1
|
Liaghat A, Konsman JP. Methodological advice for the young at heart investigator: Triangulation to build better foundations. Brain Behav Immun 2024; 115:737-746. [PMID: 37972881 DOI: 10.1016/j.bbi.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
In medicine and science, one is typically taught the main theories in a discipline or field along with standard models before receiving more instructions on how to apply certain methods. The aim of this work is not to address one method, but rather methodology, the study and evaluation of methods, by taking a philosophy of science detour. In this, a critique of biomedicine will be used as a starting point to address some positions regarding reductionism, specifying notions such as systems and mechanisms, as well as regarding the mind-body problem discussing psychosomatic medicine and psychoneuroimmunology. Some recommendations to make science more pluralistic, robust and translationally-relevant will then be made as a way to foster constructive debates on reductionism and the mind-body problem and, in turn, favor more interdisciplinary research.
Collapse
Affiliation(s)
- Amirreza Liaghat
- IMMUNOlogy from CONcepts and ExPeriments to Translation, CNRS UMR 5164, University of Bordeaux, 33076 Bordeaux, France
| | - Jan Pieter Konsman
- IMMUNOlogy from CONcepts and ExPeriments to Translation, CNRS UMR 5164, University of Bordeaux, 33076 Bordeaux, France.
| |
Collapse
|
2
|
Cellular sentience as the primary source of biological order and evolution. Biosystems 2022; 218:104694. [PMID: 35595194 DOI: 10.1016/j.biosystems.2022.104694] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022]
Abstract
All life is cellular, starting some 4 billion years ago with the emergence of the first cells. In order to survive their early evolution in the face of an extremely challenging environment, the very first cells invented cellular sentience and cognition, allowing them to make relevant decisions to survive through creative adaptations in a continuously running evolutionary narrative. We propose that the success of cellular life has crucially depended on a biological version of Maxwell's demons which permits the extraction of relevant sensory information and energy from the cellular environment, allowing cells to sustain anti-entropic actions. These sensor-effector actions allowed for the creative construction of biological order in the form of diverse organic macromolecules, including crucial polymers such as DNA, RNA, and cytoskeleton. Ordered biopolymers store analogue (structures as templates) and digital (nucleotide sequences of DNA and RNA) information that functioned as a form memory to support the development of organisms and their evolution. Crucially, all cells are formed by the division of previous cells, and their plasma membranes are physically and informationally continuous across evolution since the beginning of cellular life. It is argued that life is supported through life-specific principles which support cellular sentience, distinguishing life from non-life. Biological order, together with cellular cognition and sentience, allow the creative evolution of all living organisms as the authentic authors of evolutionary novelty.
Collapse
|
3
|
|
4
|
Oulas A, Minadakis G, Zachariou M, Sokratous K, Bourdakou MM, Spyrou GM. Systems Bioinformatics: increasing precision of computational diagnostics and therapeutics through network-based approaches. Brief Bioinform 2019; 20:806-824. [PMID: 29186305 PMCID: PMC6585387 DOI: 10.1093/bib/bbx151] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/17/2017] [Indexed: 02/01/2023] Open
Abstract
Systems Bioinformatics is a relatively new approach, which lies in the intersection of systems biology and classical bioinformatics. It focuses on integrating information across different levels using a bottom-up approach as in systems biology with a data-driven top-down approach as in bioinformatics. The advent of omics technologies has provided the stepping-stone for the emergence of Systems Bioinformatics. These technologies provide a spectrum of information ranging from genomics, transcriptomics and proteomics to epigenomics, pharmacogenomics, metagenomics and metabolomics. Systems Bioinformatics is the framework in which systems approaches are applied to such data, setting the level of resolution as well as the boundary of the system of interest and studying the emerging properties of the system as a whole rather than the sum of the properties derived from the system's individual components. A key approach in Systems Bioinformatics is the construction of multiple networks representing each level of the omics spectrum and their integration in a layered network that exchanges information within and between layers. Here, we provide evidence on how Systems Bioinformatics enhances computational therapeutics and diagnostics, hence paving the way to precision medicine. The aim of this review is to familiarize the reader with the emerging field of Systems Bioinformatics and to provide a comprehensive overview of its current state-of-the-art methods and technologies. Moreover, we provide examples of success stories and case studies that utilize such methods and tools to significantly advance research in the fields of systems biology and systems medicine.
Collapse
Affiliation(s)
- Anastasis Oulas
- Bioinformatics European Research Area Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George Minadakis
- Bioinformatics European Research Area Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Margarita Zachariou
- Bioinformatics European Research Area Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kleitos Sokratous
- Bioinformatics European Research Area Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marilena M Bourdakou
- Bioinformatics European Research Area Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George M Spyrou
- Bioinformatics European Research Area Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
5
|
Aizat WM, Ismail I, Noor NM. Recent Development in Omics Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1102:1-9. [PMID: 30382565 DOI: 10.1007/978-3-319-98758-3_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The central dogma of molecular biology (DNA, RNA, protein and metabolite) has engraved our understanding of genetics in all living organisms. While the concept has been embraced for many decades, the development of high-throughput technologies particularly omics (genomics, transcriptomics, proteomics and metabolomics) has revolutionised the field to incorporate big data analysis including bioinformatics and systems biology as well as synthetic biology area. These omics approaches as well as systems and synthetic biology areas are now increasingly popular as seen by the growing numbers of publication throughout the years. Several journals which have published most of these related fields are also listed in this chapter to overview their impact and target journals.
Collapse
Affiliation(s)
- Wan Mohd Aizat
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia.
| | - Ismanizan Ismail
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - Normah Mohd Noor
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| |
Collapse
|
6
|
Berlin R, Gruen R, Best J. Systems Medicine-Complexity Within, Simplicity Without. JOURNAL OF HEALTHCARE INFORMATICS RESEARCH 2017; 1:119-137. [PMID: 28713872 PMCID: PMC5491616 DOI: 10.1007/s41666-017-0002-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 04/12/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022]
Abstract
This paper presents a brief history of Systems Theory, progresses to Systems Biology, and its relation to the more traditional investigative method of reductionism. The emergence of Systems Medicine represents the application of Systems Biology to disease and clinical issues. The challenges faced by this transition from Systems Biology to Systems Medicine are explained; the requirements of physicians at the bedside, caring for patients, as well as the place of human-human interaction and the needs of the patients are addressed. An organ-focused transition to Systems Medicine, rather than a genomic-, molecular-, or cell-based effort is emphasized. Organ focus represents a middle-out approach to ease this transition and to maximize the benefits of scientific discovery and clinical application. This method manages the perceptions of time and space, the massive amounts of human- and patient-related data, and the ensuing complexity of information.
Collapse
Affiliation(s)
- Richard Berlin
- Department of Computer Science, University of Illinois, Urbana, IL USA
| | - Russell Gruen
- Nanyang Institute of Technology in Health and Medicine, Department of Surgery, Lee Kong Chian School of Medicine, Singapore, Singapore
| | - James Best
- Lee Kong Chian School of Medicine, Singapore, Singapore
| |
Collapse
|
7
|
Marcum JA. Multimorbidity, P4 medicine and holism. J Eval Clin Pract 2017; 23:213-215. [PMID: 27357479 DOI: 10.1111/jep.12588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 11/30/2022]
Abstract
RATIONALE, AIMS AND OBJECTIVES Multimorbidity is a serious challenge to providing patients with quality health care. Sturmberg et al. propose a P4 or whole-person medical model based on a holistic approach to deliver such care. The aim of this commentary is to examine critically their P4 model and holistic approach. METHODS The P4 model and holistic approach of Sturmberg et al. are analysed conceptually in terms of an effective strategy or sequence for framing P4 medicine and with respect to different philosophical notions of holism for grounding it. RESULTS Instead of a P4 medicine strategy or sequence that emphasizes the predictive and preventive aspects of health care from a biomedical perspective, as Sturmberg et al. do, a more effective strategy or sequence for framing P4 medicine to deliver quality health care is to accentuate the personalized and participatory aspects from a humanistic perspective. The basis of this proposed strategy for P4 medicine is not a technoscientific holism that emphasizes mechanisms to define the whole utilizing bottom-up causation, as Sturmberg et al. ground their biomedical P4 model, but rather a phenomenological holism that also incorporates the person's illness experience and top-down causation. CONCLUSIONS The proposal of Sturmberg et al. to treat patient multimorbidity through P4 medicine and a holistic approach is certainly a move in the right direction. However, to achieve their goal requires an alternative strategy for P4 medicine and a more robust notion of holism.
Collapse
|
8
|
Rosen's (M,R) system as an X-machine. J Theor Biol 2016; 408:97-104. [DOI: 10.1016/j.jtbi.2016.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/12/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022]
|
9
|
Neuropharmacology beyond reductionism - A likely prospect. Biosystems 2015; 141:1-9. [PMID: 26723231 DOI: 10.1016/j.biosystems.2015.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 01/28/2023]
Abstract
Neuropharmacology had several major past successes, but the last few decades did not witness any leap forward in the drug treatment of brain disorders. Moreover, current drugs used in neurology and psychiatry alleviate the symptoms, while hardly curing any cause of disease, basically because the etiology of most neuro-psychic syndromes is but poorly known. This review argues that this largely derives from the unbalanced prevalence in neuroscience of the analytic reductionist approach, focused on the cellular and molecular level, while the understanding of integrated brain activities remains flimsier. The decline of drug discovery output in the last decades, quite obvious in neuropharmacology, coincided with the advent of the single target-focused search of potent ligands selective for a well-defined protein, deemed critical in a given pathology. However, all the widespread neuro-psychic troubles are multi-mechanistic and polygenic, their complex etiology making unsuited the single-target drug discovery. An evolving approach, based on systems biology considers that a disease expresses a disturbance of the network of interactions underlying organismic functions, rather than alteration of single molecular components. Accordingly, systems pharmacology seeks to restore a disturbed network via multi-targeted drugs. This review notices that neuropharmacology in fact relies on drugs which are multi-target, this feature having occurred just because those drugs were selected by phenotypic screening in vivo, or emerged from serendipitous clinical observations. The novel systems pharmacology aims, however, to devise ab initio multi-target drugs that will appropriately act on multiple molecular entities. Though this is a task much more complex than the single-target strategy, major informatics resources and computational tools for the systemic approach of drug discovery are already set forth and their rapid progress forecasts promising outcomes for neuropharmacology.
Collapse
|
10
|
Abstract
As a result of multiple technological and practical advances, high-throughput sequencing, known more commonly as “next-generation” sequencing (NGS), can now be incorporated into standard clinical practice. Whereas early protocols relied on samples that were harvested outside of typical clinical pathology workflows, standard formalin-fixed, paraffin-embedded specimens can more regularly be used as starting materials for NGS. Furthermore, protocols for the analysis and interpretation of NGS data, as well as knowledge bases, are being amassed, allowing clinicians to act more easily on genomic information at the point of care for patients. In parallel, new therapies that target somatically mutated genes identified through clinical NGS are gaining US Food and Drug Administration (FDA) approval, and novel clinical trial designs are emerging in which genetic identifiers are given equal weight to histology. For clinical oncology providers, understanding the potential and the limitations of DNA sequencing will be crucial for providing genomically driven care in this era of precision medicine.
Collapse
Affiliation(s)
- Jeffrey Gagan
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115 USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115 USA ; Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| |
Collapse
|
11
|
Nikel PI, Chavarría M. Quantitative Physiology Approaches to Understand and Optimize Reducing Power Availability in Environmental Bacteria. SPRINGER PROTOCOLS HANDBOOKS 2015. [DOI: 10.1007/8623_2015_84] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Vogt H, Ulvestad E, Eriksen TE, Getz L. Getting personal: can systems medicine integrate scientific and humanistic conceptions of the patient? J Eval Clin Pract 2014; 20:942-52. [PMID: 25312489 DOI: 10.1111/jep.12251] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2014] [Indexed: 12/13/2022]
Abstract
RATIONALE, AIMS AND OBJECTIVES The practicing doctor, and most obviously the primary care clinician who encounters the full complexity of patients, faces several fundamental but intrinsically related theoretical and practical challenges - strongly actualized by so-called medically unexplained symptoms (MUS) and multi-morbidity. Systems medicine, which is the emerging application of systems biology to medicine and a merger of molecular biomedicine, systems theory and mathematical modelling, has recently been proposed as a primary care-centered strategy for medicine that promises to meet these challenges. Significantly, it has been proposed to do so in a way that at first glance may seem compatible with humanistic medicine. More specifically, it is promoted as an integrative, holistic, personalized and patient-centered approach. In this article, we ask whether and to what extent systems medicine can provide a comprehensive conceptual account of and approach to the patient and the root causes of health problems that can be reconciled with the concept of the patient as a person, which is an essential theoretical element in humanistic medicine. METHODS We answer this question through a comparative analysis of the theories of primary care doctor Eric Cassell and systems biologist Denis Noble. RESULTS AND CONCLUSIONS We argue that, although systems biological concepts, notably Noble's theory of biological relativity and downward causation, are highly relevant for understanding human beings and health problems, they are nevertheless insufficient in fully bridging the gap to humanistic medicine. Systems biologists are currently unable to conceptualize living wholes, and seem unable to account for meaning, value and symbolic interaction, which are central concepts in humanistic medicine, as constraints on human health. Accordingly, systems medicine as currently envisioned cannot be said to be integrative, holistic, personalized or patient-centered in a humanistic medical sense.
Collapse
Affiliation(s)
- Henrik Vogt
- General Practice Research Unit, Department of Public Health and General Practice, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | | | |
Collapse
|
13
|
Székely T, Burrage K. Stochastic simulation in systems biology. Comput Struct Biotechnol J 2014; 12:14-25. [PMID: 25505503 PMCID: PMC4262058 DOI: 10.1016/j.csbj.2014.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 11/03/2022] Open
Abstract
Natural systems are, almost by definition, heterogeneous: this can be either a boon or an obstacle to be overcome, depending on the situation. Traditionally, when constructing mathematical models of these systems, heterogeneity has typically been ignored, despite its critical role. However, in recent years, stochastic computational methods have become commonplace in science. They are able to appropriately account for heterogeneity; indeed, they are based around the premise that systems inherently contain at least one source of heterogeneity (namely, intrinsic heterogeneity). In this mini-review, we give a brief introduction to theoretical modelling and simulation in systems biology and discuss the three different sources of heterogeneity in natural systems. Our main topic is an overview of stochastic simulation methods in systems biology. There are many different types of stochastic methods. We focus on one group that has become especially popular in systems biology, biochemistry, chemistry and physics. These discrete-state stochastic methods do not follow individuals over time; rather they track only total populations. They also assume that the volume of interest is spatially homogeneous. We give an overview of these methods, with a discussion of the advantages and disadvantages of each, and suggest when each is more appropriate to use. We also include references to software implementations of them, so that beginners can quickly start using stochastic methods for practical problems of interest.
Collapse
Affiliation(s)
- Tamás Székely
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Kevin Burrage
- Department of Computer Science, University of Oxford, Oxford, United Kingdom ; Department of Mathematics, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Abstract
The past decade has seen an explosion of articles in scientific journals involving non-genetic influences on phenotype through modulation of gene function without changes in gene sequence. The excitement in modern molecular biology surrounding the impact exerted by the environment on development of the phenotype is focused largely on mechanism and has not incorporated questions asked (and answers provided) by early philosophers, biologists, and psychologists. As such, this emergence of epigenetic studies is somewhat "old wine in new bottles" and represents a reformulation of the old debate of preformationism versus epigenesis-one resolved in the 1800s. Indeed, this tendency to always look forward, with minimal concern or regard of what has gone before, has led to the present situation in which "true" epigenetic studies are believed to consist of one of two schools. The first is primarily medically based and views epigenetic mechanisms as pathways for disease (e.g., "the epigenetics of cancer"). The second is primarily from the basic sciences, particularly molecular genetics, and regards epigenetics as a potentially important mechanism for organisms exposed to variable environments across multiple generations. There is, however, a third, and separate, school based on the historical literature and debates and regards epigenetics as more of a perspective than a phenomenon. Against this backdrop, comparative integrative biologists are particularly well-suited to understand epigenetic phenomena as a way for organisms to respond rapidly with modified phenotypes (relative to natural selection) to changes in the environment. Using evolutionary principles, it is also possible to interpret "sunsetting" of modified phenotypes when environmental conditions result in a disappearance of the epigenetic modification of gene regulation. Comparative integrative biologists also recognize epigenetics as a potentially confounding source of variation in their data. Epigenetic modification of phenotype (molecular, cellular, morphological, physiological, and behavioral) can be highly variable depending upon ancestral environmental exposure and can contribute to apparent "random" noise in collected datasets. Thus, future research should go beyond the study of epigenetic mechanisms at the level of the gene and devote additional investigation of epigenetic outcomes at the level of both the individual organism and how it affects the evolution of populations. This review is the first of seven in this special issue of Integrative and Comparative Biology that addresses in detail these and other key topics in the study of epigenetics.
Collapse
Affiliation(s)
- Warren W Burggren
- *Developmental and Integrative Biology, Department of Biology, University of North Texas, Denton, TX 76203, USA; Section of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - David Crews
- *Developmental and Integrative Biology, Department of Biology, University of North Texas, Denton, TX 76203, USA; Section of Integrative Biology, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
15
|
Corfe BM, Evans CA. Are proteins a redundant ontology? Epistemological limitations in the analysis of multistate species. MOLECULAR BIOSYSTEMS 2014; 10:1228-35. [PMID: 24531646 DOI: 10.1039/c3mb70558g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Advances in proteomics have exponentially increased the numbers of post-translational modifications identified, the resulting volume of data is overwhelming both databases and empiricists. We review methodologies for chemical and functional PTM assignment. Using β-oxidation as a paradigm, we discuss epistemic limitations and conceptual approaches to resolving them combining relational biology, proteomics, and the erosion of "protein" and "metabolite" as distinct ontologies.
Collapse
Affiliation(s)
- Bernard M Corfe
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology, University of Sheffield, UK.
| | | |
Collapse
|
16
|
Ross SN, Ware K. Hypothesizing the body's genius to trigger and self-organize its healing: 25 years using a standardized neurophysics therapy. Front Physiol 2013; 4:334. [PMID: 24312056 PMCID: PMC3832888 DOI: 10.3389/fphys.2013.00334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 10/31/2013] [Indexed: 11/13/2022] Open
Abstract
We aim for this contribution to operate bi-directionally, both as a "bedside to bench" reverse-translational fractal physiological hypothesis and as a methodological innovation to inform clinical practice. In 25 years using gym equipment therapeutically in non-research settings, the standardized therapy is consistently observed to trigger universal responses of micro to macro waves of system transition dynamics in the human nervous system. These are associated with observably desirable impacts on disorders, injuries, diseases, and athletic performance. Requisite conditions are therapeutic coaching, erect posture, extremely slow movements in mild resistance exercises, and executive control over arousal and attention. To motivate research into the physiological improvements and in validation studies, we integrate from across disciplines to hypothesize explanations for the relationships among the methods, the system dynamics, and evident results. Key hypotheses include: (1) Correctly-directed system efforts may reverse a system's heretofore misdirected efforts, restoring healthier neurophysiology. (2) The enhanced information processing accompanying good posture is an essential initial condition. (3) Behaviors accompanying exercises performed with few degrees of freedom amplify information processing, triggering destabilization and transition dynamics. (4) Executive control over arousal and attention is essential to release system constraints, amplifying and complexifying information. (5) The dynamics create necessary and in many cases evidently sufficient conditions for the body to resolve or improve its own conditions within often short time periods. Literature indicates how the human system possesses material self-awareness. A broad explanation for the nature and effects of the therapy appears rooted in the cascading recursions of the systems' dynamics, which appear to trigger health-fostering self-reorganizing processes when this therapy provides catalytic initial conditions.
Collapse
Affiliation(s)
- Sara N Ross
- Chair of Interdisciplinary Graduate Studies, Antioch University Midwest Yellow Springs, OH, USA
| | | |
Collapse
|
17
|
Gatherer D, Galpin V. Rosen's (M,R) system in process algebra. BMC SYSTEMS BIOLOGY 2013; 7:128. [PMID: 24237684 PMCID: PMC3879122 DOI: 10.1186/1752-0509-7-128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/30/2013] [Indexed: 11/22/2022]
Abstract
Background Robert Rosen’s Metabolism-Replacement, or (M,R), system can be represented as a compact network structure with a single source and three products derived from that source in three consecutive reactions. (M,R) has been claimed to be non-reducible to its components and algorithmically non-computable, in the sense of not being evaluable as a function by a Turing machine. If (M,R)-like structures are present in real biological networks, this suggests that many biological networks will be non-computable, with implications for those branches of systems biology that rely on in silico modelling for predictive purposes. Results We instantiate (M,R) using the process algebra Bio-PEPA, and discuss the extent to which our model represents a true realization of (M,R). We observe that under some starting conditions and parameter values, stable states can be achieved. Although formal demonstration of algorithmic computability remains elusive for (M,R), we discuss the extent to which our Bio-PEPA representation of (M,R) allows us to sidestep Rosen’s fundamental objections to computational systems biology. Conclusions We argue that the behaviour of (M,R) in Bio-PEPA shows life-like properties.
Collapse
Affiliation(s)
- Derek Gatherer
- MRC-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, UK.
| | | |
Collapse
|
18
|
Bose B. Systems biology: a biologist's viewpoint. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:358-68. [PMID: 23872085 DOI: 10.1016/j.pbiomolbio.2013.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/09/2013] [Indexed: 01/05/2023]
Abstract
The debate over reductionism and antireductionism in biology is very old. Even the systems approach in biology is more than five decades old. However, mainstream biology, particularly experimental biology, has broadly sidestepped those debates and ideas. Post-genome data explosion and development of high-throughput techniques led to resurfacing of those ideas and debates as a new incarnation called Systems Biology. Though experimental biologists have co-opted systems biology and hailed it as a paradigm shift, it is practiced in different shades and understood with divergent meanings. Biology has certain questions linked with organization of multiple components and processes. Often such questions involve multilevel systems. Here in this essay we argue that systems theory provides required framework and abstractions to explore those questions. We argue that systems biology should follow the logical and mathematical approach of systems theory and transmogrification of systems biology to mere collection of higher dimensional data must be avoided. Therefore, the questions that we ask and the priority of those questions should also change. Systems biology should focus on system-level properties and investigate complexity without shying away from it.
Collapse
Affiliation(s)
- Biplab Bose
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
19
|
Subsoontorn P, Kim J, Winfree E. Ensemble Bayesian analysis of bistability in a synthetic transcriptional switch. ACS Synth Biol 2012; 1:299-316. [PMID: 23651285 DOI: 10.1021/sb300018h] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An overarching goal of synthetic and systems biology is to engineer and understand complex biochemical systems by rationally designing and analyzing their basic component interactions. Practically, the extent to which such reductionist approaches can be applied is unclear especially as the complexity of the system increases. Toward gradually increasing the complexity of systematically engineered systems, programmable synthetic circuits operating in cell-free in vitro environments offer a valuable testing ground for principles for the design, characterization, and analysis of complex biochemical systems. Here we illustrate this approach using in vitro transcriptional circuits ("genelets") while developing an activatable transcriptional switch motif and configuring it as a bistable autoregulatory circuit, using just four synthetic DNA strands and three essential enzymes, bacteriophage T7 RNA polymerase, Escherichia coli ribonuclease H, and ribonuclease R. Fulfilling the promise of predictable system design, the thermodynamic and kinetic constraints prescribed at the sequence level were enough to experimentally demonstrate intended bistable dynamics for the synthetic autoregulatory switch. A simple mathematical model was constructed based on the mechanistic understanding of elementary reactions, and a Monte Carlo Bayesian inference approach was employed to find parameter sets compatible with a training set of experimental results; this ensemble of parameter sets was then used to predict a test set of additional experiments with reasonable agreement and to provide a rigorous basis for confidence in the mechanistic model. Our work demonstrates that programmable in vitro biochemical circuits can serve as a testing ground for evaluating methods for the design and analysis of more complex biochemical systems such as living cells.
Collapse
Affiliation(s)
- Pakpoom Subsoontorn
- Departments of †Biology, ‡Computation and Neural Systems, §Computer Science, and ∥Bioengineering, California Institute of Technology,
Pasadena, California, 91125, United States
| | - Jongmin Kim
- Departments of †Biology, ‡Computation and Neural Systems, §Computer Science, and ∥Bioengineering, California Institute of Technology,
Pasadena, California, 91125, United States
| | - Erik Winfree
- Departments of †Biology, ‡Computation and Neural Systems, §Computer Science, and ∥Bioengineering, California Institute of Technology,
Pasadena, California, 91125, United States
| |
Collapse
|
20
|
Van Regenmortel MHV. Basic research in HIV vaccinology is hampered by reductionist thinking. Front Immunol 2012; 3:194. [PMID: 22787464 PMCID: PMC3391733 DOI: 10.3389/fimmu.2012.00194] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/21/2012] [Indexed: 01/05/2023] Open
Abstract
This review describes the structure-based reverse vaccinology approach aimed at developing vaccine immunogens capable of inducing antibodies that broadly neutralize HIV-1. Some basic principles of protein immunochemistry are reviewed and the implications of the extensive polyspecificity of antibodies for vaccine development are underlined. Although it is natural for investigators to want to know the cause of an effective immunological intervention, the classic notion of causality is shown to have little explanatory value for a system as complex as the immune system, where any observed effect always results from many interactions between a large number of components. Causal explanations are reductive because a single factor is singled out for attention and given undue explanatory weight on its own. Other examples of the negative impact of reductionist thinking on HIV vaccine development are discussed. These include (1) the failure to distinguish between the chemical nature of antigenicity and the biological nature of immunogenicity, (2) the belief that when an HIV-1 epitope is reconstructed by rational design to better fit a neutralizing monoclonal antibody (nMab), this will produce an immunogen able to elicit Abs with the same neutralizing capacity as the Ab used as template for designing the antigen, and (3) the belief that protection against infection can be analyzed at the level of individual molecular interactions although it has meaning only at the level of an entire organism. The numerous unsuccessful strategies that have been used to design HIV-1 vaccine immunogens are described and it is suggested that the convergence of so many negative experimental results justifies the conclusion that reverse vaccinology is unlikely to lead to the development of a preventive HIV-1 vaccine. Immune correlates of protection in vaccines have not yet been identified because this will become feasible only retrospectively once an effective vaccine exists. The finding that extensive antibody affinity maturation is needed to obtain mature anti-HIV-1 Abs endowed with a broad neutralizing capacity explains why antigens designed to fit matured Mabs are not effective vaccine immunogens since these are administered to naive recipients who possess only B-cell receptors corresponding to the germline version of the matured Abs.
Collapse
Affiliation(s)
- Marc H. V. Van Regenmortel
- Stellenbosch Institute of Advanced Study, Wallenberg Research Center at Stellenbosch University,Stellenbosch, South Africa
| |
Collapse
|
21
|
Mazzocchi F. Complexity and the reductionism-holism debate in systems biology. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:413-27. [PMID: 22761024 DOI: 10.1002/wsbm.1181] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Reductionism has largely influenced the development of science, culminating in its application to molecular biology. An increasing number of novel research findings have, however, shattered this view, showing how the molecular-reductionist approach cannot entirely handle the complexity of biological systems. Within this framework, the advent of systems biology as a new and more integrative field of research is described, along with the form which has taken on the debate of reductionism versus holism. Such an issue occupies a central position in systems biology, and nonetheless it is not always clearly delineated. This partly occurs because different dimensions (ontological, epistemological, methodological) are involved, and yet the concerned ones often remain unspecified. Besides, within systems biology different streams can be distinguished depending on the degree of commitment to embrace genuine systemic principles. Some useful insights into the future development of this discipline might be gained from the tradition of complexity and self-organization. This is especially true with regards the idea of self-reference, which incorporated into the organizational scheme is able to generate autonomy as an emergent property of the biological whole.
Collapse
|
22
|
Antony PMA, Balling R, Vlassis N. From systems biology to systems biomedicine. Curr Opin Biotechnol 2011; 23:604-8. [PMID: 22119097 DOI: 10.1016/j.copbio.2011.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 11/06/2011] [Indexed: 12/22/2022]
Abstract
Systems Biology is about combining theory, technology, and targeted experiments in a way that drives not only data accumulation but knowledge as well. The challenge in Systems Biomedicine is to furthermore translate mechanistic insights in biological systems to clinical application, with the central aim of improving patients' quality of life. The challenge is to find theoretically well-chosen models for the contextually correct and intelligible representation of multi-scale biological systems. In this review, we discuss the current state of Systems Biology, highlight the emergence of Systems Biomedicine, and highlight some of the topics and views that we think are important for the efficient application of Systems Theory in Biomedicine.
Collapse
Affiliation(s)
- Paul M A Antony
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg.
| | | | | |
Collapse
|
23
|
Systems metabolic engineering for chemicals and materials. Trends Biotechnol 2011; 29:370-8. [PMID: 21561673 DOI: 10.1016/j.tibtech.2011.04.001] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 04/02/2011] [Accepted: 04/04/2011] [Indexed: 11/23/2022]
|
24
|
Abstract
Systems biology is all about networks. A recent trend has been to associate systems biology exclusively with the study of gene regulatory or protein-interaction networks. However, systems biology approaches can be applied at many other scales, from the subatomic to the ecosystem scales. In this review, we describe studies at the sub-cellular, tissue, whole plant and crop scales and highlight how these studies can be related to systems biology. We discuss the properties of system approaches at each scale as well as their current limits, and pinpoint in each case advances unique to the considered scale but representing potential for the other scales. We conclude by examining plant models bridging different scales and considering the future prospects of plant systems biology.
Collapse
Affiliation(s)
- Mikaël Lucas
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham, UK.
| | | | | |
Collapse
|
25
|
Street NR, Jansson S, Hvidsten TR. A systems biology model of the regulatory network in Populus leaves reveals interacting regulators and conserved regulation. BMC PLANT BIOLOGY 2011; 11:13. [PMID: 21232107 PMCID: PMC3030533 DOI: 10.1186/1471-2229-11-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 01/13/2011] [Indexed: 05/23/2023]
Abstract
BACKGROUND Green plant leaves have always fascinated biologists as hosts for photosynthesis and providers of basic energy to many food webs. Today, comprehensive databases of gene expression data enable us to apply increasingly more advanced computational methods for reverse-engineering the regulatory network of leaves, and to begin to understand the gene interactions underlying complex emergent properties related to stress-response and development. These new systems biology methods are now also being applied to organisms such as Populus, a woody perennial tree, in order to understand the specific characteristics of these species. RESULTS We present a systems biology model of the regulatory network of Populus leaves. The network is reverse-engineered from promoter information and expression profiles of leaf-specific genes measured over a large set of conditions related to stress and developmental. The network model incorporates interactions between regulators, such as synergistic and competitive relationships, by evaluating increasingly more complex regulatory mechanisms, and is therefore able to identify new regulators of leaf development not found by traditional genomics methods based on pair-wise expression similarity. The approach is shown to explain available gene function information and to provide robust prediction of expression levels in new data. We also use the predictive capability of the model to identify condition-specific regulation as well as conserved regulation between Populus and Arabidopsis. CONCLUSIONS We outline a computationally inferred model of the regulatory network of Populus leaves, and show how treating genes as interacting, rather than individual, entities identifies new regulators compared to traditional genomics analysis. Although systems biology models should be used with care considering the complexity of regulatory programs and the limitations of current genomics data, methods describing interactions can provide hypotheses about the underlying cause of emergent properties and are needed if we are to identify target genes other than those constituting the "low hanging fruit" of genomic analysis.
Collapse
Affiliation(s)
- Nathaniel Robert Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Torgeir R Hvidsten
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
- Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|