1
|
Shahin H, Steinvall I, Sjöberg F, Elmasry M, El-Serafi A. Towards propagation of epidermal cells for wound repair: glass, as cell culture substrate, enhances proliferation and migration of human keratinocytes. Front Bioeng Biotechnol 2025; 13:1547044. [PMID: 40182989 PMCID: PMC11965597 DOI: 10.3389/fbioe.2025.1547044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Human keratinocytes require relatively long propagation time which impedes their availability as autologous cell transplantation within a clinically reasonable timeframe. There is an unmet need for efficient xeno-free cell expansion approaches to propagate human keratinocytes as regenerative therapy. Methods Primary human keratinocytes and HaCaT cells were cultured on glass, plastic, and animal-derived collagen I matrix for 10 days. Proliferation, migration, DNA methylation, as well as gene and protein expression were assessed to characterize the effect of the tested culture substrates on keratinocytes at the molecular and functional levels. Results Keratinocytes cultured on glass exhibited faster proliferation, global DNA demethylation and upregulation of epidermal differentiation markers. Scratch wound assay revealed that keratinocytes cultured on glass demonstrated enhanced cell migration compared to those on plastic or collagen I. Multiplex immunoassays identified temporal and substrate-dependent variations in a panel of keratinocyte-specific secreted factors, encompassing immunomodulatory cytokines, growth factors, and angiogenic factors. Discussion Glass, as a culture substrate, promotes epidermal differentiation and enhances keratinocyte migration. The latter is a critical factor in re-epithelialization and wound healing. Functional properties suggest that glass may optimize the inflammatory response and promote efficient wound repair, making it a promising candidate for the short-term expansion of keratinocytes for transplantation purposes. Further in-vivo validation is required to definitively establish the efficacy of keratinocytes cultured on glass for clinical applications.
Collapse
Affiliation(s)
- Hady Shahin
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, Linköping, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Faculty of Biotechnology, Modern Sciences and Arts University, Cairo, Egypt
| | - Ingrid Steinvall
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, Linköping, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Folke Sjöberg
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, Linköping, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Moustafa Elmasry
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, Linköping, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ahmed El-Serafi
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, Linköping, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Eun K, Kim AY, Ryu S. Matricellular proteins in immunometabolism and tissue homeostasis. BMB Rep 2024; 57:400-416. [PMID: 38919018 PMCID: PMC11444987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/11/2023] [Accepted: 04/25/2024] [Indexed: 06/27/2024] Open
Abstract
Matricellular proteins are integral non-structural components of the extracellular matrix. They serve as essential modulators of immunometabolism and tissue homeostasis, playing critical roles in physiological and pathological conditions. These extracellular matrix proteins including thrombospondins, osteopontin, tenascins, the secreted protein acidic and rich in cysteine (SPARC) family, the Cyr61, CTGF, NOV (CCN) family, and fibulins have multi-faceted functions in regulating immune cell functions, metabolic pathways, and tissue homeostasis. They are involved in immune-metabolic regulation and influence processes such as insulin signaling, adipogenesis, lipid metabolism, and immune cell function, playing significant roles in metabolic disorders such as obesity and diabetes. Furthermore, their modulation of tissue homeostasis processes including cellular adhesion, differentiation, migration, repair, and regeneration is instrumental for maintaining tissue integrity and function. The importance of these proteins in maintaining physiological equilibrium is underscored by the fact that alterations in their expression or function often coincide with disease manifestation. This review contributes to our growing understanding of these proteins, their mechanisms, and their potential therapeutic applications. [BMB Reports 2024; 57(9): 400-416].
Collapse
Affiliation(s)
- Kyoungjun Eun
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Ah Young Kim
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Seungjin Ryu
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Natural Medicine, College of Medicine, Hallym Unviersity, Chuncheon 24252, Korea
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 06974, Korea
| |
Collapse
|
3
|
Sharma K, Chanana N, Mohammad G, Thinlas T, Gupta M, Syed MA, Das RS, Pasha Q, Mishra A. Hypertensive Patients Exhibit Enhanced Thrombospondin-1 Levels at High-Altitude. Life (Basel) 2021; 11:life11090893. [PMID: 34575042 PMCID: PMC8469964 DOI: 10.3390/life11090893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
Thrombospondin-1 (THBS1) levels elevate under hypoxia and have relevance in several cardiovascular disorders. The association of THBS1 with endothelial dysfunction implies its important role in hypertension. To establish the hypothesis, we screened patients with hypertension and their respective controls from the two different environmental regions. Cohort 1 was composed of Ladakhis, residing at 3500 m above sea level (ASL), whereas Cohort 2 was composed of north-Indians residing at ~200 m ASL. Clinical parameters and circulating THBS1 levels were correlated in the case–control groups of the two populations. THBS1 levels were significantly elevated in hypertension patients of both cohorts; however, the levels were distinctly enhanced in the hypertensive patients of HA as compared to normoxia (p < 0.002). The observation was supported by the receiver operating curve analysis with an area under curve of 0.7007 (0.627–0.774) demonstrating the discriminatory effect of hypobaric hypoxia on the levels as compared to normoxia (p < 0.011). Significant correlation of THBS1 and mean arterial pressure was observed with upraised positive correlations in the hypertensive highlanders as compared to the hypertensive patients from sea-level. The prevalence of differential distribution of THBS1 and CD47 genes variants, their interactions, and association with the THBS1 levels were also determined. Genotype-interactions between THBS1 rs2228263 and CD47 rs9879947 were relevant and the regression analysis highlighted the association of risk genotype-interactions with increased THBS1 levels in hypertension. Genetic studies of additional thrombospondin pathway-related genes suggest the complex role of THBS1 in the presence of its family members and the related receptor molecules at HA.
Collapse
Affiliation(s)
- Kavita Sharma
- Cardiovascular Respiratory Disease Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; (K.S.); (N.C.); (Q.P.)
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| | - Neha Chanana
- Cardiovascular Respiratory Disease Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; (K.S.); (N.C.); (Q.P.)
| | - Ghulam Mohammad
- Department of Medicine, SNM Hospital, Leh 194101, India; (G.M.); (T.T.)
| | - Tashi Thinlas
- Department of Medicine, SNM Hospital, Leh 194101, India; (G.M.); (T.T.)
| | - Mohit Gupta
- Department of Cardiology, GB Pant Institute of Post Graduate Medical Education and Research, New Delhi 110002, India;
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| | - Rajat Subhra Das
- Department of Anatomy, All India Institute of Medical Sciences, Raebareli 229405, India;
| | - Qadar Pasha
- Cardiovascular Respiratory Disease Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; (K.S.); (N.C.); (Q.P.)
- Indian Council of Medical Research, New Delhi 110029, India
| | - Aastha Mishra
- Cardiovascular Respiratory Disease Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; (K.S.); (N.C.); (Q.P.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence:
| |
Collapse
|
4
|
Russell-Hallinan A, Watson CJ, O'Dwyer D, Grieve DJ, O'Neill KM. Epigenetic Regulation of Endothelial Cell Function by Nucleic Acid Methylation in Cardiac Homeostasis and Disease. Cardiovasc Drugs Ther 2020; 35:1025-1044. [PMID: 32748033 PMCID: PMC8452583 DOI: 10.1007/s10557-020-07019-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pathological remodelling of the myocardium, including inflammation, fibrosis and hypertrophy, in response to acute or chronic injury is central in the development and progression of heart failure (HF). While both resident and infiltrating cardiac cells are implicated in these pathophysiological processes, recent evidence has suggested that endothelial cells (ECs) may be the principal cell type responsible for orchestrating pathological changes in the failing heart. Epigenetic modification of nucleic acids, including DNA, and more recently RNA, by methylation is essential for physiological development due to their critical regulation of cellular gene expression. As accumulating evidence has highlighted altered patterns of DNA and RNA methylation in HF at both the global and individual gene levels, much effort has been directed towards defining the precise role of such cell-specific epigenetic changes in the context of HF. Considering the increasingly apparent crucial role that ECs play in cardiac homeostasis and disease, this article will specifically focus on nucleic acid methylation (both DNA and RNA) in the failing heart, emphasising the key influence of these epigenetic mechanisms in governing EC function. This review summarises current understanding of DNA and RNA methylation alterations in HF, along with their specific role in regulating EC function in response to stress (e.g. hyperglycaemia, hypoxia). Improved appreciation of this important research area will aid in further implicating dysfunctional ECs in HF pathogenesis, whilst informing development of EC-targeted strategies and advancing potential translation of epigenetic-based therapies for specific targeting of pathological cardiac remodelling in HF.
Collapse
Affiliation(s)
- Adam Russell-Hallinan
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Chris J Watson
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Denis O'Dwyer
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - David J Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Karla M O'Neill
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
5
|
Atherosclerotic Pre-Conditioning Affects the Paracrine Role of Circulating Angiogenic Cells Ex-Vivo. Int J Mol Sci 2020; 21:ijms21155256. [PMID: 32722151 PMCID: PMC7432497 DOI: 10.3390/ijms21155256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
In atherosclerosis, circulating angiogenic cells (CAC), also known as early endothelial progenitor cells (eEPC), are thought to participate mainly in a paracrine fashion by promoting the recruitment of other cell populations such as late EPC, or endothelial colony-forming cells (ECFC), to the injured areas. There, ECFC replace the damaged endothelium, promoting neovascularization. However, despite their regenerative role, the number and function of EPC are severely affected under pathological conditions, being essential to further understand how these cells react to such environments in order to implement their use in regenerative cell therapies. Herein, we evaluated the effect of direct incubation ex vivo of healthy CAC with the secretome of atherosclerotic arteries. By using a quantitative proteomics approach, 194 altered proteins were identified in the secretome of pre-conditioned CAC, many of them related to inhibition of angiogenesis (e.g., endostatin, thrombospondin-1, fibulins) and cell migration. Functional assays corroborated that healthy CAC released factors enhanced ECFC angiogenesis, but, after atherosclerotic pre-conditioning, the secretome of pre-stimulated CAC negatively affected ECFC migration, as well as their ability to form tubules on a basement membrane matrix assay. Overall, we have shown here, for the first time, the effect of atherosclerotic factors over the paracrine role of CAC ex vivo. The increased release of angiogenic inhibitors by CAC in response to atherosclerotic factors induced an angiogenic switch, by blocking ECFC ability to form tubules in response to pre-conditioned CAC. Thus, we confirmed here that the angiogenic role of CAC is highly affected by the atherosclerotic environment.
Collapse
|
6
|
Wu J, Chu Y, Jiang Z, Yu Q. Losartan protects against intermittent hypoxia-induced peritubular capillary loss by modulating the renal renin-angiotensin system and angiogenesis factors. Acta Biochim Biophys Sin (Shanghai) 2020; 52:38-48. [PMID: 31836883 DOI: 10.1093/abbs/gmz136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Abstract
Obstructive sleep apnea is characterized by chronic intermittent hypoxia (CIH), which is a risk factor for renal peritubular capillary (PTC) loss, and angiotensin II receptor blockers can alleviate PTC loss. However, the mechanism by which losartan (an angiotensin II receptor blocker) reduces CIH-induced PTC loss and attenuates kidney damage is still unknown. Thus, in this study, we examined the protective effects of losartan against CIH-induced PTC loss and explored the underlying mechanisms in rat CIH model. The immunohistochemical staining of CD34 and morphological examination showed that CIH reduced PTC density and damaged tubular epithelial cells. Immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), real-time quantitative PCR, and western blot analysis results revealed that CIH increased the expression of hypoxia inducible factor-1α (HIF-1α), angiotensin II (Ang II), angiotensin II type 1 receptor (AT1R), pro-angiogenesis factor vascular endothelial growth factor (VEGF), and anti-angiogenesis factor thrombospondin-1 (TSP-1) in the renal cortex of rats. CIH may up-regulate VEGF expression and simultaneously increase TSP-1 production. By histopathological, immunohistochemistry, ELISA, RT-qPCR, and western blot analysis, we found that the expressions of renal renin-angiotensin system (RAS), HIF-1α, VEGF, and TSP-1 were decreased, and PTC loss and tubular epithelial cell injury were attenuated with losartan treatment. Losartan ameliorated CIH-induced PTC loss by modulating renal RAS to improve the crosstalk between endothelial cells and tubular epithelial cells and subsequently regulate the balance of angiogenesis factors. Our study provided novel insights into the mechanisms of CIH-induced kidney damage and indicated that losartan could be a potential therapeutic agent for renal protection by alleviating CIH-induced PTC loss.
Collapse
Affiliation(s)
- Jiqiang Wu
- Department of Respiratory Medicine, the First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Yao Chu
- Department of Respiratory Medicine, the First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Zhenxiu Jiang
- Department of Respiratory Medicine, the First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Qin Yu
- Department of Respiratory Medicine, the First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Liakouli V, Cipriani P, Di Benedetto P, Ruscitti P, Carubbi F, Berardicurti O, Panzera N, Giacomelli R. The role of extracellular matrix components in angiogenesis and fibrosis: Possible implication for Systemic Sclerosis. Mod Rheumatol 2018; 28:922-932. [DOI: 10.1080/14397595.2018.1431004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vasiliki Liakouli
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| | - Paola Cipriani
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| | - Paola Di Benedetto
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| | - Piero Ruscitti
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| | - Francesco Carubbi
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| | - Onorina Berardicurti
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| | - Noemi Panzera
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| | - Roberto Giacomelli
- Department of Biotechnological and Applied Clinical Science, Rheumatology Unit, School of Medicine, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
8
|
Zhao C, Isenberg JS, Popel AS. Transcriptional and Post-Transcriptional Regulation of Thrombospondin-1 Expression: A Computational Model. PLoS Comput Biol 2017; 13:e1005272. [PMID: 28045898 PMCID: PMC5207393 DOI: 10.1371/journal.pcbi.1005272] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/29/2016] [Indexed: 01/09/2023] Open
Abstract
Hypoxia is an important physiological stress signal that drives angiogenesis, the formation of new blood vessels. Besides an increase in the production of pro-angiogenic signals such as vascular endothelial growth factor (VEGF), hypoxia also stimulates the production of anti-angiogenic signals. Thrombospondin-1 (TSP-1) is one of the anti-angiogenic factors whose synthesis is driven by hypoxia. Cellular synthesis of TSP-1 is tightly regulated by different intermediate biomolecules including proteins that interact with hypoxia-inducible factors (HIFs), transcription factors that are activated by receptor and intracellular signaling, and microRNAs which are small non-coding RNA molecules that function in post-transcriptional modification of gene expression. Here we present a computational model that describes the mechanistic interactions between intracellular biomolecules and cooperation between signaling pathways that together make up the complex network of TSP-1 regulation both at the transcriptional and post-transcriptional level. Assisted by the model, we conduct in silico experiments to compare the efficacy of different therapeutic strategies designed to modulate TSP-1 synthesis in conditions that simulate tumor and peripheral arterial disease microenvironment. We conclude that TSP-1 production in endothelial cells depends on not only the availability of certain growth factors but also the fine-tuned signaling cascades that are initiated by hypoxia.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| | - Jeffrey S. Isenberg
- Vascular Medicine Institute, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aleksander S. Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
9
|
Raja J, Denton CP. Cytokines in the immunopathology of systemic sclerosis. Semin Immunopathol 2015; 37:543-57. [PMID: 26152640 DOI: 10.1007/s00281-015-0511-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023]
Abstract
Cytokines and growth factors are key regulators of immune activation, vascular alteration and excessive production of extracellular matrix which are hallmark events in the pathogenesis of systemic sclerosis (SSc). They modulate cell-cell and cell-matrix interactions. In particular, cytokines play a central role in the immunopathogenesis of SSc on the basis of molecular pathways which are complex and not completely understood. The majority of cytokines that may be involved in SSc pathogenesis have effect upon or are derived from cells of the immune system, including both the innate and adaptive compartments. Novel therapies that block key mediators that drive the fibrotic response are being developed and appear as potential therapeutic tools in the treatment of SSc, highlighting the importance for an effective therapy targeted towards the molecular and cellular pathways. This article reviews cytokine biology in that context, with particular emphasis on immunopathology of the disease, therapeutic targeting and the way that current or emerging treatments for SSc might impact on cytokine biology.
Collapse
Affiliation(s)
- Jasmin Raja
- Centre for Rheumatology and Connective Tissue Diseases, UCL Medical School, Royal Free Campus, London, NW3 2QG, UK
| | | |
Collapse
|
10
|
Stawski L, Haines P, Fine A, Rudnicka L, Trojanowska M. MMP-12 deficiency attenuates angiotensin II-induced vascular injury, M2 macrophage accumulation, and skin and heart fibrosis. PLoS One 2014; 9:e109763. [PMID: 25302498 PMCID: PMC4193823 DOI: 10.1371/journal.pone.0109763] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/09/2014] [Indexed: 12/20/2022] Open
Abstract
MMP-12, a macrophage-secreted elastase, is elevated in fibrotic diseases, including systemic sclerosis (SSc) and correlates with vasculopathy and fibrosis. The goal of this study was to investigate the role of MMP-12 in cardiac and cutaneous fibrosis induced by angiotensin II infusion. Ang II-induced heart and skin fibrosis was accompanied by a marked increase of vascular injury markers, including vWF, Thrombospondin-1 (TSP-1) and MMP-12, as well as increased number of PDGFRβ+ cells. Furthermore Ang II infusion led to an accumulation of macrophages (Mac3+) in the skin and in the perivascular and interstitial fibrotic regions of the heart. However, alternatively activated (Arg 1+) macrophages were mainly present in the Ang II infused mice and were localized to the perivascular heart regions and to the skin, but were not detected in the interstitial heart regions. Elevated expression of MMP-12 was primarily found in macrophages and endothelial cells (CD31+) cells, but MMP-12 was not expressed in the collagen producing cells. MMP-12 deficient mice (MMP12KO) showed markedly reduced expression of vWF, TSP1, and PDGFRβ around vessels and attenuation of dermal fibrosis, as well as the perivascular fibrosis in the heart. However, MMP-12 deficiency did not affect interstitial heart fibrosis, suggesting a heterogeneous nature of the fibrotic response in the heart. Furthermore, MMP-12 deficiency almost completely prevented accumulation of Arg 1+ cells, whereas the number of Mac3+ cells was partially reduced. Moreover production of profibrotic mediators such as PDGFBB, TGFβ1 and pSMAD2 in the skin and perivascular regions of the heart was also inhibited. Together, the results of this study show a close correlation between vascular injury markers, Arg 1+ macrophage accumulation and fibrosis and suggest an important role of MMP-12 in regulating these processes.
Collapse
Affiliation(s)
- Lukasz Stawski
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Paul Haines
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Alan Fine
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Lidia Rudnicka
- Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- Department of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Maria Trojanowska
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Ho YY, Lagares D, Tager AM, Kapoor M. Fibrosis--a lethal component of systemic sclerosis. Nat Rev Rheumatol 2014; 10:390-402. [PMID: 24752182 DOI: 10.1038/nrrheum.2014.53] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fibrosis is a pathological process characterized by excessive accumulation of connective tissue components in an organ or tissue. Fibrosis is produced by deregulated wound healing in response to chronic tissue injury or chronic inflammation, the hallmarks of rheumatic diseases. Progressive fibrosis, which distorts tissue architecture and results in progressive loss of organ function, is now recognized to be one of the major causes of morbidity and mortality in individuals with one of the most lethal rheumatic disease, systemic sclerosis (SSc). In this Review, we discuss the pathological role of fibrosis in SSc. We discuss the involvement of endothelium and pericyte activation, aberrant immune responses, endoplasmic reticulum stress and chronic tissue injury in the initiation of fibrosis in SSc. We then discuss fibroblast activation and myofibroblast differentiation that occurs in response to these initiating processes and is responsible for excessive accumulation of extracellular matrix. Finally, we discuss the chemical and mechanical signals that drive fibroblast activation and myofibroblast differentiation, which could serve as targets for new therapies for fibrosis in SSc.
Collapse
Affiliation(s)
- Yuen Yee Ho
- Shriners Hospital for Children, Division of Surgical Research, McGill University, 1529 Cedar Avenue, Montreal, QC H3G1A6, Canada
| | - David Lagares
- Pulmonary and Critical Care Unit and Centre for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Andrew M Tager
- Pulmonary and Critical Care Unit and Centre for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Mohit Kapoor
- The Toronto Western Research Institute, Division of Orthopaedics, Toronto Western Hospital, The University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
12
|
Benhamou Y, Bellien J, Armengol G, Gomez E, Richard V, Lévesque H, Joannidès R. [Assessment of endothelial function in autoimmune diseases]. Rev Med Interne 2014; 35:512-23. [PMID: 24412013 DOI: 10.1016/j.revmed.2013.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 11/07/2013] [Accepted: 12/02/2013] [Indexed: 11/15/2022]
Abstract
Numerous autoimmune-inflammatory rheumatic diseases have been associated with accelerated atherosclerosis or other types of vasculopathy leading to an increase in cardiovascular disease incidence. In addition to traditional cardiovascular risk factors, endothelial dysfunction is an important early event in the pathogenesis of atherosclerosis, contributing to plaque initiation and progression. Endothelial dysfunction is characterized by a shift of the actions of the endothelium toward reduced vasodilation, a proinflammatory and a proadhesive state, and prothrombic properties. Therefore, assessment of endothelial dysfunction targets this vascular phenotype using several biological markers as indicators of endothelial dysfunction. Measurements of soluble adhesion molecules (ICAM-1, VCAM-1, E-selectin), pro-thrombotic factors (thrombomodulin, von Willebrand factor, plasminogen activator inhibitor-1) and inflammatory cytokines are most often performed. Regarding the functional assessment of the endothelium, the flow-mediated dilatation of conduit arteries is a non-invasive method widely used in pathophysiological and interventional studies. In this review, we will briefly review the most relevant information upon endothelial dysfunction mechanisms and explorations. We will summarize the similarities and differences in the biological and functional assessments of the endothelium in different autoimmune diseases.
Collapse
Affiliation(s)
- Y Benhamou
- Département de médecine interne, CHU de Rouen, 1, rue de Germont, 76031 Rouen cedex, France; Service de pharmacologie, CHU de Rouen, 1, rue de Germont, 76031 Rouen cedex, France; Inserm U 1096, faculté de médecine de Rouen, 22, boulevard Gambetta, 76183 Rouen cedex, France.
| | - J Bellien
- Département de médecine interne, CHU de Rouen, 1, rue de Germont, 76031 Rouen cedex, France; Service de pharmacologie, CHU de Rouen, 1, rue de Germont, 76031 Rouen cedex, France
| | - G Armengol
- Département de médecine interne, CHU de Rouen, 1, rue de Germont, 76031 Rouen cedex, France
| | - E Gomez
- Inserm U 1096, faculté de médecine de Rouen, 22, boulevard Gambetta, 76183 Rouen cedex, France
| | - V Richard
- Inserm U 1096, faculté de médecine de Rouen, 22, boulevard Gambetta, 76183 Rouen cedex, France
| | - H Lévesque
- Département de médecine interne, CHU de Rouen, 1, rue de Germont, 76031 Rouen cedex, France; Inserm U 1096, faculté de médecine de Rouen, 22, boulevard Gambetta, 76183 Rouen cedex, France
| | - R Joannidès
- Service de pharmacologie, CHU de Rouen, 1, rue de Germont, 76031 Rouen cedex, France; Inserm U 1096, faculté de médecine de Rouen, 22, boulevard Gambetta, 76183 Rouen cedex, France
| |
Collapse
|
13
|
Age-associated induction of cell membrane CD47 limits basal and temperature-induced changes in cutaneous blood flow. Ann Surg 2013; 258:184-91. [PMID: 23275312 DOI: 10.1097/sla.0b013e31827e52e1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We tested the hypothesis that the matricellular protein thrombospondin-1 (TSP1), through binding to and activation of the cell receptor CD47, inhibits basal and thermal-mediated cutaneous blood flow. BACKGROUND Abnormal and decreased cutaneous blood flow in response to temperature changes or vasoactive agents is a feature of cardiovascular disease and aging. The reasons for decreased cutaneous blood flow remain incompletely understood. Furthermore, a role for matricellular proteins in the regulation skin blood flow has never been proposed. METHODS C57BL/6 wild type, TSP1-null, and CD47-null 12- and 72-week-old male mice underwent analysis of skin blood flow (SkBF) via laser Doppler in response to thermal stress and vasoactive challenge. RESULTS Young and aged TSP1- and CD47-null mice displayed enhanced basal and thermal sensitive SkBF changes compared with age-matched wild type controls. Nitric oxide-mediated increases in SkBF were also greater in null mice. TSP1 and CD47 were expressed in skin from young wild type mice, and both were significantly upregulated in aged animals. Tissue 3',5'-cyclic guanosine monophosphate, a potent vasodilator, was greater in skin samples from null mice compared with wild type regardless of age. Finally, treating wild type animals with a CD47 monoclonal antibody that inhibits TSP1 activation of CD47 enhanced SkBF in both young and aged animals. CONCLUSIONS These results suggest that secreted TSP1, via its cognate receptor CD47, acutely modulates SkBF. These data further support therapeutically targeting CD47 to mitigate age-associated loss of SkBF and maximize wound healing.
Collapse
|
14
|
Zeisberg M, Kalluri R. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am J Physiol Cell Physiol 2013; 304:C216-25. [PMID: 23255577 PMCID: PMC3566435 DOI: 10.1152/ajpcell.00328.2012] [Citation(s) in RCA: 350] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 12/20/2022]
Abstract
Fibrosis is a pathological scarring process that leads to destruction of organ architecture and impairment of organ function. Chronic loss of organ function in most organs, including bone marrow, heart, intestine, kidney, liver, lung, and skin, is associated with fibrosis, contributing to an estimated one third of natural deaths worldwide. Effective therapies to prevent or to even reverse existing fibrotic lesions are not yet available in any organ. There is hope that an understanding of common fibrosis pathways will lead to development of antifibrotic therapies that are effective in all of these tissues in the future. Here we review common and organ-specific pathways of tissue fibrosis.
Collapse
Affiliation(s)
- Michael Zeisberg
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany.
| | | |
Collapse
|
15
|
Murdaca G, Colombo BM, Cagnati P, Gulli R, Spanò F, Puppo F. Endothelial dysfunction in rheumatic autoimmune diseases. Atherosclerosis 2012; 224:309-317. [PMID: 22673743 DOI: 10.1016/j.atherosclerosis.2012.05.013] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 05/14/2012] [Accepted: 05/14/2012] [Indexed: 12/14/2022]
Abstract
Rheumatic autoimmune diseases have been associated with accelerated atherosclerosis and various types of vasculopathies. Atherosclerosis is an inflammatory condition which starts as a "response to injury" favoring endothelial dysfunction which is associated with increased expression of adhesion molecules, pro-inflammatory cytokines, pro-thrombotic factors, oxidative stress upregulation and abnormal vascular tone modulation. Endothelial dysfunction in rheumatic autoimmune diseases involves innate immune responses, including macrophages and dendritic cells expression of scavenger and toll-like receptors for modified or native LDL as well as neutrophil and complement activation, and dysregulation of adaptive immune responses, including proliferation of autoreactive T-helper-1 lymphocytes and defective function of dendritic and regulatory T cells. Specific differences for endothelial function among different disorders include: a) increased amounts of pro-atherogenic hormones, decreased amounts of anti-atherogenic hormones and increased insulin resistance in rheumatoid arthritis; b) autoantibodies production in systemic lupus erythematosus and antiphospholipid syndrome; c) smooth muscle cells proliferation, destruction of internal elastic lamina, fibrosis and coagulation and fibrinolytic system dysfunction in systemic sclerosis. Several self-antigens (i.e. high density lipoproteins, heat shock proteins, β2-glycoprotein1) and self-molecules modified by oxidative events (i.e. low density lipoproteins and oxidized hemoglobin) have been identified as targets of autoimmune responses. Endothelial dysfunction leads to accelerated atherosclerosis in rheumatoid arthritis, systemic lupus erythematosus and spondyloarthropaties whereas obliterative vasculopathy is associated with systemic sclerosis. In this paper, we will briefly review the most relevant information upon endothelial dysfunction and inflammatory mechanisms in atherosclerosis and we will summarize the similarities and differences in vascular disease patterns underlying different rheumatic autoimmune diseases.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, Viale Benedetto XV, n. 6, University of Genoa, 16132 Genoa, Italy.
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Cartilage is one of the very few naturally occurring avascular tissues where lack of angiogenesis is the guiding principle for its structure and function. This has attracted investigators who have sought to understand the biochemical basis for its avascular nature, hypothesising that it could be used in designing therapies for treating cancer and related malignancies in humans through antiangiogenic applications. Cartilage encompasses primarily a specialised extracellular matrix synthesised by chondrocytes that is both complex and unique as a result of the myriad molecules of which it is composed. Of these components, a few such as thrombospondin-1, chondromodulin-1, the type XVIII-derived endostatin, SPARC (secreted protein acidic and rich in cysteine) and the type II collagen-derived N-terminal propeptide (PIIBNP) have demonstrated antiangiogenic or antitumour properties in vitro and in vivo preclinical trials that involve several complicated mechanisms that are not completely understood. Thrombospondin-1, endostatin and the shark-cartilage-derived Neovastat preparation have also been investigated in human clinical trials to treat several different kinds of cancers, where, despite the tremendous success seen in preclinical trials, these molecules are yet to show success as anticancer agents. This review summarises the current state-of-the-art antiangiogenic characterisation of these molecules, highlights their most promising aspects and evaluates the future of these molecules in antiangiogenic applications.
Collapse
|
17
|
Masuda T, Muto S, Fujisawa G, Iwazu Y, Kimura M, Kobayashi T, Nonaka-Sarukawa M, Sasaki N, Watanabe Y, Shinohara M, Murakami T, Shimada K, Kobayashi E, Kusano E. Heart angiotensin II-induced cardiomyocyte hypertrophy suppresses coronary angiogenesis and progresses diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2012; 302:H1871-83. [PMID: 22389386 DOI: 10.1152/ajpheart.00663.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To examine whether and how heart ANG II influences the coordination between cardiomyocyte hypertrophy and coronary angiogenesis and contributes to the pathogenesis of diabetic cardiomyopathy, we used Spontaneously Diabetic Torii (SDT) rats treated without and with olmesartan medoxomil (an ANG II receptor blocker). In SDT rats, left ventricular (LV) ANG II, but not circulating ANG II, increased at 8 and 16 wk after diabetes onset. SDT rats developed LV hypertrophy and diastolic dysfunction at 8 wk, followed by LV systolic dysfunction at 16 wk, without hypertension. The SDT rat LV exhibited cardiomyocyte hypertrophy and increased hypoxia-inducible factor-1α expression at 8 wk and to a greater degree at 16 wk and interstitial fibrosis at 16 wk only. In SDT rats, coronary angiogenesis increased with enhanced capillary proliferation and upregulation of the angiogenic factor VEGF at 8 wk but decreased VEGF with enhanced capillary apoptosis and suppressed capillary proliferation despite the upregulation of VEGF at 16 wk. In SDT rats, the phosphorylation of VEGF receptor-2 increased at 8 wk alone, whereas the expression of the antiangiogenic factor thrombospondin-1 increased at 16 wk alone. All these events, except for hyperglycemia or blood pressure, were reversed by olmesartan medoxomil. These results suggest that LV ANG II in SDT rats at 8 and 16 wk induces cardiomyocyte hypertrophy without affecting hyperglycemia or blood pressure, which promotes and suppresses coronary angiogenesis, respectively, via VEGF and thrombospondin-1 produced from hypertrophied cardiomyocytes under chronic hypoxia. Thrombospondin-1 may play an important role in the progression of diabetic cardiomyopathy in this model.
Collapse
Affiliation(s)
- Takahiro Masuda
- Divisions of Nephrology, Department of Internal Medicine, Jichi Medical University, Yakushiji, Shimotsuke, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|