1
|
Kruse CJ, Dieu M, Renaud B, François AC, Stern D, Demazy C, Burteau S, Boemer F, Art T, Renard P, Votion DM. New Pathophysiological Insights from Serum Proteome Profiling in Equine Atypical Myopathy. ACS OMEGA 2024; 9:6505-6526. [PMID: 38371826 PMCID: PMC10870397 DOI: 10.1021/acsomega.3c06647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 02/20/2024]
Abstract
Equine atypical myopathy (AM) is a severe environmental intoxication linked to the ingestion of protoxins contained in seeds and seedlings of the sycamore maple (Acer pseudoplatanus) in Europe. The toxic metabolites cause a frequently fatal rhabdomyolysis syndrome in grazing horses. Since these toxic metabolites can also be present in cograzing horses, it is still unclear as to why, in a similar environmental context, some horses show signs of AM, whereas others remain clinically healthy. Label-free proteomic analyses on the serum of 26 diseased AM, 23 cograzers, and 11 control horses were performed to provide insights into biological processes and pathways. A total of 43 and 44 differentially abundant proteins between "AM vs cograzing horses" and "AM vs control horses" were found. Disease-linked changes in the proteome of different groups were found to correlate with detected amounts of toxins, and principal component analyses were performed to identify the 29 proteins representing a robust AM signature. Among the pathway-specific changes, the glycolysis/gluconeogenesis pathway, the coagulation/complement cascade, and the biosynthesis of amino acids were affected. Sycamore maple poisoning results in a combination of inflammation, oxidative stress, and impaired lipid metabolism, which is trying to be counteracted by enhanced glycolysis.
Collapse
Affiliation(s)
- Caroline-J. Kruse
- Department
of Functional Sciences, Faculty of Veterinary Medicine, Physiology
and Sport Medicine, Fundamental and Applied
Research for Animals & Health (FARAH), University of Liège, Sart Tilman, 4000 Liège 1, Belgium
| | - Marc Dieu
- Namur
Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur 5000, Belgium
- MaSUN,
Mass Spectrometry Facility, University of
Namur (UNamur), Namur 5000, Belgium
| | - Benoît Renaud
- Department
of Functional Sciences, Faculty of Veterinary Medicine, Pharmacology
and Toxicology, Fundamental and Applied
Research for Animals & Health (FARAH), University of Liège, Sart Tilman, 4000 Liège 1, Belgium
| | - Anne-Christine François
- Department
of Functional Sciences, Faculty of Veterinary Medicine, Pharmacology
and Toxicology, Fundamental and Applied
Research for Animals & Health (FARAH), University of Liège, Sart Tilman, 4000 Liège 1, Belgium
| | - David Stern
- GIGA
Bioinformatics Platform, GIGA Institute, University of Liège, Sart Tilman, 4000 Liège, Belgium
| | - Catherine Demazy
- Namur
Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur 5000, Belgium
- MaSUN,
Mass Spectrometry Facility, University of
Namur (UNamur), Namur 5000, Belgium
| | - Sophie Burteau
- Namur
Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur 5000, Belgium
- MaSUN,
Mass Spectrometry Facility, University of
Namur (UNamur), Namur 5000, Belgium
| | - François Boemer
- Biochemical
Genetics Lab, Department of Human Genetics, CHU of Liège, University of Liège, Sart Tilman, 4000 Liège, Belgium
| | - Tatiana Art
- Department
of Functional Sciences, Faculty of Veterinary Medicine, Physiology
and Sport Medicine, Fundamental and Applied
Research for Animals & Health (FARAH), University of Liège, Sart Tilman, 4000 Liège 1, Belgium
| | - Patricia Renard
- Namur
Research Institute for Life Sciences (Narilis), University of Namur (UNamur), Namur 5000, Belgium
- MaSUN,
Mass Spectrometry Facility, University of
Namur (UNamur), Namur 5000, Belgium
| | - Dominique-M. Votion
- Department
of Functional Sciences, Faculty of Veterinary Medicine, Pharmacology
and Toxicology, Fundamental and Applied
Research for Animals & Health (FARAH), University of Liège, Sart Tilman, 4000 Liège 1, Belgium
| |
Collapse
|
2
|
Dzięgielewska A, Dunislawska A. Mitochondrial Dysfunctions and Potential Molecular Markers in Sport Horses. Int J Mol Sci 2022; 23:ijms23158655. [PMID: 35955789 PMCID: PMC9369138 DOI: 10.3390/ijms23158655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are an essential part of most eukaryotic cells. The crucial role of these organelles is the production of metabolic energy, which is converted into ATP in oxidative phosphorylation. They are also involved in and constitute apoptosis, the site of many metabolic processes. Some of the factors that negatively affect mitochondria are stress, excessive exercise, disease, and the aging process. Exercise can cause the release of large amounts of free radicals, inflammation, injury, and stress. All of these factors can contribute to mitochondrial dysfunction, which can consistently lead to inflammatory responses, tissue damage, organ dysfunction, and a host of diseases. The functions of the mitochondria and the consequences of their disturbance can be of great importance in the breeding and use of horses. The paper reviews mitochondrial disorders in horses and, based on the literature, indicates genetic markers strongly related to this issue.
Collapse
|
3
|
Kong L, Ji H, Gan X, Cao S, Li Z, Jin Y. Knockdown of CD44 inhibits proliferation, migration and invasion of osteosarcoma cells accompanied by downregulation of cathepsin S. J Orthop Surg Res 2022; 17:154. [PMID: 35264209 PMCID: PMC8905747 DOI: 10.1186/s13018-022-03048-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a malignant bone tumour of mesenchymal origin. These tumours are characterised by rich vascularisation, therefore promoting rapid proliferation and facilitating metastasis. CD44 has been reported to be involved in OS, but its role and molecular mechanisms in the pathogenesis of the disease are not fully determined. METHODS In this study, we investigated the antitumor effect of CD44 on the development of OS and further explored the molecular mechanisms. The expression of CD44, cathepsin S and MMP-9 was detected by Western blot (WB) and reverse transcription-polymerase chain reaction (RT-qPCR) in different cell lines (MG63, U2OS OS and hFOB 1.19). To elucidate the role of CD44 in OS, MG63 and U2OS cells were treated with small interference RNA (siRNA) to knock down CD44, and the knockdown efficiency was validated with GFP and RT-qPCR. Furthermore, cell proliferation was assayed using Cell Counting Kit‑8 (CCK-8) and colony formation assays, and cell migration and invasion were assayed by transwell and wound-healing assays. RESULTS We found that CD44 expression in the MG63 and U2OS OS cell lines was markedly increased compared to that of the human osteoblast hFOB 1.19 cell line. Knockdown of CD44 inhibited proliferation, migration and invasion of MG63 and U2OS cells. Cathepsin S expression in the MG63 and U2OS OS cell lines was increased compared to that of the human osteoblast hFOB 1.19 cell line. When CD44 was knocked down, its expression level went down. CONCLUSION Taken together, our data reinforced the evidence that CD44 knockdown inhibited cell proliferation, migration and invasion of OS cells accompanied by altered expression of cathepsin S. These findings offer new clues for OS development and progression, suggesting CD44 as a potential therapeutic target for OS.
Collapse
Affiliation(s)
- Lingwei Kong
- Department of Orthopaedics, The Affiliated Hospital of Chengde Medical College, No. 1 Nanyingzi Street, Chengde, 067000, Hebei, China
| | - Hairu Ji
- Pathology Teaching and Research Section, Chengde Medical College, Chengde, 067000, Hebei, China
| | - Xintian Gan
- Department of Orthopaedics, The Affiliated Hospital of Chengde Medical College, No. 1 Nanyingzi Street, Chengde, 067000, Hebei, China
| | - Sheng Cao
- Department of Orthopaedics, The Affiliated Hospital of Chengde Medical College, No. 1 Nanyingzi Street, Chengde, 067000, Hebei, China
| | - Zhehong Li
- Department of Orthopaedics, The Affiliated Hospital of Chengde Medical College, No. 1 Nanyingzi Street, Chengde, 067000, Hebei, China
| | - Yu Jin
- Department of Orthopaedics, The Affiliated Hospital of Chengde Medical College, No. 1 Nanyingzi Street, Chengde, 067000, Hebei, China.
| |
Collapse
|
4
|
Williams ZJ, Velez-Irizarry D, Petersen JL, Ochala J, Finno CJ, Valberg SJ. Candidate gene expression and coding sequence variants in Warmblood horses with myofibrillar myopathy. Equine Vet J 2021; 53:306-315. [PMID: 32453872 PMCID: PMC7864122 DOI: 10.1111/evj.13286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/18/2020] [Accepted: 05/02/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Myofibrillar myopathy (MFM) of unknown aetiology has recently been identified in Warmblood (WB) horses. In humans, 16 genes have been implicated in various MFM-like disorders. OBJECTIVES To identify variants in 16 MFM candidate genes and compare allele frequencies of all variants between MFM WB and non-MFM WB and coding variants with moderate or severe predicted effects in MFM WB with publicly available data of other breeds. To compare differential gene expression and muscle fibre contractile force between MFM and non-MFM WB. STUDY DESIGN Case-control. ANIMALS 8 MFM WB, 8 non-MFM WB, 33 other WB, 32 Thoroughbreds, 80 Quarter Horses and 77 horses of other breeds in public databases. METHODS Variants were called within transcripts of 16 candidate genes using gluteal muscle mRNA sequences aligned to EquCab3.0 and allele frequencies compared by Fisher's exact test among MFM WB, non-MFM WB and public sequences across breeds. Candidate gene differential expression was determined between MFM and non-MFM WB by fitting a negative binomial generalised log-linear model per gene (false discovery rate <0.05). The maximal isometric force/cross-sectional area generated by isolated membrane-permeabilised muscle fibres was determined. RESULTS None of the 426 variants identified in 16 candidate genes were associated with MFM including 26 missense variants. Breed-specific differences existed in allele frequencies. Candidate gene differential expression and muscle fibre-specific force did not differ between MFM WB (143.1 ± 34.7 kPa) and non-MFM WB (140.2 ± 43.7 kPa) (P = .8). MAIN LIMITATIONS RNA-seq-only assays transcripts expressed in skeletal muscle. Other possible candidate genes were not evaluated. CONCLUSIONS Evidence for association of variants with a disease is essential because coding sequence variants are common in the equine genome. Variants identified in MFM candidate genes, including two coding variants offered as commercial MFM equine genetic tests, did not associate with the WB MFM phenotype.
Collapse
Affiliation(s)
- Zoë J. Williams
- Large Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, East Lansing, MI, USA
| | - Deborah Velez-Irizarry
- Large Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, East Lansing, MI, USA
| | - Jessica L. Petersen
- Department of Animal Science, University of Nebraska Lincoln, Lincoln, NE, USA
| | - Julien Ochala
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Carrie J. Finno
- University of California at Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Stephanie J. Valberg
- Large Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, East Lansing, MI, USA
| |
Collapse
|
5
|
Dhorne-Pollet S, Barrey E, Pollet N. A new method for long-read sequencing of animal mitochondrial genomes: application to the identification of equine mitochondrial DNA variants. BMC Genomics 2020; 21:785. [PMID: 33176683 PMCID: PMC7661214 DOI: 10.1186/s12864-020-07183-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 10/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial DNA is remarkably polymorphic. This is why animal geneticists survey mitochondrial genomes variations for fundamental and applied purposes. We present here an approach to sequence whole mitochondrial genomes using nanopore long-read sequencing. Our method relies on the selective elimination of nuclear DNA using an exonuclease treatment and on the amplification of circular mitochondrial DNA using a multiple displacement amplification step. RESULTS We optimized each preparative step to obtain a 100 million-fold enrichment of horse mitochondrial DNA relative to nuclear DNA. We sequenced these amplified mitochondrial DNA using nanopore sequencing technology and obtained mitochondrial DNA reads that represented up to half of the sequencing output. The sequence reads were 2.3 kb of mean length and provided an even coverage of the mitochondrial genome. Long-reads spanning half or more of the whole mtDNA provided a coverage that varied between 118X and 488X. We evaluated SNPs identified using these long-reads by Sanger sequencing as ground truth and found a precision of 100.0%; a recall of 93.1% and a F1-score of 0.964 using the Twilight horse mtDNA reference. The choice of the mtDNA reference impacted variant calling efficiency with F1-scores varying between 0.947 and 0.964. CONCLUSIONS Our method to amplify mtDNA and to sequence it using the nanopore technology is usable for mitochondrial DNA variant analysis. With minor modifications, this approach could easily be applied to other large circular DNA molecules.
Collapse
Affiliation(s)
- Sophie Dhorne-Pollet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Eric Barrey
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Nicolas Pollet
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
6
|
Usefulness of Cathepsin S to Predict Risk for Obstructive Sleep Apnea among Patients with Type 2 Diabetes. DISEASE MARKERS 2020; 2020:8819134. [PMID: 33062070 PMCID: PMC7533779 DOI: 10.1155/2020/8819134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/20/2020] [Accepted: 08/18/2020] [Indexed: 01/19/2023]
Abstract
Background Obstructive sleep apnea (OSA) was highly prevalent in patients with type 2 diabetes (T2D). Cathepsin S (CTSS), a cysteine protease, is involved in the inflammatory activity in T2D and hypoxia conditions. The aim of the study was to evaluate whether CTSS could be involved in the inflammatory reaction of OSA in patients with T2D. Methods We included 158 participants in this study matched for age, gender, and body mass index in 4 groups (control, non-OSA&T2D, OSA&non-T2D, and OSA&T2D). After overnight polysomnography, we collected the clinical data including anthropometrical characteristics, blood pressure, and fasting blood samples in the morning. Plasma CTSS concentration was evaluated using the human Magnetic Luminex Assay. Results Compared with the control group, both the non-OSA&T2D group and the OSA&non-T2D group showed higher CTSS levels. Plasma CTSS expression was significantly increased in subjects with OSA&T2D compared to subjects with non-OSA&T2D. The OSA&T2D group had higher CTSS levels than the OSA&non-T2D group, but there were no statistically significant differences. Plasma CTSS levels showed significant correlation with the apnea-hypopnea index (AHI) (r = 0.559, P < 0.001) and plasma fasting blood glucose (r = 0.427, P < 0.001). After adjusting confounding factors, plasma CTSS levels were independently associated with the AHI (Beta: 0.386, 95% confidence intervals (CI): 21.988 to 57.781; P < 0.001). Furthermore, we confirmed the higher pinpoint accuracy of plasma CTSS in the diagnosis of OSA (area under the curve: 0.868). Conclusions Plasma CTSS expression was significantly elevated in the OSA&T2D group and was independently associated with the AHI; it could be a biomarker with a positive diagnostic value on diagnosing OSA among patients with T2D.
Collapse
|
7
|
Valberg SJ, Perumbakkam S, McKenzie EC, Finno CJ. Proteome and transcriptome profiling of equine myofibrillar myopathy identifies diminished peroxiredoxin 6 and altered cysteine metabolic pathways. Physiol Genomics 2018; 50:1036-1050. [PMID: 30289745 PMCID: PMC6337024 DOI: 10.1152/physiolgenomics.00044.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Equine myofibrillar myopathy (MFM) causes exertional muscle pain and is characterized by myofibrillar disarray and ectopic desmin aggregates of unknown origin. To investigate the pathophysiology of MFM, we compared resting and 3 h postexercise transcriptomes of gluteal muscle and the resting skeletal muscle proteome of MFM and control Arabian horses with RNA sequencing and isobaric tags for relative and absolute quantitation analyses. Three hours after exercise, 191 genes were identified as differentially expressed (DE) in MFM vs. control muscle with >1 log2 fold change (FC) in genes involved in sulfur compound/cysteine metabolism such as cystathionine-beta-synthase ( CBS, ↓4.51), a cysteine and neutral amino acid membrane transporter ( SLC7A10, ↓1.80 MFM), and a cationic transporter (SLC24A1, ↓1.11 MFM). In MFM vs. control at rest, 284 genes were DE with >1 log2 FC in pathways for structure morphogenesis, fiber organization, tissue development, and cell differentiation including > 1 log2 FC in cardiac alpha actin ( ACTC1 ↑2.5 MFM), cytoskeletal desmoplakin ( DSP ↑2.4 MFM), and basement membrane usherin ( USH2A ↓2.9 MFM). Proteome analysis revealed significantly lower antioxidant peroxiredoxin 6 content (PRDX6, ↓4.14 log2 FC MFM), higher fatty acid transport enzyme carnitine palmitoyl transferase (CPT1B, ↑3.49 MFM), and lower sarcomere protein tropomyosin (TPM2, ↓3.24 MFM) in MFM vs. control muscle at rest. We propose that in MFM horses, altered cysteine metabolism and a deficiency of cysteine-containing antioxidants combined with a high capacity to oxidize fatty acids and generate ROS during aerobic exercise causes chronic oxidation and aggregation of key proteins such as desmin.
Collapse
Affiliation(s)
- Stephanie J Valberg
- McPhail Equine Performance Center, Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan.,Department of Population Sciences, University of Minnesota , St. Paul, Minnesota
| | - Sudeep Perumbakkam
- Department of Large Animal Clinical Sciences, Michigan State University , East Lansing, Michigan
| | - Erica C McKenzie
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University , Corvallis, Oregon
| | - Carrie J Finno
- Department of Population Health and Reproduction, University of California Davis , Davis, California
| |
Collapse
|
8
|
Tosi I, Art T, Cassart D, Farnir F, Ceusters J, Serteyn D, Lemieux H, Votion DM. Altered mitochondrial oxidative phosphorylation capacity in horses suffering from polysaccharide storage myopathy. J Bioenerg Biomembr 2018; 50:379-390. [PMID: 30143916 DOI: 10.1007/s10863-018-9768-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/15/2018] [Indexed: 12/22/2022]
Abstract
Polysaccharide storage myopathy (PSSM) is a widely described cause of exertional rhabdomyolysis in horses. Mitochondria play a central role in cellular energetics and are involved in human glycogen storage diseases but their role has been overlooked in equine PSSM. We hypothesized that the mitochondrial function is impaired in the myofibers of PSSM-affected horses. Nine horses with a history of recurrent exercise-associated rhabdomyolysis were tested for the glycogen synthase 1 gene (GYS1) mutation: 5 were tested positive (PSSM group) and 4 were tested negative (horses suffering from rhabdomyolysis of unknown origin, RUO group). Microbiopsies were collected from the gluteus medius (gm) and triceps brachii (tb) muscles of PSSM, RUO and healthy controls (HC) horses and used for histological analysis and for assessment of oxidative phosphorylation (OXPHOS) using high-resolution respirometry. The modification of mitochondrial respiration between HC, PSSM and RUO horses varied according to the muscle and to substrates feeding OXPHOS. In particular, compared to HC horses, the gm muscle of PSSM horses showed decreased OXPHOS- and electron transfer (ET)-capacities in presence of glutamate&malate&succinate. RUO horses showed a higher OXPHOS-capacity (with glutamate&malate) and ET-capacity (with glutamate&malate&succinate) in both muscles in comparison to the PSSM group. When expressed as ratios, our results highlighted a higher contribution of the NADH pathway (feeding electrons into Complex I) to maximal OXPHOS or ET-capacity in both rhabdomyolysis groups compared to the HC. Specific modifications in mitochondrial function might contribute to the pathogenesis of PSSM and of other types of exertional rhabdomyolyses.
Collapse
Affiliation(s)
- Irene Tosi
- Equine Sports Medicine Centre, Department of Functional Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem, 7A (B42), Quartier Vallée 2, Sart Tilman, B-4000, Liège, Belgium.
| | - Tatiana Art
- Equine Sports Medicine Centre, Department of Functional Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Avenue de Cureghem, 7A (B42), Quartier Vallée 2, Sart Tilman, B-4000, Liège, Belgium
| | - Dominique Cassart
- Department of pathology, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Frédéric Farnir
- Department of animal productions: Biostatistics and Bioinformatics Applied in Veterinary Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Justine Ceusters
- Centre of Oxygen, Research and Development, University of Liège, Liège, Belgium
| | - Didier Serteyn
- Centre of Oxygen, Research and Development, University of Liège, Liège, Belgium.,Equine Pole, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, Liège, Belgium
| | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada
| | - Dominique-Marie Votion
- Equine Pole, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, Liège, Belgium
| |
Collapse
|
9
|
McKenzie E. Current status of myopathies affecting athletic horses. COMPARATIVE EXERCISE PHYSIOLOGY 2017. [DOI: 10.3920/cep170005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Muscular disorders rank among the most prevalent problems of horses competing in a broad variety of athletic disciplines, including track racing, dressage, endurance racing and Western riding disciplines. As described in this review, active scientific investigation is continuing to elucidate the different mechanisms underlying specific muscular disorders in horses, and is discovering and defining new disorders, and new methods of diagnosis, treatment and management. The flourishing field of equine rehabilitation and regenerative medicine is also driving the progressive application of a variety of modalities to the treatment and management of musculoskeletal conditions in horses. However, it is essential that this be accompanied by appropriate scientific investigation to verify the efficacy of recommended modalities and treatment protocols.
Collapse
Affiliation(s)
- E. McKenzie
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, 227 Magruder Hall, Corvallis, OR 97331, USA
| |
Collapse
|
10
|
Thomsen LN, Thomsen PD, Downing A, Talbot R, Berg LC. FOXO1, PXK, PYCARD and SAMD9L are differentially expressed by fibroblast-like cells in equine synovial membrane compared to joint capsule. BMC Vet Res 2017; 13:106. [PMID: 28410619 PMCID: PMC5391632 DOI: 10.1186/s12917-017-1003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/28/2017] [Indexed: 11/11/2022] Open
Abstract
Background The synovial membrane lines the luminal side of the joint capsule in synovial joints. It maintains joint homeostasis and plays a crucial role in equine joint pathology. When trauma or inflammation is induced in a joint, the synovial membrane influences progression of joint damage. Equine synovial membrane research is hampered by a lack of markers of fibroblast-like synoviocytes (FLS) to distinguish FLS from other fibroblast-like cells in musculoskeletal connective tissues. The aim of this study is to identify potential FLS markers of the equine synovial membrane using microarray to compare between gene expression in equine synovial membrane and the joint capsule in metacarpophalangeal joints. Results Microarray analysis of tissues from 6 horses resulted in 1167 up-regulated genes in synovial membrane compared with joint capsule. Pathway analysis resulted in 241 candidate genes. Of these, 15 genes were selected for further confirmation as genes potentially expressed by fibroblast-like synoviocytes. Four genes: FOXO1, PXK, PYCARD and SAMD9L were confirmed in 9 horses by qPCR as differentially expressed in synovial membrane compared to joint capsule. Conclusions In conclusion, FOXO1, PXK, PYCARD and SAMD9L were confirmed as differentially expressed in synovial membrane compared to joint capsule. These four genes are potential markers of fibroblast-like synoviocytes of the synovial membrane. As these genes are overexpressed in synovial membrane compared to joint capsule, these genes could shed light on synovial membrane physiology and its role in joint disease.
Collapse
Affiliation(s)
- Line Nymann Thomsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Hoejbakkegaards alle 5, 2630, Taastrup, Denmark
| | - Preben Dybdahl Thomsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Groennegaardsvej 7, 1870, Frederiksberg C, Denmark
| | - Alison Downing
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Richard Talbot
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Lise Charlotte Berg
- Department of Veterinary Clinical Sciences, University of Copenhagen, Hoejbakkegaards alle 5, 2630, Taastrup, Denmark.
| |
Collapse
|
11
|
Pacholewska A, Mach N, Mata X, Vaiman A, Schibler L, Barrey E, Gerber V. Novel equine tissue miRNAs and breed-related miRNA expressed in serum. BMC Genomics 2016; 17:831. [PMID: 27782799 PMCID: PMC5080802 DOI: 10.1186/s12864-016-3168-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/18/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND MiRNAs regulate multiple genes at the post-transcriptional level and therefore play an important role in many biological processes. It has been suggested that miRNA exported outside the cells contribute to inter-cellular communication. Consequently, circulating miRNAs are of particular interest and are promising biomarkers for many diseases. The number of miRNAs annotated in the horse genome is much lower compared to model organisms like human and mouse. We therefore aimed to identify novel equine miRNAs for tissue types and breed in serum. RESULTS We analysed 71 small RNA-seq libraries derived from nine tissues (gluteus medius, platysma, masseter muscle, heart, liver, cartilage, bone, total blood and serum) using miRDeep2 and miRdentify tools. Known miRNAs represented between 2.3 and 62.9 % of the reads in 71 libraries. A total of 683 novel miRNAs were identified. Breed and tissue type affected the number of miRNAs detected and interestingly, affected its average intensity. A total of 50 miRNAs in serum proved to be potential biomarkers to differentiate specific breed types, of which miR-122, miR-200, miR-483 were over-expressed and miR-328 was under-expressed in ponies compared to Warmbloods. The different miRNAs profiles, as well as the differences in their expression levels provide a foundation for more hypotheses based on the novel miRNAs discovered. CONCLUSIONS We identified 683 novel equine miRNAs expressed in seven solid tissues, blood and serum. Additionally, our approach evidenced that such data supported identification of specific miRNAs as markers of functions related to breeds or disease tissues.
Collapse
Affiliation(s)
- Alicja Pacholewska
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Länggassstrasse 124, 3012, Bern, Switzerland. .,Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012, Bern, Switzerland.
| | - Núria Mach
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Xavier Mata
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Anne Vaiman
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Laurent Schibler
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Eric Barrey
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Vincent Gerber
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Länggassstrasse 124, 3012, Bern, Switzerland
| |
Collapse
|
12
|
Polak GL, Pasqualino A, Docherty JEB, Beck SJ, DiAngelo JR. The Regulation of Muscle Structure and Metabolism by Mio/dChREBP in Drosophila. PLoS One 2015; 10:e0136504. [PMID: 26305467 PMCID: PMC4549115 DOI: 10.1371/journal.pone.0136504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/05/2015] [Indexed: 12/13/2022] Open
Abstract
All cells require energy to perform their specialized functions. Muscle is particularly sensitive to the availability of nutrients due to the high-energy requirement for muscle contraction. Therefore the ability of muscle cells to obtain, store and utilize energy is essential for the function of these cells. Mio, the Drosophila homolog of carbohydrate response element binding protein (ChREBP), has recently been identified as a nutrient responsive transcription factor important for triglyceride storage in the fly fat body. However, the function of Mio in muscle is unknown. In this study, we characterized the role of Mio in controlling muscle function and metabolism. Decreasing Mio levels using RNAi specifically in muscle results in increased thorax glycogen storage. Adult Mio-RNAi flies also have a flight defect due to altered myofibril shape and size in the indirect flight muscles as shown by electron microscopy. Myofibril size is also decreased in flies just before emerging from their pupal cases, suggesting a role for Mio in myofibril development. Together, these data indicate a novel role for Mio in controlling muscle structure and metabolism and may provide a molecular link between nutrient availability and muscle function.
Collapse
Affiliation(s)
- Grzegorz L. Polak
- Department of Biology, Hofstra University, Hempstead, NY, 11549, United States of America
| | - Anthony Pasqualino
- Department of Biology, Hofstra University, Hempstead, NY, 11549, United States of America
| | - James E. B. Docherty
- Department of Biology, Hofstra University, Hempstead, NY, 11549, United States of America
| | - Stephen J. Beck
- Department of Biology, Nassau Community College, Garden City, NY, 11530, United States of America
| | - Justin R. DiAngelo
- Department of Biology, Hofstra University, Hempstead, NY, 11549, United States of America
- Division of Science, Penn State Berks, Reading, PA, 19610, United States of America
- * E-mail:
| |
Collapse
|
13
|
Behavioral and Transcriptomic Fingerprints of an Enriched Environment in Horses (Equus caballus). PLoS One 2014; 9:e114384. [PMID: 25494179 PMCID: PMC4262392 DOI: 10.1371/journal.pone.0114384] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/05/2014] [Indexed: 11/28/2022] Open
Abstract
The use of environmental enrichment (EE) has grown in popularity over decades, particularly because EE is known to promote cognitive functions and well-being. Nonetheless, little is known about how EE may affect personality and gene expression. To address this question in a domestic animal, 10-month-old horses were maintained in a controlled environment or EE for 12 weeks. The control horses (n = 9) lived in individual stalls on wood shaving bedding. They were turned out to individual paddocks three times a week and were fed three times a day with pellets or hay. EE-treated horses (n = 10) were housed in large individual stalls on straw bedding 7 hours per day and spent the remainder of the time together at pasture. They were fed three times a day with flavored pellets, hay, or fruits and were exposed daily to various objects, odors, and music. The EE modified three dimensions of personality: fearfulness, reactivity to humans, and sensory sensitivity. Some of these changes persisted >3 months after treatment. These changes are suggestive of a more positive perception of the environment and a higher level of curiosity in EE-treated horses, explaining partly why these horses showed better learning performance in a Go/No-Go task. Reduced expression of stress indicators indicated that the EE also improved well-being. Finally, whole-blood transcriptomic analysis showed that in addition to an effect on the cortisol level, the EE induced the expression of genes involved in cell growth and proliferation, while the control treatment activated genes related to apoptosis. Changes in both behavior and gene expression may constitute a psychobiological signature of the effects of enrichment and result in improved well-being. This study illustrates how the environment interacts with genetic information in shaping the individual at both the behavioral and molecular levels.
Collapse
|
14
|
Kousik SM, Napier TC, Ross RD, Sumner DR, Carvey PM. Dopamine receptors and the persistent neurovascular dysregulation induced by methamphetamine self-administration in rats. J Pharmacol Exp Ther 2014; 351:432-9. [PMID: 25185214 DOI: 10.1124/jpet.114.217802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recently abstinent methamphetamine (Meth) abusers showed neurovascular dysregulation within the striatum. The factors that contribute to this dysregulation and the persistence of these effects are unclear. The current study addressed these knowledge gaps. First, we evaluated the brains of rats with a history of Meth self-administration following various periods of forced abstinence. Micro-computed tomography revealed a marked reduction in vessel diameter and vascular volume uniquely within the striatum between 1 and 28 days after Meth self-administration. Microvessels showed a greater impairment than larger vessels. Subsequently, we determined that dopamine (DA) D2 receptors regulated Meth-induced striatal vasoconstriction via acute noncontingent administration of Meth. These receptors likely regulated the response to striatal hypoxia, as hypoxia inducible factor 1α was elevated. Acute Meth exposure also increased striatal levels of endothelin receptor A and decreased neuronal nitric oxide synthase. Collectively, the data provide novel evidence that Meth-induced striatal neurovascular dysregulation involves DA receptor signaling that results in vasoconstriction via endothelin receptor A and nitric oxide signaling. As these effects can lead to hypoxia and trigger neuronal damage, these findings provide a mechanistic explanation for the selective striatal toxicity observed in the brains of Meth-abusing humans.
Collapse
Affiliation(s)
- Sharanya M Kousik
- Center for Compulsive Behavior and Addiction (S.M.K., T.C.N., P.M.C.), Department of Pharmacology (S.M.K., T.C.N., P.M.C.), Department of Psychiatry (T.C.N.), Department of Neurologic Sciences (P.M.C.), and Department of Anatomy and Cell Biology (R.D.R., D.R.S.), Rush University Medical Center, Chicago, Illinois
| | - T Celeste Napier
- Center for Compulsive Behavior and Addiction (S.M.K., T.C.N., P.M.C.), Department of Pharmacology (S.M.K., T.C.N., P.M.C.), Department of Psychiatry (T.C.N.), Department of Neurologic Sciences (P.M.C.), and Department of Anatomy and Cell Biology (R.D.R., D.R.S.), Rush University Medical Center, Chicago, Illinois
| | - Ryan D Ross
- Center for Compulsive Behavior and Addiction (S.M.K., T.C.N., P.M.C.), Department of Pharmacology (S.M.K., T.C.N., P.M.C.), Department of Psychiatry (T.C.N.), Department of Neurologic Sciences (P.M.C.), and Department of Anatomy and Cell Biology (R.D.R., D.R.S.), Rush University Medical Center, Chicago, Illinois
| | - D Rick Sumner
- Center for Compulsive Behavior and Addiction (S.M.K., T.C.N., P.M.C.), Department of Pharmacology (S.M.K., T.C.N., P.M.C.), Department of Psychiatry (T.C.N.), Department of Neurologic Sciences (P.M.C.), and Department of Anatomy and Cell Biology (R.D.R., D.R.S.), Rush University Medical Center, Chicago, Illinois
| | - Paul M Carvey
- Center for Compulsive Behavior and Addiction (S.M.K., T.C.N., P.M.C.), Department of Pharmacology (S.M.K., T.C.N., P.M.C.), Department of Psychiatry (T.C.N.), Department of Neurologic Sciences (P.M.C.), and Department of Anatomy and Cell Biology (R.D.R., D.R.S.), Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
15
|
Benech PD, Patatian A. From experimental design to functional gene networks: DNA microarray contribution to skin ageing research. Int J Cosmet Sci 2014; 36:516-26. [PMID: 25066132 DOI: 10.1111/ics.12155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 06/28/2014] [Indexed: 12/21/2022]
Abstract
There is no doubt that the DNA microarray-based technology contributed to increase our knowledge of a wide range of processes. However, integrating genes into functional networks, rather than terms describing generic characteristics, remains an important challenge. The highly context-dependent function of a given gene and feedback mechanisms complexify greatly the interpretation of the data. Moreover, it is difficult to determine whether changes in gene expression are the result or the cause of pathologies or physiological events. In both cases, the difficulty relies on the involvement of processes that, at an early stage, can be protective and later on, deleterious because of their runaway. Each individual cell has its own transcription profile that determines its behaviour and its relationships with its neighbours. This is particularly true when a mechanism such as cell cycle is concerned. Another issue concerns the analyses from samples of different donors. Whereas the statistical tools lead to determine common features among groups, they tend to smooth the overall data and consequently, the selected values represent the 'tip of the iceberg'. There is a significant overlap in the set of genes identified in the different studies on skin ageing processes described in the present review. The reason of this overlap is because most of these genes belong to the basic machinery controlling cell growth and arrest. To get a more full picture of these processes, a hard work has still to be done to determine the precise mechanisms conferring the cell type specificity of ageing. Integrative biology applied to the huge amount of existing microarray data should fulfil gaps, through the characterization of additional actors accounting for the activation of specific signalling pathways at crossing points. Furthermore, computational tools have to be developed taking into account that expression values among similar groups may not vary 'by chance' but may reflect, along with other subtle changes, specific features of one given donor. Through a better stratification, these tools will allow to recover genes from the 'bottom of the iceberg'. Identifying these genes should contribute to understand how skin ages among individuals, thus paving the way for personalized skin care.
Collapse
Affiliation(s)
- P D Benech
- UMR 7259 (NICN) CNRS - Aix-Marseille Université, Faculté de Médecine Secteur Nord, CS80011, 51 Bd Pierre Dramard, Marseille CEDEX 15, 13344, France
| | | |
Collapse
|
16
|
Abstract
Horses are remarkable athletes and a fascinating species in which to study the genetic bases of athletic performance, skeletal muscle biology, and neuromuscular disease. Genetic selection in horses has resulted in many breeds that possess anatomical, physiological, and metabolic variations linked to speed, power, and endurance that are beginning to be defined at the molecular level. Along with the concentration of positive traits, equine breeding programs have also inadvertently concentrated heritable muscle diseases for which mutations impacting electrical conduction, muscle contraction, and energy metabolism within and across breeds have been characterized. The study of heritable muscle diseases in horses has provided exciting insights into the normal structure and function of muscle and important diagnostic tools for veterinarians. Results empower breeders and breed associations to make difficult decisions about how to use this information to improve the overall health and well-being of horses.
Collapse
Affiliation(s)
- James R Mickelson
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108; ,
| | | |
Collapse
|
17
|
Landel V, Baranger K, Virard I, Loriod B, Khrestchatisky M, Rivera S, Benech P, Féron F. Temporal gene profiling of the 5XFAD transgenic mouse model highlights the importance of microglial activation in Alzheimer's disease. Mol Neurodegener 2014; 9:33. [PMID: 25213090 PMCID: PMC4237952 DOI: 10.1186/1750-1326-9-33] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/27/2014] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The 5XFAD early onset mouse model of Alzheimer's disease (AD) is gaining momentum. Behavioral, electrophysiological and anatomical studies have identified age-dependent alterations that can be reminiscent of human AD. However, transcriptional changes during disease progression have not yet been investigated. To this end, we carried out a transcriptomic analysis on RNAs from the neocortex and the hippocampus of 5XFAD female mice at the ages of one, four, six and nine months (M1, M4, M6, M9). RESULTS Our results show a clear shift in gene expression patterns between M1 and M4. At M1, 5XFAD animals exhibit region-specific variations in gene expression patterns whereas M4 to M9 mice share a larger proportion of differentially expressed genes (DEGs) that are common to both regions. Analysis of DEGs from M4 to M9 underlines the predominance of inflammatory and immune processes in this AD mouse model. The rise in inflammation, sustained by the overexpression of genes from the complement and integrin families, is accompanied by an increased expression of transcripts involved in the NADPH oxidase complex, phagocytic processes and IFN-γ related pathways. CONCLUSIONS Overall, our data suggest that, from M4 to M9, sustained microglial activation becomes the predominant feature and point out that both detrimental and neuroprotective mechanisms appear to be at play in this model. Furthermore, our study identifies a number of genes already known to be altered in human AD, thus confirming the use of the 5XFAD strain as a valid model for understanding AD pathogenesis and for screening potential therapeutic molecules.
Collapse
Affiliation(s)
- Véréna Landel
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Kévin Baranger
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
- APHM, Hôpitaux de la Timone, Service de Neurologie et Neuropsychologie, 13385 Marseille, France
| | - Isabelle Virard
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Béatrice Loriod
- Aix Marseille Université, TAGC UMR 1090, 13288 Marseille, France
- INSERM, TAGC UMR 1090, 13288 Marseille, France
| | | | - Santiago Rivera
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - Philippe Benech
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| | - François Féron
- Aix Marseille Université, CNRS, NICN UMR 7259, 13916 Marseille, France
| |
Collapse
|
18
|
Mille-Hamard L, Billat VL, Henry E, Bonnamy B, Joly F, Benech P, Barrey E. Skeletal muscle alterations and exercise performance decrease in erythropoietin-deficient mice: a comparative study. BMC Med Genomics 2012; 5:29. [PMID: 22748015 PMCID: PMC3473259 DOI: 10.1186/1755-8794-5-29] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 06/21/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Erythropoietin (EPO) is known to improve exercise performance by increasing oxygen blood transport and thus inducing a higher maximum oxygen uptake (VO2max). Furthermore, treatment with (or overexpression of) EPO induces protective effects in several tissues, including the myocardium. However, it is not known whether EPO exerts this protective effect when present at physiological levels. Given that EPO receptors have been identified in skeletal muscle, we hypothesized that EPO may have a direct, protective effect on this tissue. Thus, the objectives of the present study were to confirm a decrease in exercise performance and highlight muscle transcriptome alterations in a murine EPO functional knock-out model (the EPO-d mouse). METHODS We determined VO2max peak velocity and critical speed in exhaustive runs in 17 mice (9 EPO-d animals and 8 inbred controls), using treadmill enclosed in a metabolic chamber. Mice were sacrificed 24h after a last exhaustive treadmill exercise at critical speed. The tibialis anterior and soleus muscles were removed and total RNA was extracted for microarray gene expression analysis. RESULTS The EPO-d mice's hematocrit was about 50% lower than that of controls (p<0.05) and their performance level was about 25% lower (p<0.001). A total of 1583 genes exhibited significant changes in their expression levels. However, 68 genes were strongly up-regulated (normalized ratio>1.4) and 115 were strongly down-regulated (normalized ratio<0.80). The transcriptome data mining analysis showed that the exercise in the EPO-d mice induced muscle hypoxia, oxidative stress and proteolysis associated with energy pathway disruptions in glycolysis and mitochondrial oxidative phosphorylation. CONCLUSIONS Our results showed that the lack of functional EPO induced a decrease in the aerobic exercise capacity. This decrease was correlated with the hematocrit and reflecting poor oxygen supply to the muscles. The observed alterations in the muscle transcriptome suggest that physiological concentrations of EPO exert both direct and indirect muscle-protecting effects during exercise. However, the signaling pathway involved in these protective effects remains to be described in detail.
Collapse
Affiliation(s)
- Laurence Mille-Hamard
- Unité de Biologie Intégrative des Adaptations à l'Exercice - INSERM 902, Genopole, F-91058, Evry, France.
| | | | | | | | | | | | | |
Collapse
|
19
|
Votion DM, Gnaiger E, Lemieux H, Mouithys-Mickalad A, Serteyn D. Physical fitness and mitochondrial respiratory capacity in horse skeletal muscle. PLoS One 2012; 7:e34890. [PMID: 22529950 PMCID: PMC3329552 DOI: 10.1371/journal.pone.0034890] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 03/08/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Within the animal kingdom, horses are among the most powerful aerobic athletic mammals. Determination of muscle respiratory capacity and control improves our knowledge of mitochondrial physiology in horses and high aerobic performance in general. METHODOLOGY/PRINCIPAL FINDINGS We applied high-resolution respirometry and multiple substrate-uncoupler-inhibitor titration protocols to study mitochondrial physiology in small (1.0-2.5 mg) permeabilized muscle fibres sampled from triceps brachii of healthy horses. Oxidative phosphorylation (OXPHOS) capacity (pmol O(2) • s(-1) • mg(-1) wet weight) with combined Complex I and II (CI+II) substrate supply (malate+glutamate+succinate) increased from 77 ± 18 in overweight horses to 103 ± 18, 122 ± 15, and 129 ± 12 in untrained, trained and competitive horses (N = 3, 8, 16, and 5, respectively). Similar to human muscle mitochondria, equine OXPHOS capacity was limited by the phosphorylation system to 0.85 ± 0.10 (N = 32) of electron transfer capacity, independent of fitness level. In 15 trained horses, OXPHOS capacity increased from 119 ± 12 to 134 ± 37 when pyruvate was included in the CI+II substrate cocktail. Relative to this maximum OXPHOS capacity, Complex I (CI)-linked OXPHOS capacities were only 50% with glutamate+malate, 64% with pyruvate+malate, and 68% with pyruvate+malate+glutamate, and ~78% with CII-linked succinate+rotenone. OXPHOS capacity with glutamate+malate increased with fitness relative to CI+II-supported ETS capacity from a flux control ratio of 0.38 to 0.40, 0.41 and 0.46 in overweight to competitive horses, whereas the CII/CI+II substrate control ratio remained constant at 0.70. Therefore, the apparent deficit of the CI- over CII-linked pathway capacity was reduced with physical fitness. CONCLUSIONS/SIGNIFICANCE The scope of mitochondrial density-dependent OXPHOS capacity and the density-independent (qualitative) increase of CI-linked respiratory capacity with increased fitness open up new perspectives of integrative and comparative mitochondrial respiratory physiology.
Collapse
|
20
|
Barrey E, Jayr L, Mucher E, Gospodnetic S, Joly F, Benech P, Alibert O, Gidrol X, Mata X, Vaiman A, Guérin G. Transcriptome analysis of muscle in horses suffering from recurrent exertional rhabdomyolysis revealed energetic pathway alterations and disruption in the cytosolic calcium regulation. Anim Genet 2011; 43:271-81. [DOI: 10.1111/j.1365-2052.2011.02246.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Barrey E, Bonnamy B, Barrey EJ, Mata X, Chaffaux S, Guerin G. Muscular microRNA expressions in healthy and myopathic horses suffering from polysaccharide storage myopathy or recurrent exertional rhabdomyolysis. Equine Vet J 2011:303-10. [PMID: 21059022 DOI: 10.1111/j.2042-3306.2010.00267.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
REASONS FOR PERFORMING STUDY MicroRNAs (miRNA) are small endogenous noncoding interfering RNA molecules (18-25 nucleotides) regarded as major regulators in eukaryotic gene expression. They play a role in developmental timing, cellular differentiation, signalling and apoptosis pathways. Because of the central function of miRNAs in the proliferation and differentiation of the myoblasts demonstrated in mouse and man, it is assumed that they could be present in equine muscles and their expression profile may be related to the muscle status. OBJECTIVE To identify miRNA candidates in the muscles of control and affected horses suffering from polysaccharide storage myopathy (PSSM) and recurrent exertional rhabdomyolysis (RER). METHODS Muscle biopsies were collected in the gluteus medius of horses allocated into 4 groups: French Trotters (3 control-TF vs. 3 RER-TF) and Norman Cob (5 control-Cob vs. 9 PSSM-Cob). Blood samples were collected for miRNA analysis. Total RNA were extracted and real time quantitative RT-QPCR analysis were conducted using 10 miRNA assays (mir-1-23-30-133-181-188-195-206-339-375). RESULTS All the miRNA candidates were significantly detected in the muscles and some in blood samples. Variance analysis revealed highly significant (P < 0.0001) effects of the miRNA type, breed and pathology on the miRNA expression. A specific miRNA profile was related to each myopathy: a higher expression of mir-1, 133, 23a, 30b, 195 and 339 in RER-TF vs. control-TF (P < 0.05); a higher expression of mir-195 in PSSM-Cob vs. control-Cob (P < 0.05). The miRNA profile was different between breeds for mir-181, 188 and 206 (P < 0.05). The mir-1, 133, 181, 195 and 206 were detected in blood of control-Cob and PSSM-Cob horses. CONCLUSIONS This first study about muscular miRNA profile in equine myopathies indicated that it is possible to discriminate pathological from control horses according to their miRNA profile. The RER miRNA profile was more specific and contrasted than the PSSM profile.
Collapse
Affiliation(s)
- E Barrey
- Unité de Biologie Intégrative des Adaptations à l'Exercice, INSERM 902, Genopole Evry, France.
| | | | | | | | | | | |
Collapse
|
22
|
Capomaccio S, Cappelli K, Barrey E, Felicetti M, Silvestrelli M, Verini-Supplizi A. Microarray analysis after strenuous exercise in peripheral blood mononuclear cells of endurance horses. Anim Genet 2010; 41 Suppl 2:166-75. [DOI: 10.1111/j.1365-2052.2010.02129.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
BARREY E. Reviewe: Genetics and genomics in equine exercise physiology: an overview of the new applications of molecular biology as positive and negative markers of performance and health. Equine Vet J 2010:561-8. [DOI: 10.1111/j.2042-3306.2010.00299.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|