1
|
Chen YC, Takada M, Nagornyuk A, Muhan W, Yamada H, Nagashima T, Ohtsuka M, DeLuca JG, Markus S, Takaku M, Suzuki A. Inhibition of p38-MK2 pathway enhances the efficacy of microtubule inhibitors in breast cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621816. [PMID: 39574707 PMCID: PMC11580888 DOI: 10.1101/2024.11.04.621816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Microtubule-targeting agents (MTAs) have been successfully translated from basic research into clinical therapies and have been widely used as first- and second-line chemotherapy drugs for various cancers. However, current MTAs exhibit positive responses only in subsets of patients and are often accompanied by side effects due to their impact on normal cells. This underscores an urgent need to develop novel therapeutic strategies that enhance MTA efficacy while minimizing toxicity to normal tissues. In this study, we demonstrate that inhibition of the p38-MK2 (MAP kinase-activated protein kinase 2) pathway sensitizes cancer cells to MTA treatment. We utilize CMPD1, a dual-target inhibitor, to concurrently suppress the p38-MK2 pathway and microtubule dynamicity. In addition to established role as an MK2 inhibitor, we find that CMPD1 rapidly induces microtubule depolymerization, preferentially at the microtubule plus-end, leading to the inhibition of tumor growth and cancer cell invasion in both in vitro and in vivo models. Notably, 10 nM CMPD1 is sufficient to induce irreversible mitotic defects in cancer cells, but not in non-transformed RPE1 cells, highlighting its high specificity to cancer cells. We further validate that a specific p38-MK2 inhibitor significantly potentiates the efficacy of sub-clinical concentrations of MTA. In summary, our findings suggest that the p38-MK2 pathway presents a promising therapeutic target in combination with MTAs in cancer treatment.
Collapse
Affiliation(s)
- Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- These authors contributed equally
| | - Mamoru Takada
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
- These authors contributed equally
| | - Aerica Nagornyuk
- Department of Biomedical Science, University of North Dakota School of Medicine and Health Science, Grand Folks, North Dakota, USA
| | - Wu Muhan
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideyuki Yamada
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeshi Nagashima
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jennifer G. DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Steven Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Motoki Takaku
- Department of Biomedical Science, University of North Dakota School of Medicine and Health Science, Grand Folks, North Dakota, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Hedström U, Norberg M, Evertsson E, Lever SR, Munck Af Rosenschöld M, Lönn H, Bold P, Käck H, Berntsson P, Vinblad J, Liu J, Welinder A, Karlsson J, Snijder A, Pardali K, Andersson U, Davis AM, Mogemark M. An Angle on MK2 Inhibition-Optimization and Evaluation of Prevention of Activation Inhibitors. ChemMedChem 2019; 14:1701-1709. [PMID: 31325352 DOI: 10.1002/cmdc.201900303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/18/2019] [Indexed: 12/15/2022]
Abstract
The mitogen-activated protein kinase p38α pathway has been an attractive target for the treatment of inflammatory conditions such as rheumatoid arthritis. While a number of p38α inhibitors have been taken to the clinic, they have been limited by their efficacy and toxicological profile. A lead identification program was initiated to selectively target prevention of activation (PoA) of mitogen-activated protein kinase-activated protein kinase 2 (MK2) rather than mitogen- and stress-activated protein kinase 1 (MSK1), both immediate downstream substrates of p38α, to improve the efficacy/safety profile over direct p38α inhibition. Starting with a series of pyrazole amide PoA MK2 inhibitor leads, and guided by structural chemistry and rational design, a highly selective imidazole 9 (2-(3'-(2-amino-2-oxoethyl)-[1,1'-biphenyl]-3-yl)-N-(5-(N,N-dimethylsulfamoyl)-2-methylphenyl)-1-propyl-1H-imidazole-5-carboxamide) and the orally bioavailable imidazole 18 (3-methyl-N-(2-methyl-5-sulfamoylphenyl)-2-(o-tolyl)imidazole-4-carboxamide) were discovered. The PoA concept was further evaluated by protein immunoblotting, which showed that the optimized PoA MK2 compounds, despite their biochemical selectivity against MSK1 phosphorylation, behaved similarly to p38 inhibitors in cellular signaling. This study highlights the importance of selective tool compounds in untangling complex signaling pathways, and although 9 and 18 were not differentiated from p38α inhibitors in a cellular context, they are still useful tools for further research directed to understand the role of MK2 in the p38α signaling pathway.
Collapse
Affiliation(s)
- Ulf Hedström
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Monica Norberg
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Emma Evertsson
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Sarah R Lever
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Magnus Munck Af Rosenschöld
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Hans Lönn
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Peter Bold
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Helena Käck
- Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Pia Berntsson
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Johanna Vinblad
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Jianming Liu
- Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Anette Welinder
- Pharmaceutical Technology and Development, Operations, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Johan Karlsson
- Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Arjan Snijder
- Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Katerina Pardali
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Ulf Andersson
- Clinical Pharmacology and Safety Sciences, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Andrew M Davis
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Mickael Mogemark
- Clinical Pharmacology and Safety Sciences, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| |
Collapse
|
3
|
Substrate-selective inhibitors that reprogram the activity of insulin-degrading enzyme. Nat Chem Biol 2019; 15:565-574. [PMID: 31086331 PMCID: PMC6551522 DOI: 10.1038/s41589-019-0271-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 03/14/2019] [Indexed: 11/08/2022]
Abstract
Enzymes that act on multiple substrates are common in biology but pose unique challenges as therapeutic targets. The metalloprotease insulin-degrading enzyme (IDE) modulates blood glucose levels by cleaving insulin, a hormone that promotes glucose clearance. However, IDE also degrades glucagon, a hormone that elevates glucose levels and opposes the effect of insulin. IDE inhibitors to treat diabetes therefore should prevent IDE-mediated insulin degradation, but not glucagon degradation, in contrast with traditional modes of enzyme inhibition. Using a high-throughput screen for non-active-site ligands, we discovered potent and highly specific small-molecule inhibitors that alter IDE’s substrate selectivity. X-ray co-crystal structures, including an IDE-ligand-glucagon ternary complex, revealed substrate-dependent interactions that enable these inhibitors to potently block insulin binding while allowing glucagon cleavage, even at saturating inhibitor concentrations. These findings suggest a path for developing IDE-targeting therapeutics, and offer a blueprint for modulating other enzymes in a substrate-selective manner to unlock their therapeutic potential.
Collapse
|
4
|
Shah NG, Tulapurkar ME, Ramarathnam A, Brophy A, Martinez R, Hom K, Hodges T, Samadani R, Singh IS, MacKerell AD, Shapiro P, Hasday JD. Novel Noncatalytic Substrate-Selective p38α-Specific MAPK Inhibitors with Endothelial-Stabilizing and Anti-Inflammatory Activity. THE JOURNAL OF IMMUNOLOGY 2017; 198:3296-3306. [PMID: 28298524 DOI: 10.4049/jimmunol.1602059] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/06/2017] [Indexed: 12/22/2022]
Abstract
The p38 MAPK family is composed of four kinases of which p38α/MAPK14 is the major proinflammatory member. These kinases contribute to many inflammatory diseases, but the currently available p38 catalytic inhibitors (e.g., SB203580) are poorly effective and cause toxicity. We reasoned that the failure of catalytic p38 inhibitors may derive from their activity against noninflammatory p38 isoforms (e.g., p38β/MAPK11) and loss of all p38α-dependent responses, including anti-inflammatory, counterregulatory responses via mitogen- and stress-activated kinase (MSK) 1/2 and Smad3. We used computer-aided drug design to target small molecules to a pocket near the p38α glutamate-aspartate (ED) substrate-docking site rather than the catalytic site, the sequence of which had only modest homology among p38 isoforms. We identified a lead compound, UM101, that was at least as effective as SB203580 in stabilizing endothelial barrier function, reducing inflammation, and mitigating LPS-induced mouse lung injury. Differential scanning fluorimetry and saturation transfer difference-nuclear magnetic resonance demonstrated specific binding of UM101 to the computer-aided drug design-targeted pockets in p38α but not p38β. RNA sequencing analysis of TNF-α-stimulated gene expression revealed that UM101 inhibited only 28 of 61 SB203580-inhibited genes and 7 of 15 SB203580-inhibited transcription factors, but spared the anti-inflammatory MSK1/2 pathway. We provide proof of principle that small molecules that target the ED substrate-docking site may exert anti-inflammatory effects similar to the catalytic p38 inhibitors, but their isoform specificity and substrate selectivity may confer inherent advantages over catalytic inhibitors for treating inflammatory diseases.
Collapse
Affiliation(s)
- Nirav G Shah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Mohan E Tulapurkar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Aparna Ramarathnam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Amanda Brophy
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Ramon Martinez
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Kellie Hom
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Theresa Hodges
- University of Maryland Institute for Genome Science, Baltimore, MD 21201
| | - Ramin Samadani
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Ishwar S Singh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201.,Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201; and
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Jeffrey D Hasday
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201; .,Medicine and Research Services, Baltimore Veterans Administration Medical Center, Baltimore, MD 21201
| |
Collapse
|
5
|
Kulawik A, Engesser R, Ehlting C, Raue A, Albrecht U, Hahn B, Lehmann WD, Gaestel M, Klingmüller U, Häussinger D, Timmer J, Bode JG. IL-1β-induced and p38 MAPK-dependent activation of the mitogen-activated protein kinase-activated protein kinase 2 (MK2) in hepatocytes: Signal transduction with robust and concentration-independent signal amplification. J Biol Chem 2017; 292:6291-6302. [PMID: 28223354 DOI: 10.1074/jbc.m117.775023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Indexed: 12/15/2022] Open
Abstract
The IL-1β induced activation of the p38MAPK/MAPK-activated protein kinase 2 (MK2) pathway in hepatocytes is important for control of the acute phase response and regulation of liver regeneration. Many aspects of the regulatory relevance of this pathway have been investigated in immune cells in the context of inflammation. However, very little is known about concentration-dependent activation kinetics and signal propagation in hepatocytes and the role of MK2. We established a mathematical model for IL-1β-induced activation of the p38MAPK/MK2 pathway in hepatocytes that was calibrated to quantitative data on time- and IL-1β concentration-dependent phosphorylation of p38MAPK and MK2 in primary mouse hepatocytes. This analysis showed that, in hepatocytes, signal transduction from IL-1β via p38MAPK to MK2 is characterized by strong signal amplification. Quantification of p38MAPK and MK2 revealed that, in hepatocytes, at maximum, 11.3% of p38MAPK molecules and 36.5% of MK2 molecules are activated in response to IL-1β. The mathematical model was experimentally validated by employing phosphatase inhibitors and the p38MAPK inhibitor SB203580. Model simulations predicted an IC50 of 1-1.2 μm for SB203580 in hepatocytes. In silico analyses and experimental validation demonstrated that the kinase activity of p38MAPK determines signal amplitude, whereas phosphatase activity affects both signal amplitude and duration. p38MAPK and MK2 concentrations and responsiveness toward IL-1β were quantitatively compared between hepatocytes and macrophages. In macrophages, the absolute p38MAPK and MK2 concentration was significantly higher. Finally, in line with experimental observations, the mathematical model predicted a significantly higher half-maximal effective concentration for IL-1β-induced pathway activation in macrophages compared with hepatocytes, underscoring the importance of cell type-specific differences in pathway regulation.
Collapse
Affiliation(s)
- Andreas Kulawik
- From the Department of Gastroenterology, Hepatology, and Infectious Disease, University Hospital, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Raphael Engesser
- the Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany.,the BIOSS Centre for Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Christian Ehlting
- From the Department of Gastroenterology, Hepatology, and Infectious Disease, University Hospital, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Andreas Raue
- the Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Ute Albrecht
- From the Department of Gastroenterology, Hepatology, and Infectious Disease, University Hospital, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | | | | | - Matthias Gaestel
- the Institute of Physiological Chemistry, Hannover Medical School, 30625 Hannover, Germany, and
| | - Ursula Klingmüller
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Dieter Häussinger
- From the Department of Gastroenterology, Hepatology, and Infectious Disease, University Hospital, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Jens Timmer
- the Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany.,the BIOSS Centre for Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Johannes G Bode
- From the Department of Gastroenterology, Hepatology, and Infectious Disease, University Hospital, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany,
| |
Collapse
|
6
|
Wilson BAP, Alam MS, Guszczynski T, Jakob M, Shenoy SR, Mitchell CA, Goncharova EI, Evans JR, Wipf P, Liu G, Ashwell JD, O'Keefe BR. Discovery and Characterization of a Biologically Active Non-ATP-Competitive p38 MAP Kinase Inhibitor. ACTA ACUST UNITED AC 2015; 21:277-89. [PMID: 26538432 DOI: 10.1177/1087057115615518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/09/2015] [Indexed: 01/06/2023]
Abstract
Mitogen-activated protein kinase (MAPK) p38 is part of a broad and ubiquitously expressed family of MAPKs whose activity is responsible for mediating an intracellular response to extracellular stimuli through a phosphorylation cascade. p38 is central to this signaling node and is activated by upstream kinases while being responsible for activating downstream kinases and transcription factors via phosphorylation. Dysregulated p38 activity is associated with numerous autoimmune disorders and has been implicated in the progression of several types of cancer. A number of p38 inhibitors have been tested in clinical trials, with none receiving regulatory approval. One characteristic shared by all of the compounds that failed clinical trials is that they are all adenosine triphosphate (ATP)-competitive p38 inhibitors. Seeing this lack of mechanistic diversity as an opportunity, we screened ~32,000 substances in search of novel p38 inhibitors. Among the inhibitors discovered is a compound that is both non-ATP competitive and biologically active in cell-based models for p38 activity. This is the first reported discovery of a non-ATP-competitive p38 inhibitor that is active in cells and, as such, may enable new pharmacophore designs for both therapeutic and basic research to better understand and exploit non-ATP-competitive inhibitors of p38 activity.
Collapse
Affiliation(s)
- Brice A P Wilson
- Molecular Targets Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Muhammad S Alam
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tad Guszczynski
- Molecular Targets Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Michal Jakob
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Shilpa R Shenoy
- Molecular Targets Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Carter A Mitchell
- Molecular Targets Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ekaterina I Goncharova
- Molecular Targets Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA Data Management Services, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jason R Evans
- Data Management Services, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gang Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua-Peking Center for Life Sciences and Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing China
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Barry R O'Keefe
- Molecular Targets Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
7
|
Small-molecule inhibitors of ERK-mediated immediate early gene expression and proliferation of melanoma cells expressing mutated BRaf. Biochem J 2015; 467:425-38. [PMID: 25695333 DOI: 10.1042/bj20131571] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Constitutive activation of the extracellular-signal-regulated kinases 1 and 2 (ERK1/2) are central to regulating the proliferation and survival of many cancer cells. The current inhibitors of ERK1/2 target ATP binding or the catalytic site and are therefore limited in their utility for elucidating the complex biological roles of ERK1/2 through its phosphorylation and regulation of over 100 substrate proteins. To overcome this limitation, a combination of computational and experimental methods was used to identify low-molecular-mass inhibitors that are intended to target ERK1/2 substrate-docking domains and selectively interfere with ERK1/2 regulation of substrate proteins. In the present study, we report the identification and characterization of compounds with a thienyl benzenesulfonate scaffold that were designed to inhibit ERK1/2 substrates containing an F-site or DEF (docking site for ERK, FXF) motif. Experimental evidence shows the compounds inhibit the expression of F-site containing immediate early genes (IEGs) of the Fos family, including c-Fos and Fra1, and transcriptional regulation of the activator protein-1 (AP-1) complex. Moreover, this class of compounds selectively induces apoptosis in melanoma cells containing mutated BRaf and constitutively active ERK1/2 signalling, including melanoma cells that are inherently resistant to clinically relevant kinase inhibitors. These findings represent the identification and initial characterization of a novel class of compounds that inhibit ERK1/2 signalling functions and their potential utility for elucidating ERK1/2 and other signalling events that control the growth and survival of cancer cells containing elevated ERK1/2 activity.
Collapse
|
8
|
Iorio F, Saez-Rodriguez J, Bernardo DD. Network based elucidation of drug response: from modulators to targets. BMC SYSTEMS BIOLOGY 2013; 7:139. [PMID: 24330611 PMCID: PMC3878740 DOI: 10.1186/1752-0509-7-139] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 07/19/2013] [Indexed: 11/20/2022]
Abstract
: Network-based drug discovery aims at harnessing the power of networks to investigate the mechanism of action of existing drugs, or new molecules, in order to identify innovative therapeutic treatments. In this review, we describe some of the most recent advances in the field of network pharmacology, starting with approaches relying on computational models of transcriptional networks, then moving to protein and signaling network models and concluding with "drug networks". These networks are derived from different sources of experimental data, or literature-based analysis, and provide a complementary view of drug mode of action. Molecular and drug networks are powerful integrated computational and experimental approaches that will likely speed up and improve the drug discovery process, once fully integrated into the academic and industrial drug discovery pipeline.
Collapse
Affiliation(s)
- Francesco Iorio
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Deptartment of Electrical Engineering and Information Technology, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
9
|
Biosynthesis of promatrix metalloproteinase-9/chondroitin sulphate proteoglycan heteromer involves a Rottlerin-sensitive pathway. PLoS One 2011; 6:e20616. [PMID: 21673806 PMCID: PMC3105995 DOI: 10.1371/journal.pone.0020616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 05/08/2011] [Indexed: 11/28/2022] Open
Abstract
Background Previously we have shown that a fraction of the matrix metalloproteinase-9 (MMP-9) synthesized by the macrophage cell line THP-1 was bound to a chondroitin sulphate proteoglycan (CSPG) core protein as a reduction sensitive heteromer. Several biochemical properties of the enzyme were changed when it was bound to the CSPG. Methodology/Principal Findings By use of affinity chromatography, zymography, and radioactive labelling, various macrophage stimulators were tested for their effect on the synthesis of the proMMP-9/CSPG heteromer and its components by THP-1 cells. Of the stimulators, only PMA largely increased the biosynthesis of the heteromer. As PMA is an activator of PKC, we determined which PKC isoenzymes were expressed by performing RT-PCR and Western Blotting. Subsequently specific inhibitors were used to investigate their involvement in the biosynthesis of the heteromer. Of the inhibitors, only Rottlerin repressed the biosynthesis of proMMP-9/CSPG and its two components. Much lower concentrations of Rottlerin were needed to reduce the amount of CSPG than what was needed to repress the synthesis of the heteromer and MMP-9. Furthermore, Rottlerin caused a minor reduction in the activation of the PKC isoenzymes δ, ε, θ and υ (PKD3) in both control and PMA exposed cells. Conclusions/Significance The biosynthesis of the proMMP-9/CSPG heteromer and proMMP-9 in THP-1 cells involves a Rottlerin-sensitive pathway that is different from the Rottlerin sensitive pathway involved in the CSPG biosynthesis. MMP-9 and CSPGs are known to be involved in various physiological and pathological processes. Formation of complexes may influence both the specificity and localization of the enzyme. Therefore, knowledge about biosynthetic pathways and factors involved in the formation of the MMP-9/CSPG heteromer may contribute to insight in the heteromers biological function as well as pointing to future targets for therapeutic agents.
Collapse
|