1
|
Feng A, Gu H, Chen H, Shao Y, Wang H, Duan Y, Huang Y, Zhou T, Xu Z. Account for the Full Extent of Esophagus Motion in Radiation Therapy Planning: A Preliminary Study of the IRV of the Esophagus. Front Oncol 2021; 11:734552. [PMID: 34900685 PMCID: PMC8656362 DOI: 10.3389/fonc.2021.734552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Accounting for esophagus motion in radiotherapy planning is an important basis for accurate assessment of toxicity. In this study, we calculated how much the delineations of the esophagus should be expanded based on three-dimensional (3D) computed tomography (CT), four-dimensional (4D) average projection (AVG), and maximum intensity projection (MIP) scans to account for the full extent of esophagus motion during 4D imaging acquisition. Methods and Materials The 3D and 4D CT scans of 20 lung cancer patients treated with conventional radiotherapy and 20 patients treated with stereotactic ablative radiation therapy (SBRT) were used. Radiation oncologists contoured the esophagus on the 3DCT, AVG, MIP and 25% exhale scans, and the combination of the esophagus in every phase of 4DCT. The union of all 4D phase delineations (U4D) represented the full extent of esophagus motion during imaging acquisition. Surface distances from U4D to 3D, AVG, and MIP volumes were calculated. Distances in the most extreme surface points (1.5 cm most superoinferior, 10% most right/left/anteroposterior) were used to derive margins accounting only for systematic (delineation) errors. Results Esophagus delineations on the MIP were the closest to the full extent of motion, requiring only 6.9 mm margins. Delineations on the AVG and 3D scans required margins up to 7.97 and 7.90 mm, respectively. The largest margins were for the inferior, right, and anterior aspects for the delineations on the 3D, AVG, and MIP scans, respectively. Conclusion Delineations on 3D, AVG, or MIP scans required extensions for representing the esophagus’s full extent of motion, with the MIP requiring the smallest margins. Research including daily imaging to determine the random components for the margins and dosimetric measurements to determine the relevance of creating a planning organ at risk volume (PRV) of the esophagus is required.
Collapse
Affiliation(s)
- Aihui Feng
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hengle Gu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Chen
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Shao
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Wang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanhua Duan
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Huang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Zhou
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhiyong Xu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
The status of medical physics in radiotherapy in China. Phys Med 2021; 85:147-157. [PMID: 34010803 DOI: 10.1016/j.ejmp.2021.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To present an overview of the status of medical physics in radiotherapy in China, including facilities and devices, occupation, education, research, etc. MATERIALS AND METHODS: The information about medical physics in clinics was obtained from the 9-th nationwide survey conducted by the China Society for Radiation Oncology in 2019. The data of medical physics in education and research was collected from the publications of the official and professional organizations. RESULTS By 2019, there were 1463 hospitals or institutes registered to practice radiotherapy and the number of accelerators per million population was 1.5. There were 4172 medical physicists working in clinics of radiation oncology. The ratio between the numbers of radiation oncologists and medical physicists is 3.51. Approximately, 95% of medical physicists have an undergraduate or graduate degrees in nuclear physics and biomedical engineering. 86% of medical physicists have certificates issued by the Chinese Society of Medical Physics. There has been a fast growth of publications by authors from mainland of China in the top international medical physics and radiotherapy journals since 2018. CONCLUSIONS Demand for medical physicists in radiotherapy increased quickly in the past decade. The distribution of radiotherapy facilities in China became more balanced. High quality continuing education and training programs for medical physicists are deficient in most areas. The role of medical physicists in the clinic has not been clearly defined and their contributions have not been fully recognized by the community.
Collapse
|
3
|
Finnegan RN, Orlandini L, Liao X, Yin J, Lang J, Dowling J, Fontanarosa D. Feasibility of using a novel automatic cardiac segmentation algorithm in the clinical routine of lung cancer patients. PLoS One 2021; 16:e0245364. [PMID: 33444379 PMCID: PMC7808597 DOI: 10.1371/journal.pone.0245364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022] Open
Abstract
Incidental radiation exposure to the heart during lung cancer radiotherapy is associated with radiation-induced heart disease and increased rates of mortality. By considering the respiratory-induced motion of the heart it is possible to create a radiotherapy plan that results in a lower overall cardiac dose. This approach is challenging using current clinical practices: manual contouring of the heart is time consuming, and subject to inter- and intra-observer variability. In this work, we investigate the feasibility of our previously developed, atlas-based, automatic heart segmentation tool to delineate the heart in four-dimensional x-ray computed tomography (4D-CT) images. We used a dataset comprising 19 patients receiving radiotherapy for lung cancer, with 4D-CT imaging acquired at 10 respiratory phases and with a maximum intensity projection image generated from these. For each patient, one of four experienced radiation oncologists contoured the heart on each respiratory phase image and the maximum intensity image. Automatic segmentation of the heart on these same patient image sets was achieved using a leave-one-out approach, where for each patient the remaining 18 were used as an atlas set. The consistency of the automatic segmentation relative to manual contouring was evaluated using the Dice similarity coefficient (DSC) and mean absolute surface-to-surface distance (MASD). The DSC and MASD are comparable to inter-observer variability in clinically acceptable whole heart delineations (average DSC > 0.93 and average MASD < 2.0 mm in all the respiratory phases). The comparison between automatic and manual delineations on the maximum intensity images produced an overall mean DSC of 0.929 and a mean MASD of 2.07 mm. The automatic, atlas-based segmentation tool produces clinically consistent and robust heart delineations and is easy to implement in the routine care of lung cancer patients.
Collapse
Affiliation(s)
- Robert Neil Finnegan
- Institute of Medical Physics, School of Physics, University of Sydney, Camperdown, New South Wales, Australia
| | - Lucia Orlandini
- Sichuan Cancer Hospital & Institute, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Xiongfei Liao
- Sichuan Cancer Hospital & Institute, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Jun Yin
- Sichuan Cancer Hospital & Institute, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China (UESTC), Chengdu, China
- * E-mail: (JY); (JL)
| | - Jinyi Lang
- Sichuan Cancer Hospital & Institute, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China (UESTC), Chengdu, China
- * E-mail: (JY); (JL)
| | - Jason Dowling
- Institute of Medical Physics, School of Physics, University of Sydney, Camperdown, New South Wales, Australia
- Australian eHealth Research Centre, CSIRO, Herston, Queensland, Australia
| | - Davide Fontanarosa
- Institute of Health Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| |
Collapse
|
4
|
Protecting the Heart: A Practical Approach to Account for the Full Extent of Heart Motion in Radiation Therapy Planning. Int J Radiat Oncol Biol Phys 2020; 108:1082-1090. [PMID: 32629080 DOI: 10.1016/j.ijrobp.2020.06.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 05/04/2020] [Accepted: 06/26/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE Emerging evidence suggests that the heart is more radiosensitive than previously assumed; therefore, accounting for heart motion in radiation therapy planning is becoming more critical. In this study, we determined how much heart delineations based on 3-dimensional (3D) computed tomography (CT), 4-dimensional (4D) average projection (AVG), and maximum intensity projection (MIP) images should be extended to represent the full extent of heart motion during 4D imaging acquisition. METHODS AND MATERIALS The 3D and 4D CT scans of 10 lung cancer patients treated with stereotactic ablative radiation therapy were used. Median surfaces were derived from heart delineations of 3 observers on the 3D CT, AVG, MIP, and 25% exhale scans. Per patient, the 25% exhale contour was propagated on every phase of the 4D scan. The union of all 4D phase delineations (U4D) represented the full extent of heart motion during imaging acquisition. Surface distances from U4D to 3D, AVG, and MIP volumes were calculated. Distances in the most extreme surface points (1.5 cm most superoinferior, 10% most right/left/anteroposterior) were used to derive margins accounting only for systematic (delineation) errors. RESULTS Heart delineations on the MIP were the closest to the full extent of motion, requiring only ≤2.5-mm margins. Delineations on the AVG and 3D scans required margins up to 3.4 and 7.1 mm, respectively. The largest margins were for the inferior, right, and anterior aspects for the delineations on the 3D, AVG, and MIP scans, respectively. CONCLUSION Delineations on 3D, AVG, or MIP scans required extensions for representing the heart's full extent of motion, with the MIP requiring the smallest margins. Research including daily imaging to determine the random components for the margins and dosimetric measurements to determine the relevance of creating a planning organ at risk volume of the heart is required.
Collapse
|
5
|
Tang B, Ma J, Xu J, Li J, Kang S, Wang P, Wu F, Orlandini LC. Feasibility of using calibrated cone-beam computed tomography scans to validate the heart dose in left breast post-mastectomy radiotherapy. J Int Med Res 2020; 48:300060520929168. [PMID: 32567427 PMCID: PMC7309397 DOI: 10.1177/0300060520929168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objective In post-mastectomy radiotherapy, high-conformal techniques are a valid method for determining the dose distribution around a target. However, the proximity of critical structures is a reason for concern. This study aims to evaluate the feasibility of using calibrated cone-beam computed tomography (CBCT) scans as a valid tool for a timely heart dose evaluation. Methods A retrospective analysis was conducted on 170 retrospective CBCT scans of 17 patients who underwent high-conformal post-mastectomy irradiation. The delivered doses that were calculated using personalized calibrated CBCT were compared with the doses planned, using the dose–volume histogram dosimetric parameters. Results The heart volume that was evaluated using CBCT presented a mean increase of 6%; this discrepancy impacted the heart dose in 4 of 17 patients, with an absolute increase of V25 Gy (range, 2.5%–7.6%) and an increase in the mean dose (range, 1.1–3.4 Gy). The dose for the target, ipsilateral lung, and contralateral breast remained unchanged. Conclusion Using CBCT to monitor the dose that is delivered to the heart is feasible, allowing for a timely shift to an adaptive plan if clinically necessary.
Collapse
Affiliation(s)
- Bin Tang
- Key Laboratory of Radiation Physics, Institute of Nuclear Science and Technology, Sichuan University, No. 24, South Section 1, Yihuar, Chengdu, 610065, China.,Department of Radiation Oncology, Sichuan Cancer Hospital & Research Institute, No. 55, the 4th Section, Renmin South Road, Chengdu, 610041, China
| | - Jiabao Ma
- Department of Radiation Oncology, Sichuan Cancer Hospital & Research Institute, No. 55, the 4th Section, Renmin South Road, Chengdu, 610041, China
| | - Jinghui Xu
- Department of Radiation Oncology, Sichuan Cancer Hospital & Research Institute, No. 55, the 4th Section, Renmin South Road, Chengdu, 610041, China
| | - Jie Li
- Department of Radiation Oncology, Sichuan Cancer Hospital & Research Institute, No. 55, the 4th Section, Renmin South Road, Chengdu, 610041, China
| | - Shengwei Kang
- Key Laboratory of Radiation Physics, Institute of Nuclear Science and Technology, Sichuan University, No. 24, South Section 1, Yihuar, Chengdu, 610065, China.,Department of Radiation Oncology, Sichuan Cancer Hospital & Research Institute, No. 55, the 4th Section, Renmin South Road, Chengdu, 610041, China
| | - Pei Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Research Institute, No. 55, the 4th Section, Renmin South Road, Chengdu, 610041, China
| | - Fan Wu
- Department of Radiation Oncology, Sichuan Cancer Hospital & Research Institute, No. 55, the 4th Section, Renmin South Road, Chengdu, 610041, China
| | - Lucia Clara Orlandini
- Department of Radiation Oncology, Sichuan Cancer Hospital & Research Institute, No. 55, the 4th Section, Renmin South Road, Chengdu, 610041, China
| |
Collapse
|
6
|
Cobben DCP, de Boer HCJ, Tijssen RH, Rutten EGGM, van Vulpen M, Peerlings J, Troost EGC, Hoffmann AL, van Lier ALHMW. Emerging Role of MRI for Radiation Treatment Planning in Lung Cancer. Technol Cancer Res Treat 2015; 15:NP47-NP60. [PMID: 26589726 DOI: 10.1177/1533034615615249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/01/2015] [Indexed: 12/25/2022] Open
Abstract
Magnetic resonance imaging (MRI) provides excellent soft-tissue contrast and allows for specific scanning sequences to optimize differentiation between various tissue types and properties. Moreover, it offers the potential for real-time motion imaging. This makes magnetic resonance imaging an ideal candidate imaging modality for radiation treatment planning in lung cancer. Although the number of clinical research protocols for the application of magnetic resonance imaging for lung cancer treatment is increasing (www.clinicaltrials.gov) and the magnetic resonance imaging sequences are becoming faster, there are still some technical challenges. This review describes the opportunities and challenges of magnetic resonance imaging for radiation treatment planning in lung cancer.
Collapse
Affiliation(s)
- David C P Cobben
- Department of Radiation Oncology, University Medical Center, Utrecht, the Netherlands
| | - Hans C J de Boer
- Department of Radiation Oncology, University Medical Center, Utrecht, the Netherlands
| | - Rob H Tijssen
- Department of Radiation Oncology, University Medical Center, Utrecht, the Netherlands
| | - Emma G G M Rutten
- Department of Radiation Oncology, University Medical Center, Utrecht, the Netherlands
| | - Marco van Vulpen
- Department of Radiation Oncology, University Medical Center, Utrecht, the Netherlands
| | - Jurgen Peerlings
- Department of Radiation Oncology, MAASTRO Clinic, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Esther G C Troost
- Department of Radiation Oncology, MAASTRO Clinic, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands.,Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,OncoRay, National Center for Radiation Research in Oncology, Dresden, Germany.,Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Aswin L Hoffmann
- Department of Radiation Oncology, MAASTRO Clinic, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands.,Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,OncoRay, National Center for Radiation Research in Oncology, Dresden, Germany.,Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | |
Collapse
|