1
|
Feenstra HMA, van Dijk EHC, Cheung CMG, Ohno-Matsui K, Lai TYY, Koizumi H, Larsen M, Querques G, Downes SM, Yzer S, Breazzano MP, Subhi Y, Tadayoni R, Priglinger SG, Pauleikhoff LJB, Lange CAK, Loewenstein A, Diederen RMH, Schlingemann RO, Hoyng CB, Chhablani JK, Holz FG, Sivaprasad S, Lotery AJ, Yannuzzi LA, Freund KB, Boon CJF. Central serous chorioretinopathy: An evidence-based treatment guideline. Prog Retin Eye Res 2024; 101:101236. [PMID: 38301969 DOI: 10.1016/j.preteyeres.2024.101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Central serous chorioretinopathy (CSC) is a relatively common disease that causes vision loss due to macular subretinal fluid leakage and it is often associated with reduced vision-related quality of life. In CSC, the leakage of subretinal fluid through defects in the retinal pigment epithelial layer's outer blood-retina barrier appears to occur secondary to choroidal abnormalities and dysfunction. The treatment of CSC is currently the subject of controversy, although recent data obtained from several large randomized controlled trials provide a wealth of new information that can be used to establish a treatment algorithm. Here, we provide a comprehensive overview of our current understanding regarding the pathogenesis of CSC, current therapeutic strategies, and an evidence-based treatment guideline for CSC. In acute CSC, treatment can often be deferred for up to 3-4 months after diagnosis; however, early treatment with either half-dose or half-fluence photodynamic therapy (PDT) with the photosensitive dye verteporfin may be beneficial in selected cases. In chronic CSC, half-dose or half-fluence PDT, which targets the abnormal choroid, should be considered the preferred treatment. If PDT is unavailable, chronic CSC with focal, non-central leakage on angiography may be treated using conventional laser photocoagulation. CSC with concurrent macular neovascularization should be treated with half-dose/half-fluence PDT and/or intravitreal injections of an anti-vascular endothelial growth factor compound. Given the current shortage of verteporfin and the paucity of evidence supporting the efficacy of other treatment options, future studies-ideally, well-designed randomized controlled trials-are needed in order to evaluate new treatment options for CSC.
Collapse
Affiliation(s)
- Helena M A Feenstra
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Elon H C van Dijk
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Chui Ming Gemmy Cheung
- Singapore Eye Research Institution, Singapore National Eye Centre, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Timothy Y Y Lai
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, Kowloon, Hong Kong
| | - Hideki Koizumi
- Department of Ophthalmology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Michael Larsen
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark; Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Giuseppe Querques
- Department of Ophthalmology, University Vita-Salute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Susan M Downes
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Suzanne Yzer
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mark P Breazzano
- Retina-Vitreous Surgeons of Central New York, Liverpool, NY, USA; Department of Ophthalmology & Visual Sciences, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Yousif Subhi
- Department of Ophthalmology, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ramin Tadayoni
- Ophthalmology Department, AP-HP, Hôpital Lariboisière, Université de Paris, Paris, France
| | - Siegfried G Priglinger
- Department of Ophthalmology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Laurenz J B Pauleikhoff
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Clemens A K Lange
- Department of Ophthalmology, St. Franziskus Hospital, Muenster, Germany
| | - Anat Loewenstein
- Division of Ophthalmology, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Roselie M H Diederen
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Reinier O Schlingemann
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Ocular Angiogenesis Group, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jay K Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Sobha Sivaprasad
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Lawrence A Yannuzzi
- Vitreous Retina Macula Consultants of New York, New York, NY, USA; LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear, and Throat Hospital, New York, NY, USA; Department of Ophthalmology, New York University Grossman School of Medicine, New York, USA; Department of Ophthalmology, Manhattan Eye, Ear and Throat Hospital, New York, NY, USA
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, NY, USA; Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
van Dijk EHC, Boon CJF. Serous business: Delineating the broad spectrum of diseases with subretinal fluid in the macula. Prog Retin Eye Res 2021; 84:100955. [PMID: 33716160 DOI: 10.1016/j.preteyeres.2021.100955] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023]
Abstract
A wide range of ocular diseases can present with serous subretinal fluid in the macula and therefore clinically mimic central serous chorioretinopathy (CSC). In this manuscript, we categorise the diseases and conditions that are part of the differential diagnosis into 12 main pathogenic subgroups: neovascular diseases, vitelliform lesions, inflammatory diseases, ocular tumours, haematological malignancies, paraneoplastic syndromes, genetic diseases, ocular developmental anomalies, medication-related conditions and toxicity-related diseases, rhegmatogenous retinal detachment and tractional retinal detachment, retinal vascular diseases, and miscellaneous diseases. In addition, we describe 2 new clinical pictures associated with macular subretinal fluid accumulation, namely serous maculopathy with absence of retinal pigment epithelium (SMARPE) and serous maculopathy due to aspecific choroidopathy (SMACH). Differentiating between these various diseases and CSC can be challenging, and obtaining the correct diagnosis can have immediate therapeutic and prognostic consequences. Here, we describe the key differential diagnostic features of each disease within this clinical spectrum, including representative case examples. Moreover, we discuss the pathogenesis of each disease in order to facilitate the differentiation from typical CSC.
Collapse
Affiliation(s)
- Elon H C van Dijk
- Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Ungureanu E, Geamanu A, Careba I, Grecescu M, Gradinaru S. Angioid streaks - a rare cause of neovascular glaucoma. Case report. J Med Life 2014; 7 Spec No. 4:71-3. [PMID: 27057253 PMCID: PMC4813622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Rationale. Neovascular glaucoma is the type of glaucoma most refractory to treatment. The most frequent causes are those associated with retinal hypoxia, such as proliferative diabetic retinopathy, central retinal vein occlusion, branch retinal vein occlusion, central retinal arterial occlusion, ischemic ocular syndrome etc. Rare causes of neovascular glaucoma are multiple and are due to VEGF synthesis associated with chorioretinal inflammations or degenerations. We present a case with neovascular glaucoma associated with an extremely rare cause, angioid streaks Objective. The objective of our prsentation was to asses efficacy of the 5-FU associated trabeculectomy following bevacizumab intravitreal administration Methods and results. Case report of a 48 years old female patient which presented at the emergency room with painful red left eye. At presentation best corrected left eye visual acuity was 1/10, intraocular pressure was 36 mm Hg. Examination established the diagnosis of Neovascular glaucoma associated with angioid streaks. After intravenous Manitol, oral Acetazolamide and topical treatment with fixed combination timolol-brinzolamide, topical steroid and mydriatic intraocular pressure decreased. Intravitreal bevacizumab injection was performed, followed after 3 weeks by trabeculectomy. Discussion. Angioid streaks are an extremely rare cause of neovascular glaucoma. The treatment is similar to the treatment for other causes of neovascular glaucoma.
Collapse
Affiliation(s)
- E Ungureanu
- University of Medicine and Pharmacy "Carol Davila",University Emergency Hospital Bucharest, Romania – Department of Ophtalmology
| | - A Geamanu
- University of Medicine and Pharmacy "Carol Davila"
| | - I Careba
- University Emergency Hospital Bucharest, Romania – Department of Ophtalmology
| | - M Grecescu
- University Emergency Hospital Bucharest, Romania – Department of Ophtalmology
| | - S Gradinaru
- University of Medicine and Pharmacy "Carol Davila"
| |
Collapse
|