1
|
Barros T, Fernandes JM, Ferreira E, Carvalho J, Valldeperes M, Lavín S, Fonseca C, Ruiz-Olmo J, Serrano E. Genetic signature of blind reintroductions of Iberian ibex (Capra pyrenaica) in Catalonia, Northeast Spain. PLoS One 2022; 17:e0269873. [PMID: 36129880 PMCID: PMC9491545 DOI: 10.1371/journal.pone.0269873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/29/2022] [Indexed: 11/18/2022] Open
Abstract
The Iberian ibex is one of the most singular species of the Iberian Peninsula. Throughout the years, this species suffered several threats which led the population to its decline. Many reintroductions and translocations were made, however, none of those actions took into account the genetic patterns of both reintroduced individuals and the target populations. In this paper, we explored the genetic traits of three populations of Iberian ibex in Catalonia, which experienced blind reintroductions in past years: The populations of Iberian ibex from Els Ports de Tortosa i Beseit National Game Reserve (TBNGR), Montserrat Natural Park (Monserrat) and Montgrí, les Illes Medes i el Baix Ter Natural Park (Montgrí) Based on the genetic patterns of the three populations coupled with the absence of genetic introgression with domestic goats–inferred using mitochondrial and nuclear markers–we propose that these should be regarded as two different management units: TBNGR coupled with Montserrat, and Montgrí. Montserrat population should be targeted as a population model for ecology and evolution studies. Although we did not detect evidences of recent bottleneck events, this population seems to be monomorphic for the mtDNA haplotype. Our results suggest that the blind reintroductions from TBNGR to Montserrat failed on maximizing the genetic diversity of the latter. We enhance the importance of genetic monitoring of both the source population and the selected individuals to be re-introduced. We conclude that the three studied population of Iberian ibex must be monitored to explore which strategy would be advantageous for maintaining the genetic diversity. On the other hand, TBNGR should be monitored to assess the existence of its singular genetic variation, where stochastic events could preserve this lost genetic variation.
Collapse
Affiliation(s)
- Tânia Barros
- Departamento de Biologia & CESAM (Centro de Estudos do Ambiente e do Mar) Universidade de Aveiro, Campus Universitário Santiago, Aveiro, Portugal
- * E-mail:
| | - Joana M. Fernandes
- Departamento de Biologia & CESAM (Centro de Estudos do Ambiente e do Mar) Universidade de Aveiro, Campus Universitário Santiago, Aveiro, Portugal
| | - Eduardo Ferreira
- Departamento de Biologia & CESAM (Centro de Estudos do Ambiente e do Mar) Universidade de Aveiro, Campus Universitário Santiago, Aveiro, Portugal
| | - João Carvalho
- Departamento de Biologia & CESAM (Centro de Estudos do Ambiente e do Mar) Universidade de Aveiro, Campus Universitário Santiago, Aveiro, Portugal
- Dept Medicina i Cirurgia Animals Facultat de Veterinària, Wildlife Ecology & Health group (WE&H) Servei d’ Ecopatologia de Fauna (SEFaS), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, España
| | - Marta Valldeperes
- Dept Medicina i Cirurgia Animals Facultat de Veterinària, Wildlife Ecology & Health group (WE&H) Servei d’ Ecopatologia de Fauna (SEFaS), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, España
| | - Santiago Lavín
- Dept Medicina i Cirurgia Animals Facultat de Veterinària, Wildlife Ecology & Health group (WE&H) Servei d’ Ecopatologia de Fauna (SEFaS), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, España
| | - Carlos Fonseca
- Departamento de Biologia & CESAM (Centro de Estudos do Ambiente e do Mar) Universidade de Aveiro, Campus Universitário Santiago, Aveiro, Portugal
- ForestWISE—Collaborative Laboratory for Integrated Forest & Fire Management, Vila Real, Portugal
| | - Jordi Ruiz-Olmo
- Dirección General de Ecosistemas Forestales y Gestión del Medio (DARP), Barcelona, España
| | - Emmanuel Serrano
- Dept Medicina i Cirurgia Animals Facultat de Veterinària, Wildlife Ecology & Health group (WE&H) Servei d’ Ecopatologia de Fauna (SEFaS), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, España
- Dipartimento di Scienze Veterinarie, Universitá di Torino, Grugliasco, Torino, Italy
| |
Collapse
|
2
|
Moroni B, Brambilla A, Rossi L, Meneguz PG, Bassano B, Tizzani P. Hybridization between Alpine Ibex and Domestic Goat in the Alps: A Sporadic and Localized Phenomenon? Animals (Basel) 2022; 12:ani12060751. [PMID: 35327148 PMCID: PMC8944563 DOI: 10.3390/ani12060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The Alpine ibex (Capra ibex) is a protected wild ungulate. The species is known to have a low genetic variability and to occasionally suffer from local population decline as a consequence of epidemic diseases. Another, less investigated, threat for the species’ long-term conservation is represented by the hybridization with feral domestic goats that may breed with ibex if abandoned in the mountain at the end of the summer pasture. Further reproduction and the spread of hybrids may jeopardize the genetic integrity of wild Alpine ibex. By means of an online survey and using a network of experts, we mapped unpublished evidence on observed hybridization events between Alpine ibex and feral domestic goats. The results of this study suggested that hybrids are currently distributed in several countries, and their presence is not a rare event, with some clusters including 4–20 probable hybrids. This calls for more studies clearly quantifying hybrids in Alpine ibex colonies, but also highlights the need for conservation actions aimed at controlling this phenomenon, such as the effective management of domestic herds grazing in Alpine ibex core areas and clear guidelines on hybrid management. Abstract The Alpine ibex (Capra ibex) is a mountain ungulate living in the European Alps. Although being currently classified as a species of Least Concern (LC) by the IUCN, a potential threat for its long-term conservation is introgression following hybridization with domestic goats (Capra hircus). Hybridization has been documented in Switzerland in captive and free ranging animals, although accurate data to assess the extent of this phenomenon in natural conditions in the Alps are lacking. Using an online survey and a network of experts, we collected and mapped unpublished evidence of hybridization events that occurred between Alpine ibex and feral domestic goats from 2000 to 2021. The results of this study showed that hybrids are distributed in most of the Alpine countries, and their presence is not a sporadic event, with some clusters including 4–20 probable hybrids. Our results illustrated the need for establishing a standardized and effective protocol to identify hybrids in the field (such as a formal description of the morphological traits characterizing hybrids), as well as clear guidelines for hybrid management. Even more importantly, this study also highlighted the need for actions aimed at avoiding hybridization, such as the effective management of domestic herds grazing in Alpine ibex core areas.
Collapse
Affiliation(s)
- Barbara Moroni
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy; (L.R.); (P.G.M.); (P.T.)
- Correspondence:
| | - Alice Brambilla
- Alpine Wildlife Research Centre, Gran Paradiso National Park, 10080 Noasca, Italy; (A.B.); (B.B.)
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| | - Luca Rossi
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy; (L.R.); (P.G.M.); (P.T.)
| | - Pier Giuseppe Meneguz
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy; (L.R.); (P.G.M.); (P.T.)
| | - Bruno Bassano
- Alpine Wildlife Research Centre, Gran Paradiso National Park, 10080 Noasca, Italy; (A.B.); (B.B.)
| | - Paolo Tizzani
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy; (L.R.); (P.G.M.); (P.T.)
| |
Collapse
|
3
|
Cardoso TF, Luigi‐Sierra MG, Castelló A, Cabrera B, Noce A, Mármol‐Sánchez E, García‐González R, Fernández‐Arias A, Alabart JL, López‐Olvera JR, Mentaberre G, Granados‐Torres JE, Cardells‐Peris J, Molina A, Sànchez A, Clop A, Amills M. Assessing the levels of intraspecific admixture and interspecific hybridization in Iberian wild goats ( Capra pyrenaica). Evol Appl 2021; 14:2618-2634. [PMID: 34815743 PMCID: PMC8591326 DOI: 10.1111/eva.13299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/07/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023] Open
Abstract
Iberian wild goats (Capra pyrenaica, also known as Iberian ibex, Spanish ibex, and Spanish wild goat) underwent strong genetic bottlenecks during the 19th and 20th centuries due to overhunting and habitat destruction. From the 1970s to 1990s, augmentation translocations were frequently carried out to restock Iberian wild goat populations (very often with hunting purposes), but they were not systematically planned or recorded. On the other hand, recent data suggest the occurrence of hybridization events between Iberian wild goats and domestic goats (Capra hircus). Augmentation translocations and interspecific hybridization might have contributed to increase the diversity of Iberian wild goats. With the aim of investigating this issue, we have genotyped 118 Iberian wild goats from Tortosa-Beceite, Sierra Nevada, Muela de Cortes, Gredos, Batuecas, and Ordesa and Monte Perdido by using the Goat SNP50 BeadChip (Illumina). The analysis of genotypic data indicated that Iberian wild goat populations are strongly differentiated and display low diversity. Only three Iberian wild goats out from 118 show genomic signatures of mixed ancestry, a result consistent with a scenario in which past augmentation translocations have had a limited impact on the diversity of Iberian wild goats. Besides, we have detected eight Iberian wild goats from Tortosa-Beceite with signs of domestic goat introgression. Although rare, hybridization with domestic goats could become a potential threat to the genetic integrity of Iberian wild goats; hence, measures should be taken to avoid the presence of uncontrolled herds of domestic or feral goats in mountainous areas inhabited by this iconic wild ungulate.
Collapse
Affiliation(s)
- Tainã Figueiredo Cardoso
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
| | - María Gracia Luigi‐Sierra
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
| | - Anna Castelló
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
- Departament de Ciència Animal i dels AlimentsUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Betlem Cabrera
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
- Departament de Ciència Animal i dels AlimentsUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Antonia Noce
- Leibniz‐Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Emilio Mármol‐Sánchez
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
| | | | - Alberto Fernández‐Arias
- Servicio de Caza y PescaDepartamento de Agricultura, Ganadería y Medio AmbienteGobierno de AragónZaragozaSpain
| | - José Luis Alabart
- Unidad de Producción y Sanidad AnimalCentro de Investigación y Tecnología Agroalimentaria de Aragón (CITA)Instituto Agroalimentario de Aragón ‐ IA2 (CITA‐Universidad de Zaragoza)Gobierno de AragónZaragozaSpain
| | - Jorge Ramón López‐Olvera
- Wildlife Ecology & Health Group and Servei d’Ecopatologia de Fauna Salvatge (SEFaS)Departament de Medicina i Cirurgia AnimalsUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Gregorio Mentaberre
- Wildlife Ecology & Health Group and Departament de Ciència AnimalEscola Tècnica Superior d’Enginyeria Agraria (ETSEA)Universitat de Lleida (UdL)LleidaSpain
| | | | - Jesús Cardells‐Peris
- SAIGAS (Servicio de Análisis, Investigación y Gestión de Animales Silvestres) and Wildlife Ecology & Health Group, Faculty of VeterinaryUniversidad Cardenal Herrera‐CEU, CEU UniversitiesValenciaSpain
| | - Antonio Molina
- Departamento de GenéticaUniversidad de CórdobaCórdobaSpain
| | - Armand Sànchez
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
- Departament de Ciència Animal i dels AlimentsUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Alex Clop
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
| | - Marcel Amills
- Department of Animal GeneticsCentre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBCampus de la Universitat Autònoma de BarcelonaBellaterraSpain
- Departament de Ciència Animal i dels AlimentsUniversitat Autònoma de BarcelonaBellaterraSpain
| |
Collapse
|
4
|
Putnam AS, Nguyen TN, Mott A, Korody ML, Ryder OA. Assessing possible hybridization among managed Nubian ibex in North America. Zoo Biol 2019; 39:121-128. [PMID: 31833594 DOI: 10.1002/zoo.21527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/21/2019] [Accepted: 11/07/2019] [Indexed: 11/06/2022]
Abstract
Hybridization among closely related species is a concern in zoo and aquarium populations where unpedigreed animals are frequently exchanged with the private sector. In this study, we examine possible hybridization in a group of Nubian ibex (Capra nubiana) imported into the Association of Zoos and Aquariums' (AZA) Species Survival Program (SSP) from a private institution. These individuals appeared smaller in stature than adult SSP Nubian ibex and were excluded from breeding recommendations over the concern that they were hybrids. Twenty-six microsatellites were used to rule out recent hybridization with domestic goats, Siberian ibex (Capra sibirica), and Alpine ibex (Capra ibex). We argue that natural phenotypic variation across the large geographic range of Nubian ibex may account for the small stature of the imported ibex, as private institutions may have historically acquired individuals from locations that differed from the SSP founders. However, the imported Nubian ibex appeared genetically differentiated from the SSP Nubian ibex and may represent a source of genetic variation for the managed population.
Collapse
Affiliation(s)
- Andrea S Putnam
- Department of Life Sciences, San Diego Zoo Global, San Diego, California
| | - Tram N Nguyen
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York
| | | | - Marisa L Korody
- Institute for Conservation Research, San Diego Zoo Global, San Diego, California
| | - Oliver A Ryder
- Institute for Conservation Research, San Diego Zoo Global, San Diego, California
| |
Collapse
|
5
|
Iacolina L, Corlatti L, Buzan E, Safner T, Šprem N. Hybridisation in European ungulates: an overview of the current status, causes, and consequences. Mamm Rev 2018. [DOI: 10.1111/mam.12140] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Laura Iacolina
- Department of Chemistry and Bioscience; Aalborg University; Frederik Bajers Vej 7H 9220 Aalborg Denmark
- Aalborg Zoo; Mølleparkvej 63 9000 Aalborg Denmark
| | - Luca Corlatti
- Wildlife Ecology and Management; University of Freiburg; Tennenbacher Straße 4 79106 Freiburg Germany
- Institute of Wildlife Biology and Game Management; University of Natural Resources and Life Sciences Vienna; Gregor-Mendel-Straße 33 1180 Vienna Austria
| | - Elena Buzan
- Department of Biodiversity; Faculty of Mathematics, Natural Sciences and Information Technologies; University of Primorska; Glagoljaška 8 6000 Koper Slovenia
| | - Toni Safner
- Faculty of Agriculture; Department of Plant Breeding, Genetics and Biometrics; University of Zagreb; Svetošimunska cesta 25 10000 Zagreb Croatia
| | - Nikica Šprem
- Faculty of Agriculture; Department of Fisheries, Beekeeping, Game Management and Special Zoology; University of Zagreb; Svetošimunska cesta 25 10000 Zagreb Croatia
| |
Collapse
|
6
|
Brambilla A, Keller L, Bassano B, Grossen C. Heterozygosity-fitness correlation at the major histocompatibility complex despite low variation in Alpine ibex ( Capra ibex). Evol Appl 2018; 11:631-644. [PMID: 29875807 PMCID: PMC5979623 DOI: 10.1111/eva.12575] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/30/2017] [Indexed: 01/06/2023] Open
Abstract
Crucial for the long-term survival of wild populations is their ability to fight diseases. Disease outbreaks can lead to severe population size reductions, which makes endangered and reintroduced species especially vulnerable. In vertebrates, the major histocompatibility complex (MHC) plays an important role in determining the immune response. Species that went through severe bottlenecks often show very low levels of genetic diversity at the MHC. Due to the known link between the MHC and immune response, such species are expected to be at particular risk in case of disease outbreaks. However, so far, only few studies have shown that low MHC diversity is correlated with increased disease susceptibility in species after severe bottlenecks. We investigated genetic variation at the MHC and its correlations with disease resistance and other fitness-related traits in Alpine ibex (Capra ibex), a wild goat species that underwent a strong bottleneck in the last century and that is known to have extremely low genetic variability, both genome-wide and at the MHC. We studied MHC variation in male ibex of Gran Paradiso National Park, the population used as a source for all postbottleneck reintroductions. We found that individual MHC heterozygosity (based on six microsatellites) was not correlated with genome-wide neutral heterozygosity. MHC heterozygosity, but not genome-wide heterozygosity, was positively correlated with resistance to infectious keratoconjunctivitis and with body mass. Our results show that genetic variation at the MHC plays an important role in disease resistance and, hence, should be taken into account for successfully managing species conservation.
Collapse
Affiliation(s)
- Alice Brambilla
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurich (ZH)Switzerland
- Alpine Wildlife Research CentreGran Paradiso National ParkNoasca (TO)Italy
| | - Lukas Keller
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurich (ZH)Switzerland
| | - Bruno Bassano
- Alpine Wildlife Research CentreGran Paradiso National ParkNoasca (TO)Italy
| | - Christine Grossen
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurich (ZH)Switzerland
| |
Collapse
|
7
|
Angelone S, Jowers MJ, Molinar Min AR, Fandos P, Prieto P, Pasquetti M, Cano-Manuel FJ, Mentaberre G, Olvera JRL, Ráez-Bravo A, Espinosa J, Pérez JM, Soriguer RC, Rossi L, Granados JE. Hidden MHC genetic diversity in the Iberian ibex (Capra pyrenaica). BMC Genet 2018; 19:28. [PMID: 29739323 PMCID: PMC5941765 DOI: 10.1186/s12863-018-0616-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/30/2018] [Indexed: 01/09/2023] Open
Abstract
Background Defining hidden genetic diversity within species is of great significance when attempting to maintain the evolutionary potential of natural populations and conduct appropriate management. Our hypothesis is that isolated (and eventually small) wild animal populations hide unexpected genetic diversity due to their maintenance of ancient polymorphisms or introgressions. Results We tested this hypothesis using the Iberian ibex (Capra pyrenaica) as an example. Previous studies based on large sample sizes taken from its principal populations have revealed that the Iberian ibex has a remarkably small MHC DRB1 diversity (only six remnant alleles) as a result of recent population bottlenecks and a marked demographic decline that has led to the extinction of two recognized subspecies. Extending on the geographic range to include non-studied isolated Iberian ibex populations, we sequenced a new MHC DRB1 in what seemed three small isolated populations in Southern Spain (n = 132). The findings indicate a higher genetic diversity than previously reported in this important gene. The newly discovered allele, MHC DRB1*7, is identical to one reported in the domestic goat C. aegagrus hircus. Whether or not this is the result of ancient polymorphisms maintained by balancing selection or, alternatively, introgressions from domestic goats through hybridization needs to be clarified in future studies. However, hybridization between Iberian ibex and domestic goats has been reported in Spain and the fact that the newly discovered allele is only present in one of the small isolated populations and not in the others suggests introgression. The new discovered allele is not expected to increase fitness in C. pyrenaica since it generates the same protein as the existing MHC DRB1*6. Analysis of a microsatellite locus (OLADRB1) near the new MHC DRB1*7 gene reveals a linkage disequilibrium between these two loci. The allele OLADRB1, 187 bp in length, was unambiguously linked to the MHC DRB1*7 allele. This enabled us to perform a DRB-STR matching method for the recently discovered MHC allele. Conclusions This finding is critical for the conservation of the Iberian ibex since it directly affects the identification of the units of this species that should be managed and conserved separately (Evolutionarily Significant Units). Electronic supplementary material The online version of this article (10.1186/s12863-018-0616-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samer Angelone
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio s/n, 41092, Sevilla, Spain. .,Institute of Evolutionary Biology and Environmental Studies (IEU), University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland.
| | - Michael J Jowers
- CIBIO/ InBIO (Centro de Investigação em Biodiversidade e Recursos Genéticos), Universidade do Porto, Campus Agrario De Vairão, 4485-661, Vairão, Portugal
| | - Anna Rita Molinar Min
- Dipartimento di Scienze Veterinarie, Universita` degli Studi di Torino, Grugliasco, Italy
| | - Paulino Fandos
- Agencia de Medio Ambiente y Agua, E-41092, Sevilla, Isla de la Cartuja, Spain
| | - Paloma Prieto
- Parque Natural Sierras de Cazorla, Segura y Las Villas, Martínez Falero11, E-23470, Cazorla, Jaén, Spain
| | - Mario Pasquetti
- Dipartimento di Scienze Veterinarie, Universita` degli Studi di Torino, Grugliasco, Italy
| | | | - Gregorio Mentaberre
- Servei d'Ecopatologia de Fauna Salvatge (SEFAS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), E-08193 Bellaterra, Barcelona, Spain
| | - Jorge Ramón López Olvera
- Servei d'Ecopatologia de Fauna Salvatge (SEFAS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), E-08193 Bellaterra, Barcelona, Spain
| | - Arián Ráez-Bravo
- Servei d'Ecopatologia de Fauna Salvatge (SEFAS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), E-08193 Bellaterra, Barcelona, Spain
| | - José Espinosa
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus Las Lagunillas, s.n., E-23071, Jaén, Spain
| | - Jesús M Pérez
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus Las Lagunillas, s.n., E-23071, Jaén, Spain
| | - Ramón C Soriguer
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio s/n, 41092, Sevilla, Spain
| | - Luca Rossi
- Dipartimento di Scienze Veterinarie, Universita` degli Studi di Torino, Grugliasco, Italy
| | - José Enrique Granados
- Espacio Natural Sierra Nevada, Carretera Antigua de Sierra Nevada, Km 7, E-18071, Pinos Genil, Granada, Spain
| |
Collapse
|
8
|
Pourseif MM, Moghaddam G, Naghili B, Saeedi N, Parvizpour S, Nematollahi A, Omidi Y. A novel in silico minigene vaccine based on CD4 + T-helper and B-cell epitopes of EG95 isolates for vaccination against cystic echinococcosis. Comput Biol Chem 2017; 72:150-163. [PMID: 29195784 DOI: 10.1016/j.compbiolchem.2017.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 01/03/2023]
Abstract
EG95 oncospheral antigen plays a crucial role in Echinococcus granulosus pathogenicity. Considering the diversity of antigen among different EG95 isolates, it seems to be an ideal antigen for designing a universal multivalent minigene vaccine, so-called multi-epitope vaccine. This is the first in silico study to design a construct for the development of global EG95-based hydatid vaccine against E. granulosus in intermediate hosts. After antigen sequence selection, the three-dimensional structure of EG95 was modeled and multilaterally validated. The preliminary parameters for B-cell epitope prediction were implemented such as the possible transmembrane helix, signal peptide, post-translational modifications and allergenicity. The high ranked linear and conformational B-cell epitopes derived from several online web-servers (e.g., ElliPro, BepiPred v1.0, BcePred, ABCpred, SVMTrip, IEDB algorithms, SEPPA v2.0 and Discotope v2.0) were utilized for multiple sequence alignment and then for engineering the vaccine construct. T-helper based epitopes were predicted by molecular docking between the high frequent ovar class II allele (Ovar-DRB1*1202) and hexadecamer fragments of the EG95 protein. Having used the immune-informatics tools, we formulated the first EG95-based minigene vaccine based on T-helper epitope with high-binding affinity to the ovar MHC allele. This designed construct was analyzed for different physicochemical properties. It was also codon-optimized for high-level expression in Escherichia coli k12. Taken all, we propose the present in silico vaccine constructs as a promising platform for the generation of broadly protective vaccines for species and genus-specific immunization of the natural hosts of the parasite.
Collapse
Affiliation(s)
- Mohammad M Pourseif
- Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamali Moghaddam
- Department of Animal Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Behrouz Naghili
- Research Center for Infectious and Tropical Diseases, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazli Saeedi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Nematollahi
- Department of Pathobiology, Veterinary College, University of Tabriz, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Fonseca C, Migueis D, Fernandes T, Carvalho H, Loureiro A, Carvalho J, Torres RT. The return of the Iberian wild goat Capra pyrenaica to Portugal: From reintroduction to recolonization. J Nat Conserv 2017. [DOI: 10.1016/j.jnc.2017.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Abstract
The disease scabies is one of the earliest diseases of humans for which the cause was known. It is caused by the mite, Sarcoptes scabiei, that burrows in the epidermis of the skin of humans and many other mammals. This mite was previously known as Acarus scabiei DeGeer, 1778 before the genus Sarcoptes was established (Latreille 1802) and it became S. scabiei. Research during the last 40 years has tremendously increased insight into the mite’s biology, parasite-host interactions, and the mechanisms it uses to evade the host’s defenses. This review highlights some of the major advancements of our knowledge of the mite’s biology, genome, proteome, and immunomodulating abilities all of which provide a basis for control of the disease. Advances toward the development of a diagnostic blood test to detect a scabies infection and a vaccine to protect susceptible populations from becoming infected, or at least limiting the transmission of the disease, are also presented.
Collapse
Affiliation(s)
- Larry G Arlian
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| | - Marjorie S Morgan
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| |
Collapse
|
11
|
Yakubu A, Salako AE, De Donato M, Peters SO, Takeet MI, Wheto M, Okpeku M, Imumorin IG. Association of SNP variants of MHC Class II DRB gene with thermo-physiological traits in tropical goats. Trop Anim Health Prod 2016; 49:323-336. [PMID: 27909914 DOI: 10.1007/s11250-016-1196-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/24/2016] [Indexed: 11/30/2022]
Abstract
Host defense in vertebrates depend on many secreted regulatory proteins such as major histocompatibility complex (MHC) class II which provide important regulatory and effector functions of T cells. Gene polymorphism in the second exon of Capra-DRB gene in three major Nigerian goat breeds [West African Dwarf (WAD), Red Sokoto (RS), and Sahel (SH)] was analyzed by restriction fragment length polymorphisms (RFLP). Four restriction enzymes, BsaHI, AluI, HaeIII, and SacII, were utilized. The association between the polymorphic sites and some heat tolerance traits were also investigated in a total of 70 WAD, 90 RS, and 50 SH goats. Fourteen different types of alleles identified in the Nigerian goats, four of which were found in the peptide coding region (A57G, Q89R, G104D, and T112I), indicate a high degree of polymorphism at the DRB locus in this species. An obvious excess (P < 0.01) of non-synonymous substitutions than synonymous (dN/dS) in this locus is a reflection of adaptive evolution and positive selection. The phylogenetic trees revealed largely species-wise clustering in DRB gene. BsaHI, AluI, HaeIII, and SacII genotype frequencies were in Hardy-Weinberg equilibrium (P > 0.05), except AluI in RS goats and HaeIII in WAD goats (P < 0.05). The expected heterozygosity (H), which is a measure of gene diversity in the goat populations, ranged from 0.16 to 0.50. Genotypes AA (BsaHI), GG, GC and CC (AluI) and GG, GA, AA (HaeIII) appeared better in terms of heat tolerance. The heat-tolerant ability of SH and RS goats to the hot and humid tropical environment of Nigeria seemed better than that of the WAD goats. Sex effect (P < 0.05) was mainly on pulse rate and heat stress index, while there were varying interaction effects on heat tolerance. Variation at the DRB locus may prove to be important in possible selection and breeding for genetic resistance to heat stress in the tropics.
Collapse
Affiliation(s)
- Abdulmojeed Yakubu
- Animal Genetics and Genomics Laboratory, International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA. .,Department of Animal Science, Nasarawa State University, Lafia, Nigeria. .,Department of Animal Science, University of Ibadan, Ibadan, Nigeria.
| | | | - Marcos De Donato
- Animal Genetics and Genomics Laboratory, International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA.,Laboratorio Genetica Molecular, IBB, Universidad de Oriente, Cumana, Venezuela
| | - Sunday O Peters
- Department of Animal Science, Berry College, Mt Berry, GA, 30249, USA
| | - Michael I Takeet
- Animal Genetics and Genomics Laboratory, International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA.,Department of Veterinary Microbiology and Parasitology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Mathew Wheto
- Department of Animal Breeding and Genetics, University of Agriculture, Abeokuta, Nigeria
| | - Moses Okpeku
- Department of Livestock Production, Niger Delta University, Amassoma, Nigeria.,State Key Laboratory of Genetic Resources and Evolution, Chinese Academy of Science (CAS), Kunming Institute of Zoology, Kunming, Yunnan Province, China
| | - Ikhide G Imumorin
- Animal Genetics and Genomics Laboratory, International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
12
|
Ráez-Bravo A, Granados JE, Cano-Manuel FJ, Soriguer RC, Fandos P, Pérez JM, Pavlov IY, Romero D. Toxic and Essential Element Concentrations in Iberian Ibex (Capra pyrenaica) from the Sierra Nevada Natural Park (Spain): Reference Intervals in Whole Blood. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 96:273-280. [PMID: 26687500 DOI: 10.1007/s00128-015-1711-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 12/08/2015] [Indexed: 06/05/2023]
Abstract
Iberian ibex (Capra pyrenaica) blood samples from the Sierra Nevada Natural Park (Spain) were analyzed to establish concentrations of toxic and essential elements. Samples (whole blood from 32 males and 34 females) were taken from wild animals and the concentrations of inorganic elements considered as (1) non-essential and toxic (Pb, Cd and As), (2) essential but potentially toxic (Cu, Zn and Mn) and (3) occasionally beneficial (B, Cr, Al and Ni), as well as (4) essential minerals (Ca, Na, K, P, Mg, S, Co and Fe), were analyzed. The low concentration of Pb and Cd indicated that there is no heavy metal contamination in this geographical area for these elements. The concentration of elements in this ibex population was defined for different genders and ages. Significant differences between genders were only found for Mg and Cu, while significant differences in concentrations of Ca, Cr, Fe, Mn, P, S and Zn were found between ages.
Collapse
Affiliation(s)
- Arián Ráez-Bravo
- Área de Toxicología, Facultad de Veterinaria, Universidad de Murcia, Campus Espinardo, 30100, Murcia, Spain
| | - José Enrique Granados
- Parque Nacional y Parque Natural de Sierra Nevada, Ctra. Antigua de Sierra Nevada Km 7, 18071, Pinos Genil, Granada, Spain
- Agencia de Medio Ambiente y Agua, Consejería de Agricultura, Pesca y Alimentación, Gerencia de Granada, 18013, Granada, Spain
| | - Francisco Javier Cano-Manuel
- Parque Nacional y Parque Natural de Sierra Nevada, Ctra. Antigua de Sierra Nevada Km 7, 18071, Pinos Genil, Granada, Spain
- Agencia de Medio Ambiente y Agua, Consejería de Agricultura, Pesca y Alimentación, Gerencia de Granada, 18013, Granada, Spain
| | - Ramón C Soriguer
- Estación Biológica de Doñana, Avd. María Luisa s/n, 41013, Seville, Spain
| | - Paulino Fandos
- Agencia de Medio Ambiente y Agua, Consejería de Agricultura, Pesca y Alimentación, Servicios Centrales, 41013, Seville, Spain
| | - Jesús M Pérez
- Dpto. Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Campus Las Lagunillas s/n, 23071, Jaén, Spain
| | - Igor Y Pavlov
- ARUP Institute for Clinical and Experimental Pathology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Diego Romero
- Área de Toxicología, Facultad de Veterinaria, Universidad de Murcia, Campus Espinardo, 30100, Murcia, Spain.
| |
Collapse
|
13
|
Galov A, Fabbri E, Caniglia R, Arbanasić H, Lapalombella S, Florijančić T, Bošković I, Galaverni M, Randi E. First evidence of hybridization between golden jackal (Canis aureus) and domestic dog (Canis familiaris) as revealed by genetic markers. ROYAL SOCIETY OPEN SCIENCE 2015; 2:150450. [PMID: 27019731 PMCID: PMC4807452 DOI: 10.1098/rsos.150450] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/03/2015] [Indexed: 05/22/2023]
Abstract
Interspecific hybridization is relatively frequent in nature and numerous cases of hybridization between wild canids and domestic dogs have been recorded. However, hybrids between golden jackals (Canis aureus) and other canids have not been described before. In this study, we combined the use of biparental (15 autosomal microsatellites and three major histocompatibility complex (MHC) loci) and uniparental (mtDNA control region and a Y-linked Zfy intron) genetic markers to assess the admixed origin of three wild-living canids showing anomalous phenotypic traits. Results indicated that these canids were hybrids between golden jackals and domestic dogs. One of them was a backcross to jackal and another one was a backcross to dog, confirming that golden jackal-domestic dog hybrids are fertile. The uniparental markers showed that the direction of hybridization, namely females of the wild species hybridizing with male domestic dogs, was common to most cases of canid hybridization. A melanistic 3bp-deletion at the K locus (β-defensin CDB103 gene), that was absent in reference golden jackal samples, but was found in a backcross to jackal with anomalous black coat, suggested its introgression from dogs via hybridization. Moreover, we demonstrated that MHC sequences, although rarely used as markers of hybridization, can be also suitable for the identification of hybrids, as long as haplotypes are exclusive for the parental species.
Collapse
Affiliation(s)
- Ana Galov
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb 10000, Croatia
- Author for correspondence: Ana Galov e-mail:
| | - Elena Fabbri
- Laboratorio di Genetica, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell’Emilia (BO) 40064, Italy
| | - Romolo Caniglia
- Laboratorio di Genetica, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell’Emilia (BO) 40064, Italy
| | - Haidi Arbanasić
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb 10000, Croatia
| | - Silvana Lapalombella
- Department of Biological, Geological and Environmental Sciences University of Bologna, Via Selmi 3, Bologna 40126, Italy
| | - Tihomir Florijančić
- Department for Hunting, Fishery and Beekeeping, Faculty of Agriculture in Osijek, Josip Juraj Strossmayer University of Osijek, Kralja Petra Svačića 1d, Osijek 31000, Croatia
| | - Ivica Bošković
- Department for Hunting, Fishery and Beekeeping, Faculty of Agriculture in Osijek, Josip Juraj Strossmayer University of Osijek, Kralja Petra Svačića 1d, Osijek 31000, Croatia
| | - Marco Galaverni
- Laboratorio di Genetica, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell’Emilia (BO) 40064, Italy
| | - Ettore Randi
- Laboratorio di Genetica, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell’Emilia (BO) 40064, Italy
- Department 18/Section of Environmental Engineering, Aalborg University, Sohngårdsholmsvej 57, Aalborg 9000, Denmark
| |
Collapse
|
14
|
Polat M, Aida Y, Takeshima SN, Aniwashi J, Halik M. The diversity of major histocompatibility complex class II DRB1 gene in sheep breeds from Xinjiang, China. ACTA ACUST UNITED AC 2014; 85:50-7. [PMID: 25430475 DOI: 10.1111/tan.12480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 10/14/2014] [Accepted: 10/28/2014] [Indexed: 11/24/2022]
Abstract
Exon 2 of the ovine leukocyte antigen OLA-DRB1 locus was examined in sheep from the Xinjiang Karakul Ram and Bashibai populations, and three generations of hybrids were derived from a cross between Bashibai and Altai Argali wild sheep. This identified 12 novel alleles and 30 previously reported alleles. A neighbor-joining tree of the amino acid sequences of these 42 alleles revealed allelic clusters shared across the study populations. There were significant differences in allelic frequency between Karakul Ram and Bashibai sheep. DRB1*K18cC was the most frequent allele in Kararul Ram with a frequency of 21.2%, while DRB1*2F10c8 (13.2%) and DRB1*0803 (13.2%) were the most frequent alleles found in Bashibai sheep; the alleles DRB1*2F16c2, DRB1*1601, and DRB1*0803 occurred most frequently in F1, F2, and F3 populations, with frequencies of 17.6%, 14.3%, and 20%, respectively. Although many alleles were shared by Bashibai and hybrid sheep, some alleles differed between them, especially in the F1 generation of the Bashibai × Altai Argali cross. The hybrid-specific alleles indicated the introgression of Altai Argali alleles into hybrid flocks. A population tree based on the OLA-DRB1 allelic frequency in each population indicated that the Bashibai sheep and three hybrid populations were similar, with Karakul Ram being genetically distinct.
Collapse
Affiliation(s)
- M Polat
- College of Life Sciences and Technology, Xinjiang University, Urumqi, China; Viral Infectious Diseases Unit, RIKEN, Wako, Japan; Laboratory of Viral Infectious Diseases, Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Japan
| | | | | | | | | |
Collapse
|
15
|
|