1
|
Vahedi SM, Salek Ardestani S, Banabazi MH, Clark F. Epidemiology, pathogenesis, and diagnosis of Aleutian disease caused by Aleutian mink disease virus: A literature review with a perspective of genomic breeding for disease control in American mink (Neogale vison). Virus Res 2023; 336:199208. [PMID: 37633597 PMCID: PMC10474236 DOI: 10.1016/j.virusres.2023.199208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Aleutian disease (AD) is a multi-systemic infectious disease in American mink (Neogale vison) caused by the Aleutian mink disease virus (AMDV). Commonly referred to as mink plasmacytosis, AD is an economically significant disease in mink-breeding countries. Aleutian disease mainly induces weight loss, lower fertility, and dropped pelt quality in adults and can result in acute interstitial pneumonia with high mortality rates in kits. In this review, we employed the scientific literature on AD over the last 70 years to discuss the historical and contemporary status of AD outbreaks and seroprevalence in mink farming countries. We also explained different forms of AD and the differences between the pathogenicity of the virus in kits and adults. The application of the available AD serological tests in AD control strategies was argued. We explained how selection programs could help AD control and proposed different approaches to selecting animals for building AD-tolerant herds. The advantages of genomic selection for AD tolerance over traditional breeding strategies were discussed in detail. We also explained how genomic selection could help AD control by selecting tolerant animals for the next generation based on genome-wide single nucleotide polymorphisms (SNP) data and the challenges of implementing genomic selection for AD tolerance in the mink industry. This review collected the information required for designing successful breeding programs for AD tolerance. Examples of the application of information are presented, and data gaps are highlighted. We showed that AD tolerance is necessary to be among the traits that animals are selected for in the mink industry.
Collapse
Affiliation(s)
- Seyed Milad Vahedi
- Department of Animal Science and Aquaculture, Dalhousie University, Bible Hill, NS B2N5E3, Canada
| | | | - Mohammad Hossein Banabazi
- Department of animal breeding and genetics (HGEN), Centre for Veterinary Medicine and Animal Science (VHC), Swedish University of Agricultural Sciences (SLU), Uppsala 75007, Sweden; Department of Biotechnology, Animal Science Research Institute of IRAN (ASRI), Agricultural Research, Education & Extension Organization (AREEO), Karaj 3146618361, Iran.
| | - Fraser Clark
- Department of Animal Science and Aquaculture, Dalhousie University, Bible Hill, NS B2N5E3, Canada.
| |
Collapse
|
2
|
Long-term antibody production and viremia in American mink (Neovison vison) challenged with Aleutian mink disease virus. BMC Vet Res 2022; 18:364. [PMID: 36192746 PMCID: PMC9531452 DOI: 10.1186/s12917-022-03462-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
Background Selecting American mink (Neovison vison) for tolerance to Aleutian mink disease virus (AMDV) has gained popularity in recent years, but data on the outcomes of this activity are scant. The objectives of this study were to determine the long-term changes in viremia, seroconversion and survival in infected mink. Mink were inoculated intranasally with a local isolate of Aleutian mink disease virus (AMDV) over 4 years (n = 1742). The animals had been selected for tolerance to AMDV for more than 20 years (TG100) or were from herds free of AMDV (TG0). The progenies of TG100 and TG0, and their crosses with 25, 50 and 75% tolerance ancestry were also used. Blood samples were collected from each mink up to 14 times until 1211 days post-inoculation (dpi) and were tested for viremia by PCR and for anti-AMDV antibodies by counter-immunoelectrophoresis (CIEP). Viremia and CIEP status were not considered when selecting replacements. Low-performing animals were pelted and the presence of antibodies in their blood and antibody titer were measured by CIEP, and viremia and viral DNA in seven organs (n = 936) were tested by PCR. Results The peak incidences of viremia (66.7%) and seropositivity (93.5%) were at 35 dpi. The incidence of viremia decreased over time while the incidence of seroconversion increased. The least-squares means of the incidence of PCR positive of lymph node (0.743) and spleen (0.656) were significantly greater than those of bone marrow, liver, kidneys, lungs and small intestine (0.194 to 0.342). Differences in tolerant ancestry were significant for every trait measured. Incidences of viremia over time, terminal viremia, seropositivity over time, AMDV DNA in organs and antibody titer were highest in the susceptible groups (TG0 or TG25) and lowest in the tolerant groups (TG100 or TG75). Conclusion Previous history of selection for tolerance resulted in mink with reduced viral replication and antibody titer. Viremia had a negative effect and antibody production had a positive effect on survival and productivity. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03462-7.
Collapse
|
3
|
Do DN, Hu G, Davoudi P, Shirzadifar A, Manafiazar G, Miar Y. Applying Machine Learning Algorithms for the Classification of Mink Infected with Aleutian Disease Using Different Data Sources. Animals (Basel) 2022; 12:ani12182386. [PMID: 36139246 PMCID: PMC9495069 DOI: 10.3390/ani12182386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Aleutian disease (AD) is a major infectious disease found in mink farms, and it causes financial losses to the mink industry. Controlling AD often requires a counterimmunoelectrophoresis (CIEP) method, which is relatively expensive for mink farmers. Therefore, predicting AD infected mink without using CIEP records will be important for controlling AD in mink farms. In the current study, we applied nine machine learning algorithms to classify AD-infected mink. We indicated that the random forest could be used to classify AD-infected mink (accuracy of 0.962) accurately. This result could be used for implementing machine learning in controlling AD in the mink farms. Abstract American mink (Neogale vison) is one of the major sources of fur for the fur industries worldwide, whereas Aleutian disease (AD) is causing severe financial losses to the mink industry. A counterimmunoelectrophoresis (CIEP) method is commonly employed in a test-and-remove strategy and has been considered a gold standard for AD tests. Although machine learning is widely used in livestock species, little has been implemented in the mink industry. Therefore, predicting AD without using CIEP records will be important for controlling AD in mink farms. This research presented the assessments of the CIEP classification using machine learning algorithms. The Aleutian disease was tested on 1157 individuals using CIEP in an AD-positive mink farm (Nova Scotia, Canada). The comprehensive data collection of 33 different features was used for the classification of AD-infected mink. The specificity, sensitivity, accuracy, and F1 measure of nine machine learning algorithms were evaluated for the classification of AD-infected mink. The nine models were artificial neural networks, decision tree, extreme gradient boosting, gradient boosting method, K-nearest neighbors, linear discriminant analysis, support vector machines, naive bayes, and random forest. Among the 33 tested features, the Aleutian mink disease virus capsid protein-based enzyme-linked immunosorbent assay was found to be the most important feature for classifying AD-infected mink. Overall, random forest was the best-performing algorithm for the current dataset with a mean sensitivity of 0.938 ± 0.003, specificity of 0.986 ± 0.005, accuracy of 0.962 ± 0.002, and F1 value of 0.961 ± 0.088, and across tenfold of the cross-validation. Our work demonstrated that it is possible to use the random forest algorithm to classify AD-infected mink accurately. It is recommended that further model tests in other farms need to be performed and the genomic information needs to be used to optimize the model for implementing machine learning methods for AD detection.
Collapse
|
4
|
Virtanen J, Aaltonen K, Moisander-Jylhä AM, Nordgren H, Paulin L, Peura J, Vapalahti O, Kant R, Sironen T. Mechanisms behind the varying severity of Aleutian mink disease virus: Comparison of three farms with a different disease status. Vet Microbiol 2022; 270:109452. [DOI: 10.1016/j.vetmic.2022.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
|
5
|
Lu T, Wang Y, Wu Y, Zhao L, Wu S, Chen H. Development of an antigen-capture enzyme-linked immunosorbent assay for diagnosis of Aleutian mink disease virus. Arch Virol 2020; 166:83-90. [PMID: 33068192 DOI: 10.1007/s00705-020-04850-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/06/2020] [Indexed: 11/24/2022]
Abstract
Aleutian mink disease (AMD), caused by Aleutian mink disease virus (AMDV), is a very important infectious disease of mink. Currently, elimination of antibody- or antigen-positive animals is the most successful strategy for eradicating AMD, but the claw-cutting method of blood sampling is difficult to perform and painful for the animal. In this study, we aimed to establish an antigen capture enzyme-linked immunosorbent assay (AC-ELISA) method for the efficient detection of AMDV antigens using fecal samples. A purified mouse monoclonal antibody (mAb) was used as the capture antibody, and a rabbit polyclonal antibody (pAb) was used as the detection antibody. The assay was optimized by adjusting a series of parameters. Using a cutoff value of 0.205, the limit of detection of the AC-ELISA for strain AMDV-G antigen was 2 μg/mL, and there was no cross-reaction with other mink viruses. The intra- and inter-assay standard deviations were below 0.046, and the correlation of variance (CV) values were 1.24-7.12% when testing fecal samples. Compared with conventional PCR results, the specificity and sensitivity were 91.5% and 90.6%, respectively, and the concordance rate between the two methods was 91.1%.
Collapse
Affiliation(s)
- Taofeng Lu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yuanzhi Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China
| | - Yanjun Wu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Lili Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China
| | - Shuguang Wu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| |
Collapse
|
6
|
Li L, Hu Z, Sun J, Guo K, Chu X, Wang X, Lu Y. Development of an EvaGreen-based real-time PCR assay for detection of Aleutian mink disease virus. J Virol Methods 2019; 275:113751. [PMID: 31639372 DOI: 10.1016/j.jviromet.2019.113751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 11/18/2022]
Abstract
The objective of this study was to develop a rapid, sensitive and specific EvaGreen (EG)-based real-time PCR assay capable of detecting Aleutian mink disease virus (AMDV) and to evaluate the reliability of the assay for analysis of blood or tissue samples. For this assay, a pair of primers was designed based on a nonstructural protein (NS)-encoding gene of AMDV, and the identity of PCR products was identified based on a melting temperature of 82.8°C. The EG-based real-time PCR assay did not detect canine distemper virus or mink enteritis virus, and the assay could be used to detect Chinese and American AMDV strains, in contrast to a commercial TaqMan kit that could only detect American AMDV strains. The amplification efficiencies of the EG assay were 104.8% for the Chinese strain and 94.4% for the American strain, and the detection limit was 1 copy/μL of AMDV plasmid or 3 pg/μL of viral DNA (Chinese strain). The intra- and inter-assay variation coefficients of melting temperature were all lower than 0.15%, confirming the high reproducibility of the assay. Forty-five clinical blood samples were simultaneously analyzed using the EG real-time PCR, TaqMan kit and conventional PCR, and the detection rates were 91.1%, 0.0% and 86.7%, respectively. Serum samples were also collected from the corresponding blood samples and tested using the counterimmunoelectrophoresis (CIEP) assay, where positive samples accounted for 24.4% of the 45 samples. In conclusion, EG-based real-time PCR is a rapid, sensitive, universal assay that can be effectively utilized as a reliable and specific tool for detection and quantitation of AMDV.
Collapse
Affiliation(s)
- Li Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China; Harbin Customs District P.R. China, 88 Songshan Road, Harbin 150008, PR China
| | - Zhe Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin 150001, PR China
| | - Jinhui Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin 150001, PR China; College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China
| | - Kui Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin 150001, PR China
| | - Xiaoyu Chu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin 150001, PR China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin 150001, PR China
| | - Yixin Lu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China.
| |
Collapse
|
7
|
Lu T, Wang Y, Ge J, Ma Q, Yan W, Zhang Y, Zhao L, Chen H. Identification and characterization of a novel B-cell epitope on Aleutian Mink Disease virus capsid protein VP2 using a monoclonal antibody. Virus Res 2017; 248:74-79. [PMID: 29278728 DOI: 10.1016/j.virusres.2017.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 11/30/2022]
Abstract
Aleutian mink disease is caused by a highly contagious parvovirus (Aleutian mink disease virus, AMDV). This disease is one of the most commercially important infectious disease worldwide and causes considerable economic losses to mink farmers. The capsid protein VP2 is the major immunogenic antigenic protein of AMDV, and is involved in viral tropism, pathogenicity, and host selection. However, few reports have described the use of VP2-specific monoclonal antibodies (mAbs) in B-cell epitope identification and immunological detection. In this study, we produced a specific mAb, 1G5, against AMDV VP2 protein (amino acids: 200 ∼ 588) and characterized its specificity and relative affinity. Six partially overlapping truncated recombinant proteins and seven synthetized peptides were used to identify the epitopes recognized by 1G5. The results indicate that mAb 1G5 can distinguish AMDV, MEV and CPV2 with high affinity (Ka = 5.37 × 109), and the minimal linear epitope is located in amino acid residues 459EEEGWPAASGTHFED473. Sequence alignments demonstrated that the linear epitope was completely conserved among most Amdoparvoviruses except the bat parvovirus, where three substitutions (463W-463F, 466A-466G and 471F-471Y) were noted. Our results reveal that the identified epitope might be a common B-cell epitope of AMDV antibodies, and the 1G5 mAb can be used to identify the cleavage of the capsid proteins during AMDV infection. This is also the first report of a B-cell epitope on AMDV capsid protein VP2 (VP2: 459-473) using a mAb. These findings have potential applications in the development of new diagnostic tools for AMDV.
Collapse
Affiliation(s)
- Taofeng Lu
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Yuanzhi Wang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Junwei Ge
- Veterinary Department, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, People's Republic of China
| | - Qin Ma
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Wenzhuo Yan
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Yuanyuan Zhang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Lili Zhao
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Hongyan Chen
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China.
| |
Collapse
|
8
|
Farid AH, Ferns LE. Reduced severity of histopathological lesions in mink selected for tolerance to Aleutian mink disease virus infection. Res Vet Sci 2017; 111:127-134. [DOI: 10.1016/j.rvsc.2017.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 02/05/2017] [Accepted: 02/15/2017] [Indexed: 10/20/2022]
|
9
|
Ma F, Zhang L, Wang Y, Lu R, Hu B, Lv S, Xue X, Li X, Ling M, Fan S, Zhang H, Yan X. Development of a Peptide ELISA for the Diagnosis of Aleutian Mink Disease. PLoS One 2016; 11:e0165793. [PMID: 27802320 PMCID: PMC5089682 DOI: 10.1371/journal.pone.0165793] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/18/2016] [Indexed: 01/26/2023] Open
Abstract
Aleutian disease (AD) is a common immunosuppressive disease in mink farms world-wide. Since the 1980s, counterimmunoelectrophoresis (CIEP) has been the main detection method for infection with the Aleutian Mink Disease Virus (AMDV). In this study, six peptides derived from the AMDV structural protein VP2 were designed, synthesized, and used as ELISA antigens to detect anti-AMDV antibodies in the sera of infected minks. Serum samples were collected from 764 minks in farms from five different provinces, and analyzed by both CIEP (a gold standard) and peptide ELISA. A peptide designated P1 (415 aa-433 aa) exhibited good antigenicity. A novel ELISA was developed using ovalbumin-linked peptide P1 to detect anti-AMDV antibodies in mink sera. The sensitivity and specificity of the peptide ELISA was 98.0% and 97.5%, respectively. Moreover, the ELISA also detected 342 early-stage infected samples (negative by CIEP and positive by PCR), of which 43.6% (149/342) were true positives. These results showed that the peptide ELISA had better sensitivity compared with CIEP, and therefore could be preferable over CIEP for detecting anti-AMDV antibodies in serological screening.
Collapse
Affiliation(s)
- Fanshu Ma
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lei Zhang
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yang Wang
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Rongguang Lu
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Hu
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shuang Lv
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xianghong Xue
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xintong Li
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Mingyu Ling
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Sining Fan
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Hailing Zhang
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xijun Yan
- Division of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
10
|
Accuracy of enzyme-linked immunosorbent assays for quantification of antibodies against Aleutian mink disease virus. J Virol Methods 2016; 235:144-151. [DOI: 10.1016/j.jviromet.2016.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 06/03/2016] [Accepted: 06/05/2016] [Indexed: 11/20/2022]
|
11
|
Detection of Aleutian disease virus by loop-mediated isothermal amplification. Virusdisease 2015; 26:203-6. [PMID: 26396989 DOI: 10.1007/s13337-015-0265-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/03/2015] [Indexed: 10/23/2022] Open
Abstract
In this study, a loop-mediated isothermal amplification (LAMP) assay was developed and optimized for the detection of Aleutian disease virus (ADV) in minks. The amplification could be completed within 45 min under isothermal condition by employing a set of six ADV genome-specific primers. The amplification results could be visualized directly with the naked eye by using fluorescent dye. Comparative experiments showed that the LAMP assay is superior to conventional polymerase chain reaction for the detection of both experimental and field samples. Results of current study indicated that the LAMP assay is a rapid and reliable technique for routine diagnosis of ADV infection in minks.
Collapse
|
12
|
Validation of an automated ELISA system for detection of antibodies to Aleutian mink disease virus using blood samples collected in filter paper strips. Virol J 2014; 11:141. [PMID: 25103400 PMCID: PMC4254392 DOI: 10.1186/1743-422x-11-141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/24/2014] [Indexed: 11/10/2022] Open
Abstract
Background Aleutian mink disease virus (AMDV) is the cause of a chronic immune complex disease, Aleutian disease (AD), which is common in mink-producing countries. In 2005, implementation of an AMDV eradication programme in Finland created a need for an automated high-throughput assay. The aim of this study was to validate an AMDV-VP2 -recombinant antigen ELISA, which we developed earlier, in an automated assay format for the detection of anti-AMDV antibodies in mink blood and to determine the accuracy of this test compared with the reference standard (counter-current immunoelectrophoresis, CIEP). Methods A blood sampling method based on filter paper 12-strips (blood combs) and a device to introduce these strips to an ELISA plate for elution of the samples were developed. Blood and serum samples were collected from 761 mink from two farms with low (2%) and high (81%) seroprevalences of AMDV infection in 2008. ELISA sensitivity and specificity were estimated with a Bayesian 2-test 2-population model that allowed for conditional dependence between CIEP and ELISA. Agreement between the two tests was assessed with kappa statistic and proportion agreement. Results The sensitivity and specificity of the automated ELISA system were estimated to be 96.2% and 98.4%, respectively. Agreement between CIEP and ELISA was high, with a kappa value of 0.976 and overall proportion agreement of 98.8%. Conclusions The automated ELISA system combined with blood comb sampling is an accurate test format for the detection of anti-AMDV antibodies in mink blood and offers several advantages, including improved blood sampling and data handling, fast sample throughput time, and reductions in costs and labour inputs.
Collapse
|