1
|
DeRaedt S, Bierman A, van Heusden P, Richards C, Christoffels A. microRNA profile of Hermetia illucens (black soldier fly) and its implications on mass rearing. PLoS One 2022; 17:e0265492. [PMID: 35298540 PMCID: PMC8929568 DOI: 10.1371/journal.pone.0265492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/02/2022] [Indexed: 11/18/2022] Open
Abstract
The growing demands on protein producers and the dwindling available resources have made Hermetia illucens (the black soldier fly, BSF) an economically important species. Insights into the genome of this insect will better allow for robust breeding protocols, and more efficient production to be used as a replacement of animal feed protein. The use of microRNA as a method to understand how gene regulation allows insect species to adapt to changes in their environment, has been established in multiple species. The baseline and life stage expression levels established in this study, allow for insight into the development and sex-linked microRNA regulation in BSF. To accomplish this, microRNA was extracted and sequenced from 15 different libraries with each life stage in triplicate. Of the total 192 microRNAs found, 168 were orthologous to known arthropod microRNAs and 24 microRNAs were unique to BSF. Twenty-six of the 168 microRNAs conserved across arthropods had a statistically significant (p < 0.05) differential expression between Egg to Larval stages. The development from larva to pupa was characterized by 16 statistically significant differentially expressed microRNA. Seven and 9 microRNA were detected as statistically significant between pupa to adult female and pupa to adult male, respectively. All life stages had a nearly equal split between up and down regulated microRNAs. Ten of the unique 24 miRNA were detected exclusively in one life stage. The egg life stage expressed five microRNA (hil-miR-m, hil-miR-p, hil-miR-r, hil-miR-s, and hil-miR-u) not seen in any other life stages. The female adult and pupa life stages expressed one miRNA each hil-miR-h and hil-miR-ac respectively. Both male and female adult life stages expressed hil-miR-a, hil-miR-b, and hil-miR-y. There were no unique microRNAs found only in the larva stage. Twenty-two microRNAs with 56 experimentally validated target genes in the closely related Drosophila melanogaster were identified. Thus, the microRNA found display the unique evolution of BSF, along with the life stages and potential genes to target for robust mass rearing. Understanding of the microRNA expression in BSF will further their use in the crucial search for alternative and sustainable protein sources.
Collapse
Affiliation(s)
- Sarah DeRaedt
- South African National Bioinformatics Institute, South African Medical Research Council Bioinformatics Unit, The University of the Western Cape, Bellville, Western Cape, South Africa
| | - Anandi Bierman
- AgriProtein Technologies (Pty) Limited, Philippi, Western Cape, South Africa
| | - Peter van Heusden
- South African National Bioinformatics Institute, South African Medical Research Council Bioinformatics Unit, The University of the Western Cape, Bellville, Western Cape, South Africa
| | - Cameron Richards
- AgriProtein Technologies (Pty) Limited, Philippi, Western Cape, South Africa
| | - Alan Christoffels
- South African National Bioinformatics Institute, South African Medical Research Council Bioinformatics Unit, The University of the Western Cape, Bellville, Western Cape, South Africa
- * E-mail:
| |
Collapse
|
2
|
Moretto M, Sonego P, Pilati S, Matus JT, Costantini L, Malacarne G, Engelen K. A COMPASS for VESPUCCI: A FAIR Way to Explore the Grapevine Transcriptomic Landscape. FRONTIERS IN PLANT SCIENCE 2022; 13:815443. [PMID: 35283898 PMCID: PMC8908374 DOI: 10.3389/fpls.2022.815443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Successfully integrating transcriptomic experiments is a challenging task with the ultimate goal of analyzing gene expression data in the broader context of all available measurements, all from a single point of access. In its second major release VESPUCCI, the integrated database of gene expression data for grapevine, has been updated to be FAIR-compliant, employing standards and created with open-source technologies. It includes all public grapevine gene expression experiments from both microarray and RNA-seq platforms. Transcriptomic data can be accessed in multiple ways through the newly developed COMPASS GraphQL interface, while the expression values are normalized using different methodologies to flexibly satisfy different analysis requirements. Sample annotations are manually curated and use standard formats and ontologies. The updated version of VESPUCCI provides easy querying and analyzing of integrated grapevine gene expression (meta)data and can be seamlessly embedded in any analysis workflow or tools. VESPUCCI is freely accessible and offers several ways of interaction, depending on the specific goals and purposes and/or user expertise; an overview can be found at https://vespucci.readthedocs.io/.
Collapse
Affiliation(s)
- Marco Moretto
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Paolo Sonego
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Stefania Pilati
- Unit of Plant Biology and Physiology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Laura Costantini
- Unit of Grapevine Genetics and Breeding, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Giulia Malacarne
- Unit of Plant Biology and Physiology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Kristof Engelen
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| |
Collapse
|
3
|
Space and Vine Cultivar Interact to Determine the Arbuscular Mycorrhizal Fungal Community Composition. J Fungi (Basel) 2020; 6:jof6040317. [PMID: 33260901 PMCID: PMC7712214 DOI: 10.3390/jof6040317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 01/04/2023] Open
Abstract
The interest in the use of microbes as biofertilizers is increasing in recent years as the demands for sustainable cropping systems become more pressing. Although very widely used as biofertilizers, arbuscular mycorrhizal (AM) fungal associations with specific crops have received little attention and knowledge is limited, especially in the case of vineyards. In this study, the AM fungal community associated with soil and roots of a vineyard on Mallorca Island, Spain was characterized by DNA sequencing to resolve the relative importance of grape variety on their diversity and composition. Overall, soil contained a wider AM fungal diversity than plant roots, and this was found at both taxonomic and phylogenetic levels. The major effect on community composition was associated with sample type, either root or soil material, with a significant effect for the variety of the grape. This effect interacted with the spatial distribution of the plants. Such an interaction revealed a hierarchical effect of abiotic and biotic factors in shaping the composition of AM fungal communities. Our results have direct implications for the understanding of plant-fungal assemblages and the potential functional differences across plants in vineyard cropping.
Collapse
|
4
|
Daldoul S, Boubakri H, Gargouri M, Mliki A. Recent advances in biotechnological studies on wild grapevines as valuable resistance sources for smart viticulture. Mol Biol Rep 2020; 47:3141-3153. [PMID: 32130616 DOI: 10.1007/s11033-020-05363-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Cultivated grapevines, Vitis vinifera subsp. sativa, are thought to have been domesticated from wild populations of Vitis vinifera subsp. sylvestris in Central Asia. V. vinifera subsp. sativa is one of the most economically important fruit crops worldwide. Since cultivated grapevines are susceptible to multiple biotic and abiotic soil factors, they also need to be grafted on resistant rootstocks that are mostly developed though hybridization between American wild grapevine species (V. berlandieri, V. riparia, and V. rupestris). Therefore, wild grapevine species are essential genetic materials for viticulture to face biotic and abiotic stresses in both cultivar and rootstock parts. Actually, viticulture faces several environmental constraints that are further intensified by climate change. Recently, several reports on biotic and abiotic stresses-response in wild grapevines revealed accessions tolerant to different constraints. The emergence of advanced techniques such as omics technologies, marker-assisted selection (MAS), and functional analysis tools allowed a more detailed characterization of resistance mechanisms in these wild grapevines and suggest a number of species (V. rotundifolia, V. rupestris, V. riparia, V. berlandieri and V. amurensis) have untapped potential for new resistance traits including disease resistance loci and key tolerance genes. The present review reports on the importance of different biotechnological tools in exploring and examining wild grapevines tolerance mechanisms that can be employed to promote elite cultivated grapevines under climate change conditions.
Collapse
Affiliation(s)
- Samia Daldoul
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia.
| | - Hatem Boubakri
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cedria, 2050, BP 901, Hammam-lif, Tunisia
| | - Mahmoud Gargouri
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, BP 901, 2050, Hammam-lif, Tunisia
| |
Collapse
|
5
|
De Ollas C, Morillón R, Fotopoulos V, Puértolas J, Ollitrault P, Gómez-Cadenas A, Arbona V. Facing Climate Change: Biotechnology of Iconic Mediterranean Woody Crops. FRONTIERS IN PLANT SCIENCE 2019; 10:427. [PMID: 31057569 PMCID: PMC6477659 DOI: 10.3389/fpls.2019.00427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
The Mediterranean basin is especially sensitive to the adverse outcomes of climate change and especially to variations in rainfall patterns and the incidence of extremely high temperatures. These two concurring adverse environmental conditions will surely have a detrimental effect on crop performance and productivity that will be particularly severe on woody crops such as citrus, olive and grapevine that define the backbone of traditional Mediterranean agriculture. These woody species have been traditionally selected for traits such as improved fruit yield and quality or alteration in harvesting periods, leaving out traits related to plant field performance. This is currently a crucial aspect due to the progressive and imminent effects of global climate change. Although complete genome sequence exists for sweet orange (Citrus sinensis) and clementine (Citrus clementina), olive tree (Olea europaea) and grapevine (Vitis vinifera), the development of biotechnological tools to improve stress tolerance still relies on the study of the available genetic resources including interspecific hybrids, naturally occurring (or induced) polyploids and wild relatives under field conditions. To this respect, post-genomic era studies including transcriptomics, metabolomics and proteomics provide a wide and unbiased view of plant physiology and biochemistry under adverse environmental conditions that, along with high-throughput phenotyping, could contribute to the characterization of plant genotypes exhibiting physiological and/or genetic traits that are correlated to abiotic stress tolerance. The ultimate goal of precision agriculture is to improve crop productivity, in terms of yield and quality, making a sustainable use of land and water resources under adverse environmental conditions using all available biotechnological tools and high-throughput phenotyping. This review focuses on the current state-of-the-art of biotechnological tools such as high throughput -omics and phenotyping on grapevine, citrus and olive and their contribution to plant breeding programs.
Collapse
Affiliation(s)
- Carlos De Ollas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Raphaël Morillón
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Petit-Bourg, France
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Jaime Puértolas
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Patrick Ollitrault
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), San-Giuliano, France
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
6
|
Chitarra W, Pagliarani C, Abbà S, Boccacci P, Birello G, Rossi M, Palmano S, Marzachì C, Perrone I, Gambino G. miRVIT: A Novel miRNA Database and Its Application to Uncover Vitis Responses to Flavescence dorée Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1034. [PMID: 30065744 PMCID: PMC6057443 DOI: 10.3389/fpls.2018.01034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/26/2018] [Indexed: 05/08/2023]
Abstract
Micro(mi)RNAs play crucial roles in plant developmental processes and in defense responses to biotic and abiotic stresses. In the last years, many works on small RNAs in grapevine (Vitis spp.) were published, and several conserved and putative novel grapevine-specific miRNAs were identified. In order to reorganize the high quantity of available data, we produced "miRVIT," the first database of all novel grapevine miRNA candidates characterized so far, and still not deposited in miRBase. To this aim, each miRNA accession was renamed, repositioned in the last version of the grapevine genome, and compared with all the novel and conserved miRNAs detected in grapevine. Conserved and novel miRNAs cataloged in miRVIT were then used for analyzing Vitis vinifera plants infected by Flavescence dorée (FD), one of the most severe phytoplasma diseases affecting grapevine. The analysis of small RNAs from healthy, recovered (plants showing spontaneous and stable remission of symptoms), and FD-infected "Barbera" grapevines showed that FD altered the expression profiles of several miRNAs, including those involved in cell development and photosynthesis, jasmonate signaling, and disease resistance response. The application of miRVIT in a biological context confirmed the effectiveness of the followed approach, especially for the identification of novel miRNA candidates in grapevine. miRVIT database is available at http://mirvit.ipsp.cnr.it. Highlights: The application of the newly produced database of grapevine novel miRNAs to the analysis of plants infected by Flavescence dorée reveals key roles of miRNAs in photosynthesis and jasmonate signaling.
Collapse
Affiliation(s)
- Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
- Viticultural and Enology Research Centre, Council for Agricultural Research and Economics, Conegliano, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Simona Abbà
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Giancarlo Birello
- Research Institute on Sustainable Economic Growth, National Research Council of Italy, Turin, Italy
| | - Marika Rossi
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Sabrina Palmano
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Cristina Marzachì
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| |
Collapse
|
7
|
Field Guide to Plant Model Systems. Cell 2017; 167:325-339. [PMID: 27716506 DOI: 10.1016/j.cell.2016.08.031] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/28/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022]
Abstract
For the past several decades, advances in plant development, physiology, cell biology, and genetics have relied heavily on the model (or reference) plant Arabidopsis thaliana. Arabidopsis resembles other plants, including crop plants, in many but by no means all respects. Study of Arabidopsis alone provides little information on the evolutionary history of plants, evolutionary differences between species, plants that survive in different environments, or plants that access nutrients and photosynthesize differently. Empowered by the availability of large-scale sequencing and new technologies for investigating gene function, many new plant models are being proposed and studied.
Collapse
|
8
|
Wong DCJ, Matus JT. Constructing Integrated Networks for Identifying New Secondary Metabolic Pathway Regulators in Grapevine: Recent Applications and Future Opportunities. FRONTIERS IN PLANT SCIENCE 2017; 8:505. [PMID: 28446914 PMCID: PMC5388765 DOI: 10.3389/fpls.2017.00505] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/22/2017] [Indexed: 05/19/2023]
Abstract
Representing large biological data as networks is becoming increasingly adopted for predicting gene function while elucidating the multifaceted organization of life processes. In grapevine (Vitis vinifera L.), network analyses have been mostly adopted to contribute to the understanding of the regulatory mechanisms that control berry composition. Whereas, some studies have used gene co-expression networks to find common pathways and putative targets for transcription factors related to development and metabolism, others have defined networks of primary and secondary metabolites for characterizing the main metabolic differences between cultivars throughout fruit ripening. Lately, proteomic-related networks and those integrating genome-wide analyses of promoter regulatory elements have also been generated. The integration of all these data in multilayered networks allows building complex maps of molecular regulation and interaction. This perspective article describes the currently available network data and related resources for grapevine. With the aim of illustrating data integration approaches into network construction and analysis in grapevine, we searched for berry-specific regulators of the phenylpropanoid pathway. We generated a composite network consisting of overlaying maps of co-expression between structural and transcription factor genes, integrated with the presence of promoter cis-binding elements, microRNAs, and long non-coding RNAs (lncRNA). This approach revealed new uncharacterized transcription factors together with several microRNAs potentially regulating different steps of the phenylpropanoid pathway, and one particular lncRNA compromising the expression of nine stilbene synthase (STS) genes located in chromosome 10. Application of network-based approaches into multi-omics data will continue providing supplementary resources to address important questions regarding grapevine fruit quality and composition.
Collapse
Affiliation(s)
- Darren C. J. Wong
- Ecology and Evolution, Research School of Biology, Australian National UniversityActon, ACT, Australia
| | - José Tomás Matus
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UBBarcelona, Spain
- *Correspondence: José Tomás Matus
| |
Collapse
|
9
|
Alaimo S, Marceca GP, Giugno R, Ferro A, Pulvirenti A. Current Knowledge and Computational Techniques for Grapevine Meta-Omics Analysis. FRONTIERS IN PLANT SCIENCE 2017; 8:2241. [PMID: 29375610 PMCID: PMC5767322 DOI: 10.3389/fpls.2017.02241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 12/20/2017] [Indexed: 05/03/2023]
Abstract
Growing grapevine (Vitis vinifera) is a key contribution to the economy of many countries. Tools provided by genomics and bioinformatics did help researchers in obtaining biological knowledge about the different cultivars. Several genetic markers for common diseases were identified. Recently, the impact of microbiome has been proved to be of fundamental importance both in humans and in plants for its ability to confer protection or induce diseases. In this review we report current knowledge about grapevine microbiome, together with a description of the available computational methodologies for meta-omics analysis.
Collapse
Affiliation(s)
- Salvatore Alaimo
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Gioacchino P. Marceca
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona, Italy
| | - Alfredo Ferro
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alfredo Pulvirenti
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- *Correspondence: Alfredo Pulvirenti
| |
Collapse
|
10
|
Moretto M, Sonego P, Pilati S, Malacarne G, Costantini L, Grzeskowiak L, Bagagli G, Grando MS, Moser C, Engelen K. VESPUCCI: Exploring Patterns of Gene Expression in Grapevine. FRONTIERS IN PLANT SCIENCE 2016; 7:633. [PMID: 27242836 PMCID: PMC4862315 DOI: 10.3389/fpls.2016.00633] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/25/2016] [Indexed: 05/20/2023]
Abstract
Large-scale transcriptional studies aim to decipher the dynamic cellular responses to a stimulus, like different environmental conditions. In the era of high-throughput omics biology, the most used technologies for these purposes are microarray and RNA-Seq, whose data are usually required to be deposited in public repositories upon publication. Such repositories have the enormous potential to provide a comprehensive view of how different experimental conditions lead to expression changes, by comparing gene expression across all possible measured conditions. Unfortunately, this task is greatly impaired by differences among experimental platforms that make direct comparisons difficult. In this paper, we present the Vitis Expression Studies Platform Using COLOMBOS Compendia Instances (VESPUCCI), a gene expression compendium for grapevine which was built by adapting an approach originally developed for bacteria, and show how it can be used to investigate complex gene expression patterns. We integrated nearly all publicly available microarray and RNA-Seq expression data: 1608 gene expression samples from 10 different technological platforms. Each sample has been manually annotated using a controlled vocabulary developed ad hoc to ensure both human readability and computational tractability. Expression data in the compendium can be visually explored using several tools provided by the web interface or can be programmatically accessed using the REST interface. VESPUCCI is freely accessible at http://vespucci.colombos.fmach.it.
Collapse
Affiliation(s)
- Marco Moretto
- Department of Computational Biology, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
- Department of Biology, University of PadovaPadova, Italy
| | - Paolo Sonego
- Department of Computational Biology, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
| | - Stefania Pilati
- Department of Genomics and Biology of Fruit Crop, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
| | - Giulia Malacarne
- Department of Genomics and Biology of Fruit Crop, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
| | - Laura Costantini
- Department of Genomics and Biology of Fruit Crop, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
| | - Lukasz Grzeskowiak
- Department of Genomics and Biology of Fruit Crop, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
| | - Giorgia Bagagli
- Department of Genomics and Biology of Fruit Crop, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
| | - Maria Stella Grando
- Department of Genomics and Biology of Fruit Crop, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
| | - Claudio Moser
- Department of Genomics and Biology of Fruit Crop, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
| | - Kristof Engelen
- Department of Computational Biology, Research and Innovation Center, Fondazione Edmund MachTrento, Italy
- *Correspondence: Kristof Engelen,
| |
Collapse
|
11
|
Facchiano A, Angelini C, Bosotti R, Guffanti A, Marabotti A, Marangoni R, Pascarella S, Romano P, Zanzoni A, Helmer-Citterich M. Preface: BITS2014, the annual meeting of the Italian Society of Bioinformatics. BMC Bioinformatics 2015; 16 Suppl 9:S1. [PMID: 26050789 PMCID: PMC4464032 DOI: 10.1186/1471-2105-16-s9-s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This Preface introduces the content of the BioMed Central journal Supplements related to BITS2014 meeting, held in Rome, Italy, from the 26th to the 28th of February, 2014.
Collapse
|