to healthy controls. We found no WM alterations in 22q11DS SCZ+ vs. 22q11DS SCZ-. However, there was a negative correlation between FA and PANSS scores (Positive and Negative Symptom Scale) in the whole 22q11DS group in the inferior frontal, cingulate, insular and temporal areas. This is the first study to investigate WM integrity in adults with 22q11DS. Our results suggest that pervasive WM dysfunction is intrinsic to 22q11DS and that psychotic development in adults with 22q11DS involves similar brain areas as seen in schizophrenia in the general population.
Collapse
|
39
|
Drew LJ, Crabtree GW, Markx S, Stark KL, Chaverneff F, Xu B, Mukai J, Fenelon K, Hsu PK, Gogos JA, Karayiorgou M. The 22q11.2 microdeletion: fifteen years of insights into the genetic and neural complexity of psychiatric disorders. Int J Dev Neurosci 2011; 29:259-81. [PMID: 20920576 PMCID: PMC3074020 DOI: 10.1016/j.ijdevneu.2010.09.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 12/22/2022] Open
Abstract
Over the last fifteen years it has become established that 22q11.2 deletion syndrome (22q11DS) is a true genetic risk factor for schizophrenia. Carriers of deletions in chromosome 22q11.2 develop schizophrenia at rate of 25-30% and such deletions account for as many as 1-2% of cases of sporadic schizophrenia in the general population. Access to a relatively homogeneous population of individuals that suffer from schizophrenia as the result of a shared etiological factor and the potential to generate etiologically valid mouse models provides an immense opportunity to better understand the pathobiology of this disease. In this review we survey the clinical literature associated with the 22q11.2 microdeletions with a focus on neuroanatomical changes. Then, we highlight results from work modeling this structural mutation in animals. The key biological pathways disrupted by the mutation are discussed and how these changes impact the structure and function of neural circuits is described.
Collapse
Affiliation(s)
- Liam J. Drew
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| | - Gregg W. Crabtree
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| | - Sander Markx
- Department of Psychiatry, Columbia University, New York, New York 10032, USA
| | - Kimberly L. Stark
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
- Department of Psychiatry, Columbia University, New York, New York 10032, USA
| | - Florence Chaverneff
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| | - Bin Xu
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
- Department of Psychiatry, Columbia University, New York, New York 10032, USA
| | - Jun Mukai
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| | - Karine Fenelon
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| | - Pei-Ken Hsu
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Columbia University, New York, New York 10032, USA
| | - Joseph A. Gogos
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Maria Karayiorgou
- Department of Psychiatry, Columbia University, New York, New York 10032, USA
- New York State Psychiatric Institute, New York, New York 10032, USA
| |
Collapse
|
40
|
Srivastava S, Buonocore MH, Simon TJ. Atypical developmental trajectory of functionally significant cortical areas in children with chromosome 22q11.2 deletion syndrome. Hum Brain Mapp 2011; 33:213-23. [PMID: 21416559 DOI: 10.1002/hbm.21206] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 09/07/2010] [Accepted: 10/20/2010] [Indexed: 12/18/2022] Open
Abstract
Chromosome 22q11.2 deletion syndrome (22q11.2DS) is a neurogenetic disorder associated with neurocognitive impairments. This article focuses on the cortical gyrification changes that are associated with the genetic disorder in 6-15-year-old children with 22q11.2DS, when compared with a group of age-matched typically developing (TD) children. Local gyrification index (lGI; Schaer et al. [2008]: IEEE Trans Med Imaging 27:161-170) was used to characterize the cortical gyrification at each vertex of the pial surface. Vertex-wise statistical analysis of lGI differences between the two groups revealed cortical areas of significant reduction in cortical gyrification in children with 22q11.2DS, which were mainly distributed along the medial aspect of each hemisphere. To gain further insight into the developmental trajectory of the cortical gyrification, we examined age as a factor in lGI changes over the 6-15 years of development, within and across the two groups of children. Our primary results pertaining to the developmental trajectory of cortical gyrification revealed cortical regions where the change in lGI over the 6-15 years of age was significantly modulated by diagnosis, implying an atypical development of cortical gyrification in children with 22q11.2DS, when compared with the TD children. Significantly, these cortical areas included parietal structures that are associated, in typical individuals, with visuospatial, attentional, and numerical cognition tasks in which children with 22q11.2DS show impairments.
Collapse
|
41
|
Karayiorgou M, Simon TJ, Gogos JA. 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nat Rev Neurosci 2010; 11:402-16. [PMID: 20485365 DOI: 10.1038/nrn2841] [Citation(s) in RCA: 356] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent studies are beginning to paint a clear and consistent picture of the impairments in psychological and cognitive competencies that are associated with microdeletions in chromosome 22q11.2. These studies have highlighted a strong link between this genetic lesion and schizophrenia. Parallel studies in humans and animal models are starting to uncover the complex genetic and neural substrates altered by the microdeletion. In addition to offering a deeper understanding of the effects of this genetic lesion, these findings may guide analysis of other copy-number variants associated with cognitive dysfunction and psychiatric disorders.
Collapse
Affiliation(s)
- Maria Karayiorgou
- Department of Psychiatry, Columbia University Medical Center, 1051 Riverside Drive, New York, New York 10032, USA.
| | | | | |
Collapse
|
42
|
Koch K, Wagner G, Dahnke R, Schachtzabel C, Güllmar D, Reichenbach JR, Schlösser RGM. Structure-function relationships in the context of reinforcement-related learning: a combined diffusion tensor imaging-functional magnetic resonance imaging study. Neuroscience 2010; 168:190-9. [PMID: 20304035 DOI: 10.1016/j.neuroscience.2010.03.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/08/2010] [Accepted: 03/12/2010] [Indexed: 11/19/2022]
Abstract
In the context of probabilistic learning, previous functional magnetic resonance imaging studies have shown decreasing uncertainty accompanying decreasing neuronal activation in task-relevant networks. Moreover, initial evidence points to a relationship between white matter structure and cognitive performance. Little is known, however, about the structural correlates underlying individual differences in activation and performance in the context of probabilistic learning. This combined functional magnetic resonance imaging-diffusion tensor imaging study aimed at investigating the individual ability to reduce processing resources with decreasing uncertainty in direct relation to individual characteristics in white matter brain structure. Results showed that more successful learners, as compared with less successful learners, exhibited stronger activation decreases with decreasing uncertainty. An increased mean and axial diffusivity in, among others, the inferior and superior longitudinal fasciculus, the posterior part of the cingulum bundle, and the corpus callosum were detectable in less successful learners compared with more successful learners. Most importantly, there was a negative correlation between uncertainty-related activation and diffusivity in a fronto-parieto-striatal network in less successful learners only, indicating a direct relation between diffusivity and the ability to reduce processing resources with decreasing uncertainty. These findings indicate that interindividual variations in white matter characteristics within the normal population might be linked to neuronal activation and critically influence individual learning performance.
Collapse
Affiliation(s)
- K Koch
- Department of Psychiatry and Psychotherapy, Friedrich-Schiller-University Jena, Philosophenweg 3, 07740 Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Eisenberg DP, Jabbi M, Berman KF. Bridging the gene-behavior divide through neuroimaging deletion syndromes: Velocardiofacial (22q11.2 Deletion) and Williams (7q11.23 Deletion) syndromes. Neuroimage 2010; 53:857-69. [PMID: 20206275 DOI: 10.1016/j.neuroimage.2010.02.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 02/23/2010] [Accepted: 02/25/2010] [Indexed: 12/20/2022] Open
Abstract
Investigating the relationship between genes and the neural substrates of complex human behavior promises to provide essential insight into the pathophysiology of mental disorders. One approach to this inquiry is through neuroimaging of individuals with microdeletion syndromes that manifest in specific neuropsychiatric phenotypes. Both Velocardiofacial syndrome (VCFS) and Williams syndrome (WS) involve haploinsufficiency of a relatively small set of identified genes on the one hand and association with distinct, clinically relevant behavioral and cognitive profiles on the other hand. In VCFS, there is a deletion in chromosomal region 22q11.2 and a resultant predilection toward psychosis, poor arithmetic proficiency, and low performance intelligence quotients. In WS, there is a deletion in chromosomal region 7q11.23 and a resultant predilection toward hypersociability, non-social anxiety, impaired visuospatial construction, and often intellectual impairment. Structural and functional neuroimaging studies have begun not only to map these well-defined genetic alterations to systems-level brain abnormalities, but also to identify relationships between neural phenotypes and particular genes within the critical deletion regions. Though neuroimaging of both VCFS and WS presents specific, formidable methodological challenges, including comparison subject selection and accounting for neuroanatomical and vascular anomalies in patients, and many questions remain, the literature to date on these syndromes, reviewed herein, constitutes a fruitful "bottom-up" approach to defining gene-brain relationships.
Collapse
Affiliation(s)
- Daniel Paul Eisenberg
- Section on Integrative Neuroimaging, Clinical Brain Disorders Branch, Genes, Cognition and Psychosis Program National Institute of Mental Health, NIH, Intramural Research Program, DHHS, Bethesda, MD 20892-1365, USA
| | | | | |
Collapse
|
44
|
Beaton EA, Stoddard J, Lai S, Lackey J, Shi J, Ross JL, Simon TJ. Atypical functional brain activation during a multiple object tracking task in girls with Turner syndrome: neurocorrelates of reduced spatiotemporal resolution. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2010; 115:140-156. [PMID: 20441384 PMCID: PMC2967304 DOI: 10.1352/1944-7558-115.2.140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 09/03/2009] [Indexed: 05/29/2023]
Abstract
Turner syndrome is associated with spatial and numerical cognitive impairments. We hypothesized that these nonverbal cognitive impairments result from limits in spatial and temporal processing, particularly as it affects attention. To examine spatiotemporal attention in girls with Turner syndrome versus typically developing controls, we used a multiple object tracking task during functional magnetic resonance (fMRI) imaging. Participants actively tracked a target among six distracters or passively viewed the animations. Neural activation in girls with Turner syndrome during object tracking overlapped with but was dissimilar to the canonical frontoparietal network evident in typically developing controls and included greater limbic activity. Task performance and atypical functional activation indicate anomalous development of cortical and subcortical temporal and spatial processing circuits in girls with Turner syndrome.
Collapse
Affiliation(s)
- Elliott A Beaton
- M.I.N.D. Institute, University of California at Davis Medical Center, Sacramento, CA 95817, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Rogalski EJ, Murphy CM, deToledo-Morrell L, Shah RC, Moseley ME, Bammer R, Stebbins GT. Changes in parahippocampal white matter integrity in amnestic mild cognitive impairment: a diffusion tensor imaging study. Behav Neurol 2009; 21:51-61. [PMID: 19847045 PMCID: PMC2819387 DOI: 10.3233/ben-2009-0235] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In the present study, changes in the parahippocampal white matter (PWM), in the region that includes the perforant path, were investigated, in vivo, in 14 individuals with amnestic mild cognitive impairment (aMCI) compared to 14 elderly controls with no cognitive impairment (NCI). For this purpose, (1) volumetry; (2) diffusion tensor imaging (DTI) derived measures of mean diffusivity (MD) and fractional anisotropy (FA); and (3) tractography were used. In addition, regression models were utilized to examine the association of PWM measurements with memory decline. The results from this study confirm previous findings in our laboratory and others, showing that compared to controls, individuals with aMCI have PWM volume loss. In addition to volume reduction, participants with aMCI demonstrated a significant increase in MD, but no difference in FA, both in the PWM region and in fibers modeled to pass through the PWM region. Further, the DTI metric of MD was associated with declarative memory performance, suggesting it may be a sensitive marker for memory dysfunction. These results indicate that there is general tissue loss and degradation (decreased volume; increased MD) in individuals with aMCI compared to older people with normal cognitive function. However, the microstructural organization of remaining fibers, as determined by measures of anisotropic diffusion, is not significantly different from that of controls.
Collapse
Affiliation(s)
- E J Rogalski
- Cognitive Neurology and Alzheimer's Disease Center at Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The ERK MAP kinase signaling cascade plays critical roles in brain development, learning, memory, and cognition. It has recently been appreciated that mutation or deletion of elements within this signaling pathway leads to developmental syndromes in humans that are associated with impaired cognitive function and autism. Here, we review recent studies that provide insight into the biological roles of the ERKs in the brain that may underlie the cognitive deficits seen in these syndromes.
Collapse
Affiliation(s)
- Ivy S Samuels
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
47
|
Continuous medial representation of brain structures using the biharmonic PDE. Neuroimage 2008; 45:S99-110. [PMID: 19059348 DOI: 10.1016/j.neuroimage.2008.10.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022] Open
Abstract
A new approach for constructing deformable continuous medial models for anatomical structures is presented. Medial models describe geometrical objects by first specifying the skeleton of the object and then deriving the boundary surface corresponding to the skeleton. However, an arbitrary specification of a skeleton will not be "valid" unless a certain set of sufficient conditions is satisfied. The most challenging of these is the non-linear equality constraint that must hold along the boundaries of the manifolds forming the skeleton. The main contribution of this paper is to leverage the biharmonic partial differential equation as a mapping from a codimension-0 subset of Euclidean space to the space of skeletons that satisfy the equality constraint. The PDE supports robust numerical solution on freeform triangular meshes, providing additional flexibility for shape modeling. The approach is evaluated by generating continuous medial models for a large dataset of hippocampus shapes. Generalizations to modeling more complex shapes and to representing branching skeletons are demonstrated.
Collapse
|