1
|
Ocariza MGC, Paton LN, Templeton EM, Pemberton CJ, Pilbrow AP, Appleby S. CNDP2: An Enzyme Linking Metabolism and Cardiovascular Diseases? J Cardiovasc Transl Res 2025; 18:48-57. [PMID: 39349903 PMCID: PMC11885389 DOI: 10.1007/s12265-024-10560-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 03/09/2025]
Abstract
The heart requires a substantial amount of energy to function, utilising various substrates including lipids, glucose and lactate as energy sources. In times of increased stress, lactate becomes the primary energy source of the heart, but persistently elevated lactate levels are linked to poor patient outcomes and increased mortality. Recently, carnosine dipeptidase II (CNDP2) was discovered to catalyse the formation of Lac-Phe, an exercise-induced metabolite derived from lactate, which has been shown to suppress appetite in mice and reduce adipose tissue in humans. This review discusses CNDP2, including its role in lactate clearance, carnosine hydrolysis, oxidative stress regulation, and involvement in metabolite regulation. The association between CNDP2 and cardiometabolic and renal diseases is also explored, and knowledge gaps are highlighted. CNDP2 appears to be a complex participant in human physiological processes and disease, necessitating additional research to unveil its functions and potential therapeutic applications.
Collapse
Affiliation(s)
- Moizle Grace Castro Ocariza
- Department of Medicine, Christchurch Heart Institute, University of Otago (Christchurch), Christchurch, New Zealand.
| | - Louise Nancy Paton
- Department of Medicine, Christchurch Heart Institute, University of Otago (Christchurch), Christchurch, New Zealand
| | - Evelyn Mary Templeton
- Department of Medicine, Christchurch Heart Institute, University of Otago (Christchurch), Christchurch, New Zealand
| | - Christopher Joseph Pemberton
- Department of Medicine, Christchurch Heart Institute, University of Otago (Christchurch), Christchurch, New Zealand
| | - Anna Pauline Pilbrow
- Department of Medicine, Christchurch Heart Institute, University of Otago (Christchurch), Christchurch, New Zealand
| | - Sarah Appleby
- Department of Medicine, Christchurch Heart Institute, University of Otago (Christchurch), Christchurch, New Zealand
| |
Collapse
|
2
|
Zhang T, Zhu Y, Wang X, Chong D, Wang H, Bu D, Zhao M, Fang L, Li C. The characterization of protein lactylation in relation to cardiac metabolic reprogramming in neonatal mouse hearts. J Genet Genomics 2024; 51:735-748. [PMID: 38479452 DOI: 10.1016/j.jgg.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 04/23/2024]
Abstract
In mammals, the neonatal heart can regenerate upon injury within a short time after birth, while adults lose this ability. Metabolic reprogramming has been demonstrated to be critical for cardiomyocyte proliferation in the neonatal heart. Here, we reveal that cardiac metabolic reprogramming could be regulated by altering global protein lactylation. By performing 4D label-free proteomics and lysine lactylation (Kla) omics analyses in mouse hearts at postnatal days 1, 5, and 7, 2297 Kla sites from 980 proteins are identified, among which 1262 Kla sites from 409 proteins are quantified. Functional clustering analysis reveals that the proteins with altered Kla sites are mainly involved in metabolic processes. The expression and Kla levels of proteins in glycolysis show a positive correlation while a negative correlation in fatty acid oxidation. Furthermore, we verify the Kla levels of several differentially modified proteins, including ACAT1, ACADL, ACADVL, PFKM, PKM, and NPM1. Overall, our study reports a comprehensive Kla map in the neonatal mouse heart, which will help to understand the regulatory network of metabolic reprogramming and cardiac regeneration.
Collapse
Affiliation(s)
- Tongyu Zhang
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, National Resource Center for Mutant Mice, Nanjing, Jiangsu 210093, China
| | - Yingxi Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaochen Wang
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, National Resource Center for Mutant Mice, Nanjing, Jiangsu 210093, China
| | - Danyang Chong
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, National Resource Center for Mutant Mice, Nanjing, Jiangsu 210093, China; State Key Laboratory of Reproductive Medicine and Offspring Health, China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Haiquan Wang
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, National Resource Center for Mutant Mice, Nanjing, Jiangsu 210093, China
| | - Dandan Bu
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, National Resource Center for Mutant Mice, Nanjing, Jiangsu 210093, China
| | - Mengfei Zhao
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, National Resource Center for Mutant Mice, Nanjing, Jiangsu 210093, China
| | - Lei Fang
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, National Resource Center for Mutant Mice, Nanjing, Jiangsu 210093, China.
| | - Chaojun Li
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, National Resource Center for Mutant Mice, Nanjing, Jiangsu 210093, China; State Key Laboratory of Reproductive Medicine and Offspring Health, China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
3
|
Kulik U, Moesta C, Spanel R, Borlak J. Dysfunctional Cori and Krebs cycle and inhibition of lactate transporters constitute a mechanism of primary nonfunction of fatty liver allografts. Transl Res 2024; 264:33-65. [PMID: 37722450 DOI: 10.1016/j.trsl.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023]
Abstract
Orthotopic liver transplantation (OLT) is a lifesaving procedure. However, grafts may fail due to primary nonfunction (PNF). In the past, we demonstrated PNFs to be mainly associated with fatty allografts, and given its unpredictable nature, the development of a disease model is urgently needed. In an effort to investigate mechanism of fatty allograft-associated PNFs, we induced fatty liver disease in donor animals by feeding rats a diet deficient in methionine and choline (MCD). We performed OLT with allografts of different grades of hepatic steatosis and compared the results to healthy ones. We assessed liver function by considering serum biochemistries, and investigated genome wide responses following OLT of healthy and fatty allograft-associated PNFs. Furthermore, we performed immunohistochemistry to evaluate markers of oxidative stress and reperfusion injury, inflammation, glycolysis and gluconeogenesis, lactate transport, and its utilization as part of the Cori cycle. Strikingly, PNFs are strictly lipid content dependent. Nonetheless, a fat content of ≤17% and an increase in the size of hepatocytes of ≤11% (ballooning) greatly improved outcome of OLTs and the hepatic microcirculation. Mechanistically, PNFs arise from a dysfunctional Cori cycle with complete ablation of the lactate transporter SLC16A1. Thus, lipid-laden hepatocytes fail to perform gluconeogenesis via lactate reutilization, and the resultant hyperlactatemia and lactic acidosis causes cardiac arrhythmogenicity and death. Furthermore, the genomic and immunohistochemistry investigations underscore a dysfunctional Krebs cycle with impaired energy metabolism in lipid-burdened mitochondria. Together, we show fatty allografts to be highly vulnerable towards ischemia/reperfusion-injury, and stabilizing the Cori cycle is of critical importance to avert PNFs.
Collapse
Affiliation(s)
- Ulf Kulik
- Department of General, Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Caroline Moesta
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Reinhard Spanel
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
4
|
Ouyang J, Wang H, Huang J. The role of lactate in cardiovascular diseases. Cell Commun Signal 2023; 21:317. [PMID: 37924124 PMCID: PMC10623854 DOI: 10.1186/s12964-023-01350-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/06/2023] [Indexed: 11/06/2023] Open
Abstract
Cardiovascular diseases pose a major threat worldwide. Common cardiovascular diseases include acute myocardial infarction (AMI), heart failure, atrial fibrillation (AF) and atherosclerosis. Glycolysis process often has changed during these cardiovascular diseases. Lactate, the end-product of glycolysis, has been overlooked in the past but has gradually been identified to play major biological functions in recent years. Similarly, the role of lactate in cardiovascular disease is gradually being recognized. Targeting lactate production, regulating lactate transport, and modulating circulating lactate levels may serve as potential strategies for the treatment of cardiovascular diseases in the future. The purpose of this review is to integrate relevant clinical and basic research on the role of lactate in the pathophysiological process of cardiovascular disease in recent years to clarify the important role of lactate in cardiovascular disease and to guide further studies exploring the role of lactate in cardiovascular and other diseases. Video Abstract.
Collapse
Affiliation(s)
- Jun Ouyang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hui Wang
- School of Pharmacy, Guangxi Medical University, Nanning, China.
| | - Jiangnan Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
5
|
Cheng T, Wang H, Hu Y. The causal effects of genetically determined human blood metabolites on the risk of atrial fibrillation. Front Cardiovasc Med 2023; 10:1211458. [PMID: 37564907 PMCID: PMC10410273 DOI: 10.3389/fcvm.2023.1211458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023] Open
Abstract
Background Blood metabolites have been found related to atrial fibrillation (AF), but the causal role is still unclear. Mendel randomization (MR) can give information about the causality between blood metabolites and AF. Methods Two-sample MR analysis was used to evaluate the causality between 486 blood metabolites and AF. Firstly, the genome-wide association study (GWAS) data for AF (from Nielsen et al.) was analyzed and some metabolites were identified. Then another GWAS data for AF (from Roselli et al.) was repeatedly analyzed to verify the results. Inverse variance weighted method was mainly used to determine the causality, and MR-egger, Weighted Median, and MR-PRESSO models were used as supplements of MR. Cochran's Q test was used to assess heterogeneity. And MR-Egger intercept and MR-PRESSO global test were performed to measure pleiotropy. Results The study used Bonferroni's corrected P value (P < 1.03 × 10-4) as the significance threshold. After MR analysis and replication analysis, we found two overlapped metabolites. Among which tryptophan betaine was the most significant causal metabolite in both AF GWAS data (from Nielsen et al.) (odds ratio (OR) = 0.83, 95% confidence interval (CI) = 0.76-0.90, P = 9.37 × 10-6) and AF GWAS data (from Roselli et al.) (OR = 0.82, 95% CI = 0.76-0.88, P = 2.00 × 10-7), while uridine was nominally significant metabolites in both AF GWAS data (from Nielsen et al.) (OR = 0.58, 95% CI = 0.40-0.84, P = 0.004) and AF GWAS data (from Roselli et al.) (OR = 0.56, 95% CI = 0.35-0.88, P = 0.01). And the results of sensitivity analysis showed that none of them had obvious heterogeneity or pleiotropy. Conclusion The study identified several blood metabolites that were causally related to AF, which may provide new perspectives on the pathogenesis of AF.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
- Beijing University of ChineseMedicine, Beijing, China
| | - Huan Wang
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Yuanhui Hu
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| |
Collapse
|
6
|
Lkhagva B, Lee TW, Lin YK, Chen YC, Chung CC, Higa S, Chen YJ. Disturbed Cardiac Metabolism Triggers Atrial Arrhythmogenesis in Diabetes Mellitus: Energy Substrate Alternate as a Potential Therapeutic Intervention. Cells 2022; 11:cells11182915. [PMID: 36139490 PMCID: PMC9497243 DOI: 10.3390/cells11182915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
Atrial fibrillation (AF) is the most common type of sustained arrhythmia in diabetes mellitus (DM). Its morbidity and mortality rates are high, and its prevalence will increase as the population ages. Despite expanding knowledge on the pathophysiological mechanisms of AF, current pharmacological interventions remain unsatisfactory; therefore, novel findings on the underlying mechanism are required. A growing body of evidence suggests that an altered energy metabolism is closely related to atrial arrhythmogenesis, and this finding engenders novel insights into the pathogenesis of the pathophysiology of AF. In this review, we provide comprehensive information on the mechanistic insights into the cardiac energy metabolic changes, altered substrate oxidation rates, and mitochondrial dysfunctions involved in atrial arrhythmogenesis, and suggest a promising advanced new therapeutic approach to treat patients with AF.
Collapse
Affiliation(s)
- Baigalmaa Lkhagva
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| | - Cheng-Chih Chung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Okinawa 901-2131, Japan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cardiovascular Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Correspondence:
| |
Collapse
|
7
|
Hu B, Ge W, Wang Y, Zhang X, Li T, Cui H, Qian Y, Zhang Y, Li Z. Metabolomic and Proteomic Analyses of Persistent Valvular Atrial Fibrillation and Non-Valvular Atrial Fibrillation. Front Genet 2021; 12:789485. [PMID: 34917134 PMCID: PMC8669813 DOI: 10.3389/fgene.2021.789485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023] Open
Abstract
Atrial fibrillation (AF) is an abnormal heart rhythm related to an increased risk of heart failure, dementia, and stroke. The distinction between valvular and non-valvular AF remains a debate. In this study, proteomics and metabolomics were integrated to describe the dysregulated metabolites and proteins of AF patients relative to sinus rhythm (SR) patients. Totally 47 up-regulated and 41 down-regulated proteins in valvular AF, and 59 up-regulated and 149 down-regulated proteins in non-valvular AF were recognized in comparison to SR patients. Moreover, 58 up-regulated and 49 significantly down-regulated metabolites in valvular AF, and 47 up-regulated and 122 down-regulated metabolites in persistent non-valvular AF patients were identified in comparison to SR patients. Based on analysis of differential levels of metabolites and proteins, 15 up-regulated and 22 down-regulated proteins, and 13 up-regulated and 122 down-regulated metabolites in persistent non-valvular AF were identified relative to valvular AF. KEGG pathway enrichment analysis showed the altered proteins and metabolites were significantly related to multiple metabolic pathways, such as Glycolysis/Gluconeogenesis. Interestingly, the enrichment pathways related to non-valvular AF were obviously different from those in valvular AF. For example, valvular AF was significantly related to Glycolysis/Gluconeogenesis, but non-valvular AF was more related to Citrate cycle (TCA cycle). Correlation analysis between the differentially expressed proteins and metabolites was also performed. Several hub proteins with metabolites were identified in valvular AF and non-valvular AF. For example, Taurine, D-Threitol, L-Rhamnose, and DL-lactate played crucial roles in valvular AF, while Glycerol-3-phosphate dehydrogenase, Inorganic pyrophosphatase 2, Hydroxymethylglutaryl-CoAlyase, and Deoxyuridine 5-triphosphate nucleotidohydrolase were crucial in non-valvular AF. Then two hub networks were recognized as potential biomarkers, which can effectively distinguish valvular AF and non-valvular persistent AF from SR samples, with areas under curve of 0.75 and 0.707, respectively. Hence, these metabolites and proteins can be used as potential clinical molecular markers to discriminate two types of AF from SR samples. In summary, this study provides novel insights to understanding the mechanisms of AF progression and identifying novel biomarkers for prognosis of non-valvular AF and valvular AF by using metabolomics and proteomics analyses.
Collapse
Affiliation(s)
- Bo Hu
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wen Ge
- Department of Cardiothoracic Surgery, Shuguang Hospital, Affiliated to Shanghai University of TCM, Shanghai, China
| | - Yuliang Wang
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Xiaobin Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Li
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Cui
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yongjun Qian
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yangyang Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Li
- Department of Cardiovascular Surgery, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Niederdöckl J, Simon A, Cacioppo F, Buchtele N, Merrelaar A, Schütz N, Schnaubelt S, Spiel AO, Roth D, Schörgenhofer C, Herkner H, Domanovits H, Schwameis M. Predicting spontaneous conversion to sinus rhythm in symptomatic atrial fibrillation: The ReSinus score. Eur J Intern Med 2021; 83:45-53. [PMID: 32951957 DOI: 10.1016/j.ejim.2020.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
The optimal management of patients presenting to the Emergency Department with hemodynamically stable symptomatic atrial fibrillation remains unclear. We aimed to develop and validate an easy-to-use score to predict the individual probability of spontaneous conversion to sinus rhythm in these patients METHODS: This retrospective cohort study analyzed 2426 cases of first-detected or recurrent hemodynamically stable non-permanent symptomatic atrial fibrillation documented between January 2011 and January 2019 in an Austrian academic Emergency Department atrial fibrillation registry. Multivariable analysis was used to develop and validate a prediction score for spontaneous conversion to sinus rhythm during Emergency Department visit. Clinical usefulness of the score was assessed using decision curve analysis RESULTS: 1420 cases were included in the derivation cohort (68years, 57-76; 43% female), 1006 cases were included in the validation cohort (69years, 58-76; 47% female). Six variables independently predicted spontaneous conversion. These included: duration of atrial fibrillation symptoms (<24hours), lack of prior cardioversion history, heart rate at admission (>125bpm), potassium replacement at K+ level ≤3.9mmol/l, NT-proBNP (<1300pg/ml) and lactate dehydrogenase level (<200U/l). A risk score weight was assigned to each variable allowing classification into low (0-2), medium (3-5) and moderate (6-8) probability of spontaneous conversion. The final score showed good calibration (p=0.44 and 0.40) and discrimination in both cohorts (c-indices: 0.74 and 0.67) and clinical net benefit CONCLUSION: The ReSinus score, which predicts spontaneous conversion to sinus rhythm, was developed and validated in a large cohort of patients with hemodynamically stable non-permanent symptomatic atrial fibrillation and showed good calibration, discrimination and usefulness REGISTRATION: NCT03272620.
Collapse
Affiliation(s)
- Jan Niederdöckl
- Department of Emergency Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Alexander Simon
- Zentrale Notaufnahme, Wilhelminenspital, Montleartstr.37, 1160 Vienna, Austria
| | - Filippo Cacioppo
- Department of Emergency Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Nina Buchtele
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Anne Merrelaar
- Department of Emergency Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Nikola Schütz
- Department of Emergency Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Sebastian Schnaubelt
- Department of Emergency Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Alexander O Spiel
- Department of Emergency Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; Zentrale Notaufnahme, Wilhelminenspital, Montleartstr.37, 1160 Vienna, Austria
| | - Dominik Roth
- Department of Emergency Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Christian Schörgenhofer
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Harald Herkner
- Department of Emergency Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Hans Domanovits
- Department of Emergency Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Michael Schwameis
- Department of Emergency Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|
9
|
Xie H, Xu G, Gao Y, Yuan Z. hCINAP serves a critical role in hypoxia‑induced cardiomyocyte apoptosis via modulating lactate production and mitochondrial‑mediated apoptosis signaling. Mol Med Rep 2020; 23:109. [PMID: 33300073 PMCID: PMC7723068 DOI: 10.3892/mmr.2020.11748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Acute myocardial infarction (AMI) is a major cause of heart failure and is associated with insufficient myocardial oxygen supply. However, the molecular mechanisms underlying hypoxia‑induced cardiomyocyte apoptosis are not completely understood. In the present study, the role of human coilin interacting nuclear ATPase protein (hCINAP) in cardiomyocytes was investigated. AC16 cells were divided into the following four groups: i) Small interfering (si)RNA‑control (Ctrl); (ii) siRNA‑hCINAP; (iii) empty vector; and (iv) hCINAP‑Flag. Protein expression was assessed using western blotting. MTT and apoptosis assays were conducted to detect cell viability and apoptosis, respectively. CCK8 assays and apoptosis assays were used to detect cell viability and apoptosis, respectively. hCINAP promoter activity was examined by luciferase reporter assay. hCINAP expression was induced in a hypoxia‑inducible factor‑1α‑dependent manner under hypoxic conditions. Compared with the siRNA‑Ctrl group, hCINAP knockdown inhibited apoptosis, whereas compared with the vector group, hCINAP overexpression increased apoptosis under hypoxic conditions. Mechanistically, compared with the siRNA‑Ctrl group, hCINAP knockdown decreased hypoxia‑induced lactate accumulation via regulating lactate dehydrogenase A activity. Moreover, the results indicated that hCINAP was associated with mitochondrial‑mediated apoptosis via Caspase signaling. Collectively, the present study suggested that hCINAP was an important regulator in hypoxia‑induced apoptosis and may serve as a promising therapeutic target for AMI.
Collapse
Affiliation(s)
- Hebing Xie
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Gang Xu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Yuqi Gao
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Zhibin Yuan
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| |
Collapse
|
10
|
Liu Y, Bai F, Liu N, Ouyang F, Liu Q. The Warburg effect: A new insight into atrial fibrillation. Clin Chim Acta 2019; 499:4-12. [PMID: 31473195 DOI: 10.1016/j.cca.2019.08.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 12/28/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia. Atrial remodeling, including electrical/structural/autonomic remodeling, plays a vital role in AF pathogenesis. All of these have been shown to contribute continuously to the self-perpetuating nature of AF. The Warburg effect was found to play important roles in tumor and non-tumor disease. Recently, lots of studies documented altered atrial metabolism in AF, but the specific mechanism and the impact of these changes upon AF initiation/progression remain unclear. In this article, we review the metabolic consideration in AF comprehensively and observe the footprints of the Warburg effect. We also summarize the signaling pathway involved in the Warburg effect during AF-HIF-1α and AMPK, and discuss their potential roles in AF maintenance and progression. In conclusion, we give the innovative idea that the Warburg effect exists in AF and promotes the progression of AF. Targeting it may provide new therapies for AF treatment.
Collapse
Affiliation(s)
- Yaozhong Liu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Hunan Province, China
| | - Fan Bai
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Hunan Province, China
| | - Na Liu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Hunan Province, China
| | - Feifan Ouyang
- Department of Cardiology, Asklepios-Klinik St Georg, Hamburg, Germany
| | - Qiming Liu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Hunan Province, China.
| |
Collapse
|
11
|
Abstract
Inflammatory processes underlie many diseases associated with injury of the heart muscle, including conditions without an obvious inflammatory pathogenic component such as hypertensive and diabetic cardiomyopathy. Persistence of cardiac inflammation can cause irreversible structural and functional deficits. Some are induced by direct damage of the heart muscle by cellular and soluble mediators but also by metabolic adaptations sustained by the inflammatory microenvironment. It is well established that both cardiomyocytes and immune cells undergo metabolic reprogramming in the site of inflammation, which allow them to deal with decreased availability of nutrients and oxygen. However, like in cancer, competition for nutrients and increased production of signalling metabolites such as lactate initiate a metabolic cross-talk between immune cells and cardiomyocytes which, we propose, might tip the balance between resolution of the inflammation versus adverse cardiac remodeling. Here we review our current understanding of the metabolic reprogramming of both heart tissue and immune cells during inflammation, and we discuss potential key mechanisms by which these metabolic responses intersect and influence each other and ultimately define the prognosis of the inflammatory process in the heart.
Collapse
Affiliation(s)
- Federica M Marelli-Berg
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Dunja Aksentijevic
- School of Biological and Chemical Sciences, Queen Mary University of London, G.E. Fogg Building, Mile End Road, London E1 4NS, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| |
Collapse
|
12
|
Huang DQ, Cui CY, Zhang J, Liu YY, Qin YY, Zhang LZ, Liu L. Effects of nonvalvular atrial fibrillation on the structure and function of mitral valves (a STROBE-compliant article). Medicine (Baltimore) 2018; 97:e11643. [PMID: 30113455 PMCID: PMC6112909 DOI: 10.1097/md.0000000000011643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was to explore the effects of nonvalvular atrial fibrillation (NVAF) on the structure and function of mitral valve and analyze independent risk factors of moderate to severe mitral regurgitation (MR) by quantitative measurement of mitral parameters using real-time 3-dimensional transesophageal echocardiography.This study included 30 subjects with sinus rhythm group, and 65 patients with NVAF. The 65 patients with NVAF were divided into 35 with paroxysmal atrial fibrillation group and 30 with persistent atrial fibrillation. According to MR degree, the patients with NVAF were again divided into no or mild MR group (n = 44) and moderate to severe MR group (n = 21).There were significant differences in anterolateral-to-posteromedial diameter (DAlPm), anterior-to-posterior diameter, 3-dimensional circumference (C3D), 2-dimensional area (A2D), mitral leaflet surface area in late systolic phase, the index of mitral valve coaptation and left atrial internal diameter (LAID) between different cardiac rhythm groups (all P < .05). The DAlPm, C3D, A2D, nonplanar angle (θNPA), and LAID were greater but the mitral valve coaptation index was smaller in the moderate to severe MR group than in the no or mild MR group (all P < .05). Logistic regression analysis indicated that DAlPm and LAID were independent risk factors of moderate to severe MR in the patients with NVAF (OR > 1, P < .05).DAlPm and LAID are independent risk factors of moderate to severe MR in the patients with NVAF. NVAF can change the structure and function of mitral valve, which leads to MR.
Collapse
|
13
|
Gao C, Wang F, Wang Z, Zhang J, Yang X. Asiatic acid inhibits lactate-induced cardiomyocyte apoptosis through the regulation of the lactate signaling cascade. Int J Mol Med 2016; 38:1823-1830. [DOI: 10.3892/ijmm.2016.2783] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 10/12/2016] [Indexed: 11/05/2022] Open
|
14
|
Jha MK, Lee IK, Suk K. Metabolic reprogramming by the pyruvate dehydrogenase kinase-lactic acid axis: Linking metabolism and diverse neuropathophysiologies. Neurosci Biobehav Rev 2016; 68:1-19. [PMID: 27179453 DOI: 10.1016/j.neubiorev.2016.05.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that there is a complex interplay between metabolism and chronic disorders in the nervous system. In particular, the pyruvate dehydrogenase (PDH) kinase (PDK)-lactic acid axis is a critical link that connects metabolic reprogramming and the pathophysiology of neurological disorders. PDKs, via regulation of PDH complex activity, orchestrate the conversion of pyruvate either aerobically to acetyl-CoA, or anaerobically to lactate. The kinases are also involved in neurometabolic dysregulation under pathological conditions. Lactate, an energy substrate for neurons, is also a recently acknowledged signaling molecule involved in neuronal plasticity, neuron-glia interactions, neuroimmune communication, and nociception. More recently, the PDK-lactic acid axis has been recognized to modulate neuronal and glial phenotypes and activities, contributing to the pathophysiologies of diverse neurological disorders. This review covers the recent advances that implicate the PDK-lactic acid axis as a novel linker of metabolism and diverse neuropathophysiologies. We finally explore the possibilities of employing the PDK-lactic acid axis and its downstream mediators as putative future therapeutic strategies aimed at prevention or treatment of neurological disorders.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Division of Neuromuscular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 PLUS KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
15
|
Opacic D, van Bragt KA, Nasrallah HM, Schotten U, Verheule S. Atrial metabolism and tissue perfusion as determinants of electrical and structural remodelling in atrial fibrillation. Cardiovasc Res 2016; 109:527-41. [DOI: 10.1093/cvr/cvw007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/12/2016] [Indexed: 12/14/2022] Open
|
16
|
Sheibani S, Jones NK, Eid R, Gharib N, Arab NTT, Titorenko V, Vali H, Young PA, Greenwood MT. Inhibition of stress mediated cell death by human lactate dehydrogenase B in yeast. FEMS Yeast Res 2015; 15:fov032. [DOI: 10.1093/femsyr/fov032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/19/2015] [Indexed: 12/11/2022] Open
|
17
|
Shen Z, Jiang L, Yuan Y, Deng T, Zheng YR, Zhao YY, Li WL, Wu JY, Gao JQ, Hu WW, Zhang XN, Chen Z. Inhibition of G protein-coupled receptor 81 (GPR81) protects against ischemic brain injury. CNS Neurosci Ther 2014; 21:271-9. [PMID: 25495836 DOI: 10.1111/cns.12362] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/24/2014] [Accepted: 10/26/2014] [Indexed: 01/08/2023] Open
Abstract
AIM Lactates accumulate in ischemic brains. G protein-coupled receptor 81 (GPR81) is an endogenous receptor for lactate. We aimed to explore whether lactate is involved in ischemic injury via activating GPR81. METHODS N2A cells were transfected with GFP-GPR81 plasmids 24 h previously, and then treated with GPR81 antagonist 3-hydroxy-butyrate (3-OBA) alone or cotreated with agonists lactate or 3, 5-dihydroxybenzoic acid (3, 5-DHBA) during 3 h of oxygen-glucose deprivation (OGD). Adult male C57BL/6J mice and primary cultured cortical neurons were treated with 3-OBA at the onset of middle cerebral artery occlusion (MCAO) or OGD, respectively. RESULTS The GPR81 overexpression increased the cell vulnerability to ischemic injury. And GPR81 antagonism by 3-OBA significantly prevented cell death and brain injury after OGD and MCAO, respectively. Furthermore, inhibition of GPR81 reversed ischemia-induced apoptosis and extracellular signal-regulated kinase (ERK) signaling may be involved in the neuroprotection. CONCLUSIONS G protein-coupled receptor 81 (GPR81) inhibition attenuated ischemic neuronal death. Lactate may aggravate ischemic brain injury by activating GPR81. GPR81 antagonism might be a novel therapeutic strategy for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Zhe Shen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Carmona P, Mateo E, Hornero F, Errando CL, Vázquez A, Llagunes J, De Andrés J. [Hyperlactatemia in surgical ablation of atrial fibrillation and cardiac surgery. Is it a predictive factor of postoperative morbidity?]. ACTA ACUST UNITED AC 2014; 61:311-8. [PMID: 24556510 DOI: 10.1016/j.redar.2014.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 12/26/2013] [Accepted: 01/10/2014] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Increased serum lactate in postoperative cardiac surgery is very common and its pathogenesis is due to multiple factors. The elevation of serum lactate is associated with tissue hypoxia (hyperlactatemia type A) and non-hypoxic (hyperlactatemia type B) metabolic disorders. The aim of the study was to assess the evolution of postoperative lactate in surgical atrial fibrillation ablation during cardiac surgery, and to determine whether lactate levels could be predictors of morbimortality. MATERIAL AND METHODS A case-control study was conducted on 32 patients undergoing surgical atrial fibrillation ablation and cardiac surgery (Maze group) and 32 matched patients (Control group), operated on between 2011 and 2012. An analysis was made of the levels of postoperative lactate, perioperative morbimortality and hospital length of stay. A univariate and multivariate study was performed for a composite endpoint of morbimortality, and prolonged length of stay. RESULTS Lactate levels were significantly higher at 6, 12 and 24h in the Maze group. The univariate analysis showed that being in the Maze group (OR 3.88; 95% CI 1.3-11.1; P=.01) and an elevated lactate at 12h (OR 1.33; 95% CI 1.01-1.7; P=.04) were significant predictors of major complications, mortality, and longer hospital stays. In the multivariate analysis, surgical atrial fibrillation ablation (Maze group) was an independent predictor of major complications (OR 4.13; 95% CI 1.312.9; P=.015) for the morbimortality composite endpoint (OR 3.9; 95% CI 1.3-11.6; P=.01), and prolonged length of stay in the Intensive Care Unit (OR 5.7; 95% CI 2.01-15.7; P=.01). CONCLUSIONS The atrial fibrillation surgical ablation may be a not-yet-described cause of type B hyperlactatemia, with serum peak values being reached between 4-24h after cardiac surgery. The predictive value of this elevation, its correlation with morbimortality, its sensitivity and specificity to discriminate the significant thresholds needs to be defined.
Collapse
Affiliation(s)
- P Carmona
- Servicio de Anestesia, Reanimación y Tratamiento del Dolor, Consorcio Hospital General Universitario, Valencia, España
| | - E Mateo
- Servicio de Anestesia, Reanimación y Tratamiento del Dolor, Consorcio Hospital General Universitario, Valencia, España.
| | - F Hornero
- Servicio de Cirugía cardiaca, Instituto Cardiovascular, Consorcio Hospital General Universitario, Valencia, España
| | - C L Errando
- Servicio de Anestesia, Reanimación y Tratamiento del Dolor, Consorcio Hospital General Universitario, Valencia, España
| | - A Vázquez
- Servicio de Cirugía cardiaca, Hospital Politécnico La Fe, Valencia, España
| | - J Llagunes
- Servicio de Anestesia, Reanimación y Tratamiento del Dolor, Consorcio Hospital General Universitario, Valencia, España
| | - J De Andrés
- Servicio de Anestesia, Reanimación y Tratamiento del Dolor, Consorcio Hospital General Universitario, Valencia, España
| |
Collapse
|