1
|
Tennakoon R, Bily TM, Hasan F, Syal S, Voigt A, Balci TB, Hoffman KS, O’Donoghue P. Glutamine missense suppressor transfer RNAs inhibit polyglutamine aggregation. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102442. [PMID: 39897579 PMCID: PMC11787650 DOI: 10.1016/j.omtn.2024.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025]
Abstract
Huntington's disease (HD) is caused by polyglutamine (polyQ) repeat expansions in the huntingtin gene. HD-causative polyQ alleles lead to protein aggregation, which is a prerequisite for disease. Translation fidelity modifies protein aggregation, and several studies suggest that mutating one or two glutamine (Gln) residues in polyQ reduces aggregation. Thus, we hypothesized that missense suppression of Gln codons with other amino acids will reduce polyQ aggregate formation in cells. In neuroblastoma cells, we assessed tRNA variants that misread Gln codons with serine (tRNASer C/UUG) or alanine (tRNAAla C/UUG). The tRNAs with the CUG anticodon were more effective at suppressing the CAG repeats in polyQ, and serine and alanine mis-incorporation had differential impacts on polyQ. The expression of tRNASer CUG reduced polyQ protein production as well as both soluble and insoluble aggregate formation. In contrast, cells expressing tRNAAla CUG selectively decreased insoluble polyQ aggregate formation by 2-fold. Mass spectrometry confirmed Ala mis-incorporation at an average level of ∼20% per Gln codon. Cells expressing the missense suppressor tRNAs showed no cytotoxic effects and no defects in growth or global protein synthesis levels. Our findings demonstrate that tRNA-dependent missense suppression of Gln codons is well tolerated in mammalian cells and significantly reduces polyQ levels and aggregates that cause HD.
Collapse
Affiliation(s)
- Rasangi Tennakoon
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Teija M.I. Bily
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Farah Hasan
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Sunidhi Syal
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Aaron Voigt
- Department of Neurology, RWTH Aachen, 52062 Aachen, Germany
| | - Tugce B. Balci
- Department of Paediatrics, The University of Western Ontario, London, ON N6A 5C1, Canada
| | | | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
2
|
Tenchov R, Sasso JM, Zhou QA. Polyglutamine (PolyQ) Diseases: Navigating the Landscape of Neurodegeneration. ACS Chem Neurosci 2024; 15:2665-2694. [PMID: 38996083 PMCID: PMC11311141 DOI: 10.1021/acschemneuro.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Polyglutamine (polyQ) diseases are a group of inherited neurodegenerative disorders caused by expanded cytosine-adenine-guanine (CAG) repeats encoding proteins with abnormally expanded polyglutamine tract. A total of nine polyQ disorders have been identified, including Huntington's disease, six spinocerebellar ataxias, dentatorubral pallidoluysian atrophy (DRPLA), and spinal and bulbar muscular atrophy (SBMA). The diseases of this class are each considered rare, yet polyQ diseases constitute the largest group of monogenic neurodegenerative disorders. While each subtype of polyQ diseases has its own causative gene, certain pathologic molecular attributes have been implicated in virtually all of the polyQ diseases, including protein aggregation, proteolytic cleavage, neuronal dysfunction, transcription dysregulation, autophagy impairment, and mitochondrial dysfunction. Although animal models of polyQ disease are available helping to understand their pathogenesis and access disease-modifying therapies, there is neither a cure nor prevention for these diseases, with only symptomatic treatments available. In this paper, we analyze data from the CAS Content Collection to summarize the research progress in the class of polyQ diseases. We examine the publication landscape in the area in effort to provide insights into current knowledge advances and developments. We review the most discussed concepts and assess the strategies to combat these diseases. Finally, we inspect clinical applications of products against polyQ diseases with their development pipelines. The objective of this review is to provide a broad overview of the evolving landscape of current knowledge regarding the class of polyQ diseases, to outline challenges, and evaluate growth opportunities to further efforts in combating the diseases.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American
Chemical Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS, a division of the American
Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
3
|
Singh V, Sharma RK, Athilingam T, Sinha P, Sinha N, Thakur AK. NMR Spectroscopy-based Metabolomics of Drosophila Model of Huntington's Disease Suggests Altered Cell Energetics. J Proteome Res 2017; 16:3863-3872. [PMID: 28871787 DOI: 10.1021/acs.jproteome.7b00491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder induced by aggregation of the pathological form of Huntingtin protein that has expanded polyglutamine (polyQ) repeats. In the Drosophila model, for instance, expression of transgenes with polyQ repeats induces HD-like pathologies, progressively correlating with the increasing lengths of these repeats. Previous studies on both animal models and clinical samples have revealed metabolite imbalances during HD progression. To further explore the physiological processes linked to metabolite imbalances during HD, we have investigated the 1D 1H NMR spectroscopy-based metabolomics profile of Drosophila HD model. Using multivariate analysis (PCA and PLS-DA) of metabolites obtained from methanolic extracts of fly heads displaying retinal deformations due to polyQ overexpression, we show that the metabolite imbalance during HD is likely to affect cell energetics. Six out of the 35 metabolites analyzed, namely, nicotinamide adenine dinucleotide (NAD), lactate, pyruvate, succinate, sarcosine, and acetoin, displayed segregation with progressive severity of HD. Specifically, HD progression was seen to be associated with reduction in NAD and increase in lactate-to-pyruvate ratio. Furthermore, comparative analysis of fly HD metabolome with those of mouse HD model and HD human patients revealed comparable metabolite imbalances, suggesting altered cellular energy homeostasis. These findings thus raise the possibility of therapeutic interventions for HD via modulation of cellular energetics.
Collapse
Affiliation(s)
- Virender Singh
- Biological Science and Bioengineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
| | - Raj Kumar Sharma
- Centre of Biomedical Research, SGPGIMS Campus , Lucknow 226014, India
| | | | - Pradip Sinha
- Biological Science and Bioengineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus , Lucknow 226014, India
| | - Ashwani Kumar Thakur
- Biological Science and Bioengineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
| |
Collapse
|
4
|
Lloret‐Villas A, Varusai TM, Juty N, Laibe C, Le NovÈre N, Hermjakob H, Chelliah V. The Impact of Mathematical Modeling in Understanding the Mechanisms Underlying Neurodegeneration: Evolving Dimensions and Future Directions. CPT Pharmacometrics Syst Pharmacol 2017; 6:73-86. [PMID: 28063254 PMCID: PMC5321808 DOI: 10.1002/psp4.12155] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/14/2016] [Accepted: 10/30/2016] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders that are characterized by the progressive dysfunction and loss of neurons. Here, we distil and discuss the current state of modeling in the area of neurodegeneration, and objectively compare the gaps between existing clinical knowledge and the mechanistic understanding of the major pathological processes implicated in neurodegenerative disorders. We also discuss new directions in the field of neurodegeneration that hold potential for furthering therapeutic interventions and strategies.
Collapse
Affiliation(s)
- A Lloret‐Villas
- European Bioinformatics Institute (EMBL‐EBI), European Molecular Biology LaboratoryWellcome Trust Genome Campus, HinxtonCambridgeUK
| | - TM Varusai
- European Bioinformatics Institute (EMBL‐EBI), European Molecular Biology LaboratoryWellcome Trust Genome Campus, HinxtonCambridgeUK
| | - N Juty
- European Bioinformatics Institute (EMBL‐EBI), European Molecular Biology LaboratoryWellcome Trust Genome Campus, HinxtonCambridgeUK
| | - C Laibe
- European Bioinformatics Institute (EMBL‐EBI), European Molecular Biology LaboratoryWellcome Trust Genome Campus, HinxtonCambridgeUK
| | - N Le NovÈre
- Babraham Institute, Babraham Research CampusCambridgeUK
| | - H Hermjakob
- European Bioinformatics Institute (EMBL‐EBI), European Molecular Biology LaboratoryWellcome Trust Genome Campus, HinxtonCambridgeUK
| | - V Chelliah
- European Bioinformatics Institute (EMBL‐EBI), European Molecular Biology LaboratoryWellcome Trust Genome Campus, HinxtonCambridgeUK
| |
Collapse
|
5
|
Sugaya K, Nakano I. Prognostic role of "prion-like propagation" in SOD1-linked familial ALS: an alternative view. Front Cell Neurosci 2014; 8:359. [PMID: 25400549 PMCID: PMC4215625 DOI: 10.3389/fncel.2014.00359] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/13/2014] [Indexed: 12/14/2022] Open
Abstract
“Prion-like propagation” has recently been proposed for disease spread in Cu/Zn superoxide dismutase 1 (SOD1)-linked familial amyotrophic lateral sclerosis (ALS). Pathological SOD1 conformers are presumed to propagate via cell-to-cell transmission. In this model, the risk-based kinetics of neuronal cell loss over time appears to be represented by a sigmoidal function that reflects the kinetics of intercellular transmission. Here, we describe an alternative view of prion-like propagation in SOD1-linked ALS – its relation to disease prognosis under the protective-aggregation hypothesis. Nucleation-dependent polymerization has been widely accepted as the molecular mechanism of prion propagation. If toxic species of misfolded SOD1, as soluble oligomers, are formed as on-pathway intermediates of nucleation-dependent polymerization, further fibril extension via sequential addition of monomeric mutant SOD1 would be protective against neurodegeneration. This is because the concentration of unfolded mutant SOD1 monomers, which serve as precursor of nucleation and toxic species of mutant SOD1, would decline in proportion to the extent of aggregation. The nucleation process requires that native conformers exist in an unfolded state that may result from escaping the cellular protein quality control machinery. However, prion-like propagation-SOD1 aggregated form self-propagates by imposing its altered conformation on normal SOD1-appears to antagonize the protective role of aggregate growth. The cross-seeding reaction with normal SOD1 would lead to a failure to reduce the concentration of unfolded mutant SOD1 monomers, resulting in continuous nucleation and subsequent generation of toxic species, and influence disease prognosis. In this alternative view, the kinetics of neuronal loss appears to be represented by an exponential function, with decreasing risk reflecting the protective role of aggregate and the potential for cross-seeding reactions between mutant SOD1 and normal SOD1.
Collapse
Affiliation(s)
- Keizo Sugaya
- Department of Neurology, Tokyo Metropolitan Neurological Hospital Tokyo, Japan
| | - Imaharu Nakano
- Department of Neurology, Tokyo Metropolitan Neurological Hospital Tokyo, Japan
| |
Collapse
|
6
|
Modeling the polyglutamine aggregation pathway in Huntington's disease: from basic studies to clinical applications. Subcell Biochem 2014; 65:353-88. [PMID: 23225011 DOI: 10.1007/978-94-007-5416-4_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Huntington's disease (HD) is among the polyglutamine (polyQ) disorders, which are caused by expansion of CAG-trinucleotide repeats. These disorders share common characteristics, and have thus long been thought to have a unifying pathogenic mechanism resulting from polyQ expansion. However, this scenario has recently become more complex, as studies have found multiple pathways for the assembly of disease-related polyQ protein aggregates that differ in both structure and toxicity. There are fascinating disease-specific aspects of the polyQ disorders, including the repeat-length dependence of both clinical features and the propensity of the expanded polyQ protein to aggregate. Such aggregation kinetics have proven useful in explaining the disease process. This chapter describes two risk-based stochastic kinetic models, the cumulative-damage and one-hit models, that describe genotype-phenotype correlations in patients with polyQ diseases and reflect alternative pathways of polyQ aggregation. Using repeat-length as an index, several models explore the quantitative connection between aggregation kinetics and clinical data from HD patients. The correlations between CAG repeat-length and age-of-onset are re-evaluated, and the rate of disease progression (as assessed by clinical measures and longitudinal imaging studies of brain structure) are surveyed. Finally, I present a mathematical model by which the time course of neurodegeneration in HD can be precisely predicted, and discuss the association of the models with the major controversies about HD pathogenesis.
Collapse
|