1
|
Harvey BM, Baxter M, Garcia AM, Granato M. Glial cell derived pathway directs regenerating optic nerve axons toward the CNS midline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618346. [PMID: 39464127 PMCID: PMC11507804 DOI: 10.1101/2024.10.15.618346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Several RGC intrinsic signaling pathways have been shown to enhance RGC survival and RGC axonal growth after optic nerve injury. Yet an unresolved challenge for regenerating RGC axons is to properly navigate the optic chiasm located at the Central Nervous System midline. Here, we use live-cell imaging in larval zebrafish to show that regrowing RGC axons initiate growth toward the midline and extend along a trajectory similar to their original projection. From a candidate genetic screen, we identify the glycosyltransferase Lh3 to be required during the process of regeneration to direct regrowing RGC axons toward the midline. Moreover, we find that mutants in collagen 18a1 (col18a1), a putative Lh3 substrate, display RGC axonal misguidance phenotypes similar to those we observe in lh3 mutants, suggesting that lh3 may act through col18a1 during regeneration. Finally, we show that transgenic lh3 expression in sox10+ presumptive olig2+ oligodendrocytes located near the optic chiasm restores directed axonal growth. Combined these data identify lh3 and col18a1 as part of a glial derived molecular pathway critical for guiding in vivo regenerating RGC axons towards and across the optic chiasm.
Collapse
Affiliation(s)
- Beth M. Harvey
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Melissa Baxter
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Alexis M. Garcia
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
2
|
Brown RI, Barber HM, Kucenas S. Satellite glial cell manipulation prior to axotomy enhances developing dorsal root ganglion central branch regrowth into the spinal cord. Glia 2024; 72:1766-1784. [PMID: 39141572 PMCID: PMC11325082 DOI: 10.1002/glia.24581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 08/16/2024]
Abstract
The central and peripheral nervous systems (CNS and PNS, respectively) exhibit remarkable diversity in the capacity to regenerate following neuronal injury with PNS injuries being much more likely to regenerate than those that occur in the CNS. Glial responses to damage greatly influence the likelihood of regeneration by either promoting or inhibiting axonal regrowth over time. However, despite our understanding of how some glial lineages participate in nerve degeneration and regeneration, less is known about the contributions of peripheral satellite glial cells (SGC) to regeneration failure following central axon branch injury of dorsal root ganglia (DRG) sensory neurons. Here, using in vivo, time-lapse imaging in larval zebrafish coupled with laser axotomy, we investigate the role of SGCs in axonal regeneration. In our studies we show that SGCs respond to injury by relocating their nuclei to the injury site during the same period that DRG neurons produce new central branch neurites. Laser ablation of SGCs prior to axon injury results in more neurite growth attempts and ultimately a higher rate of successful central axon regrowth, implicating SGCs as inhibitors of regeneration. We also demonstrate that this SGC response is mediated in part by ErbB signaling, as chemical inhibition of this receptor results in reduced SGC motility and enhanced central axon regrowth. These findings provide new insights into SGC-neuron interactions under injury conditions and how these interactions influence nervous system repair.
Collapse
Affiliation(s)
- Robin I Brown
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Heather M Barber
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Cell & Developmental Biology Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Duan Q, Zheng H, Qin Y, Yan J, Wang J, Burgess SM, Fan C. Stat3 Has a Different Role in Axon Growth During Development Than It Does in Axon Regeneration After Injury. Mol Neurobiol 2024; 61:1753-1768. [PMID: 37775721 DOI: 10.1007/s12035-023-03644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/07/2023] [Indexed: 10/01/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is essential for neural development and regeneration as a key transcription factor and mitochondrial activator. However, the mechanism of Stat3 in axon development and regeneration has not been fully understood. In this study, using zebrafish posterior lateral line (PLL) axons, we demonstrate that Stat3 plays distinct roles in PLL axon embryonic growth and regeneration. Our experiments indicate that stat3 is required for PLL axon extension. In stat3 mutant zebrafish, the PLL axon ends were stalled at the level of the cloaca, and expression of stat3 rescues the PLL axon growth in a cell-autonomous manner. Jak/Stat signaling inhibition did not affect PLL axon growth indicating Jak/Stat was dispensable for PLL axon growth. In addition, we found that Stat3 was co-localized with mitochondria in PLL axons and important for the mitochondrial membrane potential and ATPase activity. The PLL axon growth defect of stat3 mutants was mimicked and rescued by rotenone and DCHC treatment, respectively, which suggests that Stat3 regulates PLL axon growth through mitochondrial Stat3. By contrast, mutation of stat3 or Jak/Stat signaling inhibition retarded PLL axon regeneration. Meanwhile, we also found Schwann cell migration was also inhibited in stat3 mutants. Taken together, Stat3 is required for embryonic PLL axon growth by regulating the ATP synthesis efficiency of mitochondria, whereas Stat3 stimulates PLL axon regeneration by regulating Schwann cell migration via Jak/Stat signaling. Our findings show a new mechanism of Stat3 in axon growth and regeneration.
Collapse
Affiliation(s)
- Qinwen Duan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Hongfei Zheng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yanjun Qin
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jizhou Yan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jian Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Chunxin Fan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Marine Biomedical Science and Technology Innovation Platform of Lingang New Area, Shanghai, China.
| |
Collapse
|
4
|
Walker LJ, Guevara C, Kawakami K, Granato M. Target-selective vertebrate motor axon regeneration depends on interaction with glial cells at a peripheral nerve plexus. PLoS Biol 2023; 21:e3002223. [PMID: 37590333 PMCID: PMC10464982 DOI: 10.1371/journal.pbio.3002223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/29/2023] [Accepted: 06/28/2023] [Indexed: 08/19/2023] Open
Abstract
A critical step for functional recovery from peripheral nerve injury is for regenerating axons to connect with their pre-injury targets. Reestablishing pre-injury target specificity is particularly challenging for limb-innervating axons as they encounter a plexus, a network where peripheral nerves converge, axons from different nerves intermingle, and then re-sort into target-specific bundles. Here, we examine this process at a plexus located at the base of the zebrafish pectoral fin, equivalent to tetrapod forelimbs. Using live cell imaging and sparse axon labeling, we find that regenerating motor axons from 3 nerves coalesce into the plexus. There, they intermingle and sort into distinct branches, and then navigate to their original muscle domains with high fidelity that restores functionality. We demonstrate that this regeneration process includes selective retraction of mistargeted axons, suggesting active correction mechanisms. Moreover, we find that Schwann cells are enriched and associate with axons at the plexus, and that Schwann cell ablation during regeneration causes profound axonal mistargeting. Our data provide the first real-time account of regenerating vertebrate motor axons navigating a nerve plexus and reveal a previously unappreciated role for Schwann cells to promote axon sorting at a plexus during regeneration.
Collapse
Affiliation(s)
- Lauren J. Walker
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Camilo Guevara
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
5
|
Sajid N. Topography and mechanical measurements of primary Schwann cells and neuronal cells with atomic force microscope for understanding and controlling nerve growth. Micron 2023; 167:103427. [PMID: 36805164 DOI: 10.1016/j.micron.2023.103427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
Peripheral nerve injuries require a piece of substantial information for a satisfactory treatment. The prior peripheral nerve injury knowledge, can improve nerve repair, and its growth at molecular and cellular level. In this study, we employed an atomic force microscope (AFM) to investigate the topography and mechanical properties of the primary Schwann cells and neuronal cells. Tapping mode images and contact points force-volume maps provide the cells topography. Two different probes were used to acquire the micro and nanomechanical properties of the primary Schwann cells, NG-108-15 neuronal cells, and growth cones. Moreover, the sharp probe was only used to investigate neurites nanomechanics. A significant difference in the elastic moduli found between primary Schwann cells, and neuronal cells, with both probes, with consistent results. The elastic moduli of the growth cones were found higher, than the neuronal cells and primary Schwann cells, with both probes. Furthermore, the modulus variations were also found between neurites. These results have significant implications for a better understanding of the peripheral nerve system (PNS) in terms of defining the optimal pattern surface and nerve guidance conduits.
Collapse
Affiliation(s)
- Nusrat Sajid
- Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan.
| |
Collapse
|
6
|
Walker LJ, Guevara C, Kawakami K, Granato M. A glia cell dependent mechanism at a peripheral nerve plexus critical for target-selective axon regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522786. [PMID: 36712008 PMCID: PMC9881934 DOI: 10.1101/2023.01.05.522786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A critical step for functional recovery from peripheral nerve injury is for regenerating axons to connect with their pre-injury targets. Reestablishing pre-injury target specificity is particularly challenging for limb-innervating axons as they encounter a plexus, a network where peripheral nerves converge, axons from different nerves intermingle, and then re-sort into target-specific bundles. Here, we examine this process at a plexus located at the base of the zebrafish pectoral fin, equivalent to tetrapod forelimbs. Using live cell imaging and sparse axon labeling, we find that regenerating motor axons from three nerves coalesce into the plexus. There, they intermingle and sort into distinct branches, and then navigate to their original muscle domains with high fidelity that restores functionality. We demonstrate that this regeneration process includes selective retraction of mistargeted axons, suggesting active correction mechanisms. Moreover, we find that Schwann cells are enriched and associate with axons at the plexus, and that Schwann cell ablation during regeneration causes profound axonal mistargeting. Our data provide the first real time account of regenerating vertebrate motor axons navigating a nerve plexus and reveal a previously unappreciated role for Schwann cells to promote axon sorting at a plexus during regeneration.
Collapse
Affiliation(s)
- Lauren J Walker
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Camilo Guevara
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
7
|
Li A, Pereira C, Hill EE, Vukcevich O, Wang A. In vitro, In vivo and Ex vivo Models for Peripheral Nerve Injury and Regeneration. Curr Neuropharmacol 2021; 20:344-361. [PMID: 33827409 PMCID: PMC9413794 DOI: 10.2174/1570159x19666210407155543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/29/2021] [Accepted: 03/29/2021] [Indexed: 11/22/2022] Open
Abstract
Peripheral Nerve Injuries (PNI) frequently occur secondary to traumatic injuries. Recovery from these injuries can be expectedly poor, especially in proximal injuries. In order to study and improve peripheral nerve regeneration, scientists rely on peripheral nerve models to identify and test therapeutic interventions. In this review, we discuss the best described and most commonly used peripheral nerve models that scientists have and continue to use to study peripheral nerve physiology and function.
Collapse
Affiliation(s)
- Andrew Li
- University of California Davis Ringgold standard institution - Hand and Upper Extremity Surgery, Division of Plastic Surgery, Department of Surgery Sacramento, California. United States
| | - Clifford Pereira
- University of California Davis Ringgold standard institution - Hand and Upper Extremity Surgery, Division of Plastic Surgery, Department of Surgery Sacramento, California. United States
| | - Elise Eleanor Hill
- University of California Davis Ringgold standard institution - Department of Surgery Sacramento, California. United States
| | - Olivia Vukcevich
- University of California Davis Ringgold standard institution - Surgery & Biomedical Engineering Sacramento, California. United States
| | - Aijun Wang
- University of California Davis - Surgery & Biomedical Engineering 4625 2nd Ave., Suite 3005 Sacramento Sacramento California 95817. United States
| |
Collapse
|
8
|
Current Advances in Comprehending Dynamics of Regenerating Axons and Axon-Glia Interactions after Peripheral Nerve Injury in Zebrafish. Int J Mol Sci 2021; 22:ijms22052484. [PMID: 33801205 PMCID: PMC7957880 DOI: 10.3390/ijms22052484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Following an injury, axons of both the central nervous system (CNS) and peripheral nervous system (PNS) degenerate through a coordinated and genetically conserved mechanism known as Wallerian degeneration (WD). Unlike central axons, severed peripheral axons have a higher capacity to regenerate and reinnervate their original targets, mainly because of the favorable environment that they inhabit and the presence of different cell types. Even though many aspects of regeneration in peripheral nerves have been studied, there is still a lack of understanding regarding the dynamics of axonal degeneration and regeneration, mostly due to the inherent limitations of most animal models. In this scenario, the use of zebrafish (Danio rerio) larvae combined with time-lapse microscopy currently offers a unique experimental opportunity to monitor the dynamics of the regenerative process in the PNS in vivo. This review summarizes the current knowledge and advances made in understanding the dynamics of the regenerative process of PNS axons. By using different tools available in zebrafish such as electroablation of the posterior lateral line nerve (pLLn), and laser-mediated transection of motor and sensory axons followed by time-lapse microscopy, researchers are beginning to unravel the complexity of the spatiotemporal interactions among different cell types during the regenerative process. Thus, understanding the cellular and molecular mechanisms underlying the degeneration and regeneration of peripheral nerves will open new avenues in the treatment of acute nerve trauma or chronic conditions such as neurodegenerative diseases.
Collapse
|
9
|
Ohno M, Nikaido M, Horiuchi N, Kawakami K, Hatta K. The enteric nervous system in zebrafish larvae can regenerate via migration into the ablated area and proliferation of neural crest-derived cells. Development 2021; 148:dev.195339. [PMID: 33376126 DOI: 10.1242/dev.195339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022]
Abstract
The enteric nervous system (ENS), which is derived from neural crest, is essential for gut function, and its deficiency causes severe congenital diseases. Since the capacity for ENS regeneration in mammals is limited, additional complementary models would be useful. Here, we show that the ENS in zebrafish larvae at 10-15 days postfertilization is highly regenerative. After laser ablation, the number of enteric neurons recovered to ∼50% of the control by 10 days post-ablation (dpa). Using transgenic lines in which enteric neural crest-derived cells (ENCDCs) and enteric neurons are labeled with fluorescent proteins, we live imaged the regeneration process and found covering by neurites that extended from the unablated area and entry of ENCDCs into the ablated areas by 1-3 dpa. BrdU assays suggested that ∼80% of the enteric neurons and ∼90% of the Sox10-positive ENCDCs therein at 7 dpa were generated through proliferation. Thus, ENS regeneration involves proliferation, entrance and neurogenesis of ENCDCs. This is the first report regarding the regeneration process of the zebrafish ENS. Our findings provide a basis for further in vivo research at single-cell resolution in this vertebrate model.
Collapse
Affiliation(s)
- Maria Ohno
- Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan
| | - Masataka Nikaido
- Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan
| | - Natsumi Horiuchi
- School of Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Kohei Hatta
- Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
10
|
Cao P, Zhang H, Meng H, Cheng Y, Xu H, Zang S, Li Z, Cui J, Li Y. Celecoxib Exerts a Therapeutic Effect Against Demyelination by Improving the Immune and Inflammatory Microenvironments. J Inflamm Res 2020; 13:1043-1055. [PMID: 33293848 PMCID: PMC7718997 DOI: 10.2147/jir.s282128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/11/2020] [Indexed: 12/29/2022] Open
Abstract
Background The myelin sheath can be damaged by genetic and/or environmental factors, leading to demyelinating diseases, for which effective treatments are lacking. Recently, cyclooxygenase-2 (COX-2) overexpression was detected in demyelinating lesions both in patients and animal models, opening an avenue for promoting endogenous remyelination. The aim of this study was to investigate the therapeutic effect of celecoxib, a selective COX-2 inhibitor, against demyelination in a zebrafish model. Methods The biotoxicity of celecoxib was evaluated on zebrafish embryos. Metronidazole was used to deplete the oligodendrocytes in Tg (mbp:nfsB-egfp) transgenic fish. Celecoxib was then administered both in larvae and adults. The regeneration of the myelin sheath and the underlying mechanisms were explored by immunohistochemistry, flow cytometry, Western blot analysis, quantitative real-time polymerase chain reaction, and behavioral test. Results Celecoxib had low in vivo toxicity. A stable and practical demyelination model was established by metronidazole induction. Following celecoxib treatment, the number of oligodendrocytes was increased significantly and the concentric structure of the myelin sheath reappeared. The locomotor ability was notably improved and was close to its physiological levels. The expression of arg1, mrc1, il-10, and il-4 was upregulated, while that of il-1β, il-12, tnf-α, il-6, caspase-3 and caspase-7 was downregulated. Conclusion Inhibition of COX-2 contributed to the transformation of microglia/macrophages from the M1 to the M2 phenotype, improved the inflammatory microenvironment, and suppressed caspase-dependent apoptosis, thus exerting a therapeutic effect against demyelination.
Collapse
Affiliation(s)
- Peipei Cao
- Nankai University School of Medicine, Tianjin, People's Republic of China
| | - Hao Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Huiling Meng
- Nankai University School of Medicine, Tianjin, People's Republic of China
| | - Yajia Cheng
- Nankai University School of Medicine, Tianjin, People's Republic of China
| | - Haiqi Xu
- Faculty of Life Science, University of Liverpool, Liverpool, UK
| | - Siwen Zang
- Nankai University School of Medicine, Tianjin, People's Republic of China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin, People's Republic of China
| | - Jianlin Cui
- Nankai University School of Medicine, Tianjin, People's Republic of China.,Medical International Collaborative Innovation Center, Nankai University School of Medicine, Tianjin, People's Republic of China
| | - Yuhao Li
- Nankai University School of Medicine, Tianjin, People's Republic of China.,Department of Pathology, Nankai University School of Medicine, Tianjin, People's Republic of China
| |
Collapse
|
11
|
Abstract
The cornea is a transparent outermost structure of the eye anterior segment comprising the highest density of innervated tissue. In the process of corneal innervation, trigeminal ganglion originated corneal nerves diligently traverse different corneal cell types in different corneal layers including the corneal stroma and epithelium. While crossing the stromal and epithelial cell layers during innervation, due to the existing physical contacts, close interactions occur between stromal keratocytes, epithelial cells, resident immune cells and corneal nerves. Furthermore, by producing various trophic and growth factors corneal cells assist in maintaining the growth and function of corneal nerves. Similarly, corneal nerve generated growth factors critically modify the corneal cell function in all the corneal layers. Due to their close association and contacts, on-going cross-communication between these cell types and corneal nerves play a vital role in the modulation of corneal nerve function, regeneration during wound healing. The present review highlights the influence of different corneal cell types and growth factors released from these cells on corneal nerve regeneration and function.
Collapse
Affiliation(s)
- Bhavani S Kowtharapu
- Department of Ophthalmology, Rostock University Medical Centre, Rostock, Germany
| | - Oliver Stachs
- Department of Ophthalmology, Rostock University Medical Centre, Rostock, Germany
| |
Collapse
|
12
|
Anguita-Salinas C, Sánchez M, Morales RA, Ceci ML, Rojas-Benítez D, Allende ML. Cellular Dynamics during Spinal Cord Regeneration in Larval Zebrafish. Dev Neurosci 2019; 41:112-122. [PMID: 31390621 DOI: 10.1159/000500185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/04/2019] [Indexed: 11/19/2022] Open
Abstract
The study of spinal cord regeneration using diverse animal models, which range from null to robust regenerative capabilities, is imperative for understanding how regeneration evolved and, eventually, to treat spinal cord injury and paralysis in humans. In this study, we used electroablation to fully transect the spinal cord of zebrafish larvae (3 days postfertilization) and examined regeneration of the tissue over time. We used transgenic lines to follow immune cells, oligodendrocytes, and neurons in vivo during the entire regenerative process. We observed that immune cells are recruited to the injury site, oligodendrocytes progenitor cells (olig2-expressing cells) invade, and axons cross the gap generated upon damage from anterior to reinnervate caudal structures. Together with the recovery of cell types and structures, a complete reversal of paralysis was observed in the lesioned larvae indicating functional regeneration. Finally, using transplantation to obtain mosaic larvae with single-labeled neurons, we show that severed spinal axons exhibited varying regenerative capabilities and plasticity depending on their original dorsoventral position in the spinal cord.
Collapse
Affiliation(s)
- Consuelo Anguita-Salinas
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mario Sánchez
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Rodrigo A Morales
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - María Laura Ceci
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Diego Rojas-Benítez
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Miguel L Allende
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile,
| |
Collapse
|
13
|
Cook BM, Wozniak KM, Proctor DA, Bromberg RB, Wu Y, Slusher BS, Littlefield BA, Jordan MA, Wilson L, Feinstein SC. Differential Morphological and Biochemical Recovery from Chemotherapy-Induced Peripheral Neuropathy Following Paclitaxel, Ixabepilone, or Eribulin Treatment in Mouse Sciatic Nerves. Neurotox Res 2018; 34:677-692. [PMID: 30051419 DOI: 10.1007/s12640-018-9929-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 12/29/2022]
Abstract
The reversibility of chemotherapy-induced peripheral neuropathy (CIPN), a disabling and potentially permanent side effect of microtubule-targeting agents (MTAs), is becoming an increasingly important issue as treatment outcomes improve. The molecular mechanisms regulating the variability in time to onset, severity, and time to recovery from CIPN between the common MTAs paclitaxel and eribulin are unknown. Previously (Benbow et al. in Neurotox Res 29:299-313, 2016), we found that after 2 weeks of a maximum tolerated dose (MTD) in mice, paclitaxel treatment resulted in severe reductions in axon area density, higher frequency of myelin abnormalities, and increased numbers of Schwann cell nuclei in sciatic nerves. Biochemically, eribulin induced greater microtubule-stabilizing effects than paclitaxel. Here, we extended these comparative MTD studies to assess the recovery from these short-term effects of paclitaxel, eribulin, and a third MTA, ixabepilone, over the course of 6 months. Paclitaxel induced a persistent reduction in axon area density over the entire 6-month recovery period, unlike ixabepilone- or eribulin-treated animals. The abundance of myelin abnormalities rapidly declined after cessation of all drugs but recovered most slowly after paclitaxel treatment. Paclitaxel- and ixabepilone- but not eribulin-treated animals exhibited increased Schwann cell numbers during the recovery period. Tubulin composition and biochemistry rapidly returned from MTD-induced levels of α-tubulin, acetylated α-tubulin, and end-binding protein 1 to control levels following cessation of drug treatment. Taken together, sciatic nerve axons recovered more rapidly from morphological effects in eribulin- and ixabepilone-treated animals than in paclitaxel-treated animals and drug-induced increases in protein expression levels following paclitaxel and eribulin treatment were relatively transient.
Collapse
Affiliation(s)
- B M Cook
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Department of Biomolecular Sciences and Engineering, University of California Santa Barbara, Santa Barbara, CA, 93016, USA
| | - K M Wozniak
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - D A Proctor
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93016, USA
| | - R B Bromberg
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93016, USA
| | - Y Wu
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - B S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - B A Littlefield
- Scientific Administration, Eisai Research Institute, Andover, MA, 01810, USA
| | - M A Jordan
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93016, USA
| | - L Wilson
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.,Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93016, USA
| | - Stuart C Feinstein
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA. .,Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93016, USA.
| |
Collapse
|
14
|
Lei X, Cai S, Chen Y, Cui J, Wang Y, Li Z, Li Y. Down-regulation of interleukin 7 receptor (IL-7R) contributes to central nervous system demyelination. Oncotarget 2018; 8:28395-28407. [PMID: 28415697 PMCID: PMC5438658 DOI: 10.18632/oncotarget.16081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/27/2017] [Indexed: 11/25/2022] Open
Abstract
Interleukin 7 receptor (IL-7R) has been associated with the pathogenesis of multiple sclerosis (MS), though the mechanisms are not clear. Because myelin expression is highly conserved between zebrafish and mammals, zebrafish have become an ideal model for studying demyelination. We used a transgenic (Tg; mbp:nfsB-egfp) zebrafish line in which oligodendrocytes expressed green fluorescent protein (GFP) from the larval stage to adulthood. Exposing adult transgenic zebrafish to metronidazole induced demyelination that resembled the morphological changes associated with the early stages of MS. The metronidazole-induced demyelination was confirmed by magnetic resonance imaging (MRI) for the first time. Microarray analysis revealed down-regulation of IL-7R during demyelination. Targeted knockdown of IL-7R demonstrated that IL-7R is essential for myelination in embryonic and larval zebrafish. Moreover, IL-7R down-regulation induced signaling via the JAK/STAT pathway leading to apoptosis in oligodendrocytes. These findings contribute to our understanding of the role of IL-7R in demyelination, and provide a rationale for the development of IL-7R-based therapies for MS and other demyelinating diseases.
Collapse
Affiliation(s)
- Xudan Lei
- Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, China
| | - Shijiao Cai
- Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, China
| | - Yang Chen
- Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, China
| | - Jianlin Cui
- Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, China
| | - Yajie Wang
- Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, China
| | - Zongjin Li
- Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, China
| | - Yuhao Li
- Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, China
| |
Collapse
|
15
|
Carvalho CR, López-Cebral R, Silva-Correia J, Silva JM, Mano JF, Silva TH, Freier T, Reis RL, Oliveira JM. Investigation of cell adhesion in chitosan membranes for peripheral nerve regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1122-1134. [DOI: 10.1016/j.msec.2016.11.100] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/13/2016] [Accepted: 11/24/2016] [Indexed: 12/24/2022]
|
16
|
Learning to swim, again: Axon regeneration in fish. Exp Neurol 2017; 287:318-330. [DOI: 10.1016/j.expneurol.2016.02.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 01/10/2023]
|
17
|
Pei W, Huang SC, Xu L, Pettie K, Ceci ML, Sánchez M, Allende ML, Burgess SM. Loss of Mgat5a-mediated N-glycosylation stimulates regeneration in zebrafish. ACTA ACUST UNITED AC 2016; 5:3. [PMID: 27795824 PMCID: PMC5072312 DOI: 10.1186/s13619-016-0031-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/20/2016] [Indexed: 12/27/2022]
Abstract
Background We are using genetics to identify genes specifically involved in hearing regeneration. In a large-scale genetic screening, we identified mgat5a, a gene in the N-glycosylation biosynthesis pathway whose activity negatively impacts hair cell regeneration. Methods We used a combination of mutant analysis in zebrafish and a hair cell regeneration assay to phenotype the loss of Mgat5a activity in zebrafish. We used pharmacological inhibition of N-glycosylation by swansonine. We also used over-expression analysis by mRNA injections to demonstrate how changes in N-glycosylation can alter cell signaling. Results We found that mgat5a was expressed in multiple tissues during zebrafish embryo development, particularly enriched in neural tissues including the brain, retina, and lateral line neuromasts. An mgat5a insertional mutation and a CRISPR/Cas9-generated truncation mutation both caused an enhancement of hair cell regeneration which could be phenocopied by pharmacological inhibition with swansonine. In addition to hair cell regeneration, inhibition of the N-glycosylation pathway also enhanced the regeneration of lateral line axon and caudal fins. Further analysis showed that N-glycosylation altered the responsiveness of TGF-beta signaling. Conclusions The findings from this study provide experimental evidence for the involvement of N-glycosylation in tissue regeneration and cell signaling. Electronic supplementary material The online version of this article (doi:10.1186/s13619-016-0031-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wuhong Pei
- Functional and Translation Genome Branch, National Human Genome Research Institute, 9000 Rockville Pike, Building 50, Room 5537, Bethesda, MD 20892 USA
| | - Sunny C Huang
- Functional and Translation Genome Branch, National Human Genome Research Institute, 9000 Rockville Pike, Building 50, Room 5537, Bethesda, MD 20892 USA
| | - Lisha Xu
- Functional and Translation Genome Branch, National Human Genome Research Institute, 9000 Rockville Pike, Building 50, Room 5537, Bethesda, MD 20892 USA
| | - Kade Pettie
- Functional and Translation Genome Branch, National Human Genome Research Institute, 9000 Rockville Pike, Building 50, Room 5537, Bethesda, MD 20892 USA
| | - María Laura Ceci
- Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Mario Sánchez
- Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Miguel L Allende
- Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Shawn M Burgess
- Functional and Translation Genome Branch, National Human Genome Research Institute, 9000 Rockville Pike, Building 50, Room 5537, Bethesda, MD 20892 USA
| |
Collapse
|
18
|
Sánchez M, Ceci ML, Gutiérrez D, Anguita-Salinas C, Allende ML. Mechanosensory organ regeneration in zebrafish depends on a population of multipotent progenitor cells kept latent by Schwann cells. BMC Biol 2016; 14:27. [PMID: 27055439 PMCID: PMC4823859 DOI: 10.1186/s12915-016-0249-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/22/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Regenerating damaged tissue is a complex process, requiring progenitor cells that must be stimulated to undergo proliferation, differentiation and, often, migratory behaviors and morphological changes. Multiple cell types, both resident within the damaged tissue and recruited to the lesion site, have been shown to participate. However, the cellular and molecular mechanisms involved in the activation of progenitor cell proliferation and differentiation after injury, and their regulation by different cells types, are not fully understood. The zebrafish lateral line is a suitable system to study regeneration because most of its components are fully restored after damage. The posterior lateral line (PLL) is a mechanosensory system that develops embryonically and is initially composed of seven to eight neuromasts distributed along the trunk and tail, connected by a continuous stripe of interneuromastic cells (INCs). The INCs remain in a quiescent state owing to the presence of underlying Schwann cells. They become activated during development to form intercalary neuromasts. However, no studies have described if INCs can participate in a regenerative event, for example, after the total loss of a neuromast. RESULTS We used electroablation in transgenic larvae expressing fluorescent proteins in PLL components to completely ablate single neuromasts in larvae and adult fish. This injury results in discontinuity of the INCs, Schwann cells, and the PLL nerve. In vivo imaging showed that the INCs fill the gap left after the injury and can regenerate a new neuromast in the injury zone. Further, a single INC is able to divide and form all cell types in a regenerated neuromast and, during this process, it transiently expresses the sox2 gene, a neural progenitor cell marker. We demonstrate a critical role for Schwann cells as negative regulators of INC proliferation and neuromast regeneration, and that this inhibitory property is completely dependent on active ErbB signaling. CONCLUSIONS The potential to regenerate a neuromast after damage requires that progenitor cells (INCs) be temporarily released from an inhibitory signal produced by nearby Schwann cells. This simple yet highly effective two-component niche offers the animal robust mechanisms for organ growth and regeneration, which can be sustained throughout life.
Collapse
Affiliation(s)
- Mario Sánchez
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Las Palmeras 3425, Santiago, Chile
| | - Maria Laura Ceci
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Las Palmeras 3425, Santiago, Chile
| | - Daniela Gutiérrez
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Las Palmeras 3425, Santiago, Chile
| | - Consuelo Anguita-Salinas
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Las Palmeras 3425, Santiago, Chile
| | - Miguel L Allende
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Las Palmeras 3425, Santiago, Chile.
| |
Collapse
|
19
|
Zhang W, Liu Y, Zhu X, Cao Y, Liu Y, Mao X, Yang H, Zhou Z, Wang Y, Shen A. SCY1-Like 1-Binding Protein 1 (SCYL1BP1) Suppressed Sciatic Nerve Regeneration by Enhancing the RhoA Pathway. Mol Neurobiol 2015; 53:6342-6354. [PMID: 26572638 DOI: 10.1007/s12035-015-9531-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 11/08/2015] [Indexed: 12/13/2022]
Abstract
SCY1-like 1-binding protein 1 (SCYL1BP1) is first identified as an interacting protein with SCYL1. Since SCYL1BP1 is a soluble protein with coiled-coil domains known to be relevant with transcriptional regulation, it has been found to activate the transcription of murine double minute 2 (MDM2) and participate in neurite outgrowth and regeneration. However, the role and mechanism of SCYL1BP1 in peripheral nerve system lesion and repair are still unknown. Here in vitro, our work demonstrated that SCYL1BP1 inhibited cAMP-induced primary Schwann cell differentiation and suppressed nerve growth factor-mediated neurite outgrowth in PC12 cells by enhancing the RhoA pathway. Furthermore, we found that pretreatment with a Rho kinase inhibitor Y-27632 resulted in partial rescue of Schwann cell differentiation and neurite outgrowth. In vivo experiments showed that SCYL1BP1 could also suppress nerve fiber regeneration. In conclusion, we speculated that SCYL1BP1 participated in Schwann cell (SC) differentiation and neurite outgrowth in the sciatic nerve after crush by regulating the RhoA pathway.
Collapse
Affiliation(s)
- Weidong Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yonghua Liu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xudong Zhu
- Medical College, Nantong University, 19 Qi-Xiu Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Yi Cao
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yang Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xingxing Mao
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Huiguang Yang
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Zhengming Zhou
- Department of Orthopaedics, Affiliated Jiangyin Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Aiguo Shen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China.
| |
Collapse
|
20
|
The scales and tales of myelination: using zebrafish and mouse to study myelinating glia. Brain Res 2015; 1641:79-91. [PMID: 26498880 DOI: 10.1016/j.brainres.2015.10.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/06/2023]
Abstract
Myelin, the lipid-rich sheath that insulates axons to facilitate rapid conduction of action potentials, is an evolutionary innovation of the jawed-vertebrate lineage. Research efforts aimed at understanding the molecular mechanisms governing myelination have primarily focused on rodent models; however, with the advent of the zebrafish model system in the late twentieth century, the use of this genetically tractable, yet simpler vertebrate for studying myelination has steadily increased. In this review, we compare myelinating glial cell biology during development and regeneration in zebrafish and mouse and enumerate the advantages and disadvantages of using each model to study myelination. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
|
21
|
Past, Present, and Future of Nerve Conduits in the Treatment of Peripheral Nerve Injury. BIOMED RESEARCH INTERNATIONAL 2015; 2015:237507. [PMID: 26491662 PMCID: PMC4600484 DOI: 10.1155/2015/237507] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/12/2015] [Accepted: 05/19/2015] [Indexed: 01/03/2023]
Abstract
With significant advances in the research and application of nerve conduits, they have been used to repair peripheral nerve injury for several decades. Nerve conduits range from biological tubes to synthetic tubes, and from nondegradable tubes to biodegradable tubes. Researchers have explored hollow tubes, tubes filled with scaffolds containing neurotrophic factors, and those seeded with Schwann cells or stem cells. The therapeutic effect of nerve conduits is improving with increasing choice of conduit material, new construction of conduits, and the inclusion of neurotrophic factors and support cells in the conduits. Improvements in functional outcomes are expected when these are optimized for use in clinical practice.
Collapse
|