1
|
Bons J, Rose J, Zhang R, Burton JB, Carrico C, Verdin E, Schilling B. In-depth analysis of the Sirtuin 5-regulated mouse brain malonylome and succinylome using library-free data-independent acquisitions. Proteomics 2023; 23:e2100371. [PMID: 36479818 PMCID: PMC10363399 DOI: 10.1002/pmic.202100371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Post-translational modifications (PTMs) dynamically regulate proteins and biological pathways, typically through the combined effects of multiple PTMs. Lysine residues are targeted for various PTMs, including malonylation and succinylation. However, PTMs offer specific challenges to mass spectrometry-based proteomics during data acquisition and processing. Thus, novel and innovative workflows using data-independent acquisition (DIA) ensure confident PTM identification, precise site localization, and accurate and robust label-free quantification. In this study, we present a powerful approach that combines antibody-based enrichment with comprehensive DIA acquisitions and spectral library-free data processing using directDIA (Spectronaut). Identical DIA data can be used to generate spectral libraries and comprehensively identify and quantify PTMs, reducing the amount of enriched sample and acquisition time needed, while offering a fully automated workflow. We analyzed brains from wild-type and Sirtuin 5 (SIRT5)-knock-out mice, and discovered and quantified 466 malonylated and 2211 succinylated peptides. SIRT5 regulation remodeled the acylomes by targeting 164 malonylated and 578 succinylated sites. Affected pathways included carbohydrate and lipid metabolisms, synaptic vesicle cycle, and neurodegenerative diseases. We found 48 common SIRT5-regulated malonylation and succinylation sites, suggesting potential PTM crosstalk. This innovative and efficient workflow offers deeper insights into the mouse brain lysine malonylome and succinylome.
Collapse
Affiliation(s)
- Joanna Bons
- Buck Institute for Research on Aging, Novato, California, USA
| | - Jacob Rose
- Buck Institute for Research on Aging, Novato, California, USA
| | - Ran Zhang
- Buck Institute for Research on Aging, Novato, California, USA
| | - Jordan B Burton
- Buck Institute for Research on Aging, Novato, California, USA
| | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California, USA
| | | |
Collapse
|
2
|
Studying the Interactions of U24 from HHV-6 in Order to Further Elucidate Its Potential Role in MS. Viruses 2022; 14:v14112384. [PMID: 36366483 PMCID: PMC9696605 DOI: 10.3390/v14112384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 01/31/2023] Open
Abstract
A number of studies have suggested that human herpesvirus 6A (HHV-6A) may play a role in multiple sclerosis (MS). Three possible hypotheses have been investigated: (1) U24 from HHV-6A (U24-6A) mimics myelin basic protein (MBP) through analogous phosphorylation and interaction with Fyn-SH3; (2) U24-6A affects endocytic recycling by binding human neural precursor cell (NPC) expressed developmentally down-regulated protein 4-like WW3* domain (hNedd4L-WW3*); and (3) MS patients who express Killer Cell Immunoglobulin Like Receptor 2DL2 (KIR2DL2) on natural killer (NK) cells are more susceptible to HHV-6 infection. In this contribution, we examined the validity of these propositions by investigating the interactions of U24 from HHV-6B (U24-6B), a variant less commonly linked to MS, with Fyn-SH3 and hNedd4L-WW3* using heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) titrations and isothermal titration calorimetry (ITC). In addition, the importance of phosphorylation and the specific role of U24 in NK cell activation in MS patients were examined. Overall, the findings allowed us to shed light into the models linking HHV-6 to MS and the involvement of U24.
Collapse
|
3
|
Deconvolution of the MBP-Bri2 Interaction by a Yeast Two Hybrid System and Synergy of the AlphaFold2 and High Ambiguity Driven Protein-Protein Docking. CRYSTALS 2022. [DOI: 10.3390/cryst12020197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Myelin basic protein (MBP) is one of the key proteins in the development of multiple sclerosis (MS). However, very few intracellular MBP partners have been identified up to now. In order to find proteins interacting with MBP in the brain, an expression library from the human brain was screened using a yeast two-hybrid system. Here we showed that MBP interacts with the C-terminal 24-residue peptide of Integral transmembrane protein II associated with familial British and Danish dementia (ITM2B/Bri2 or Bri2). This peptide (Bri23R) was one residue longer than the known Bri23 peptide, which is cleaved from the C-terminus of Bri2 during its maturation in the Golgi and has physiological activity as a modulator of amyloid precursor protein processing. Since the spatial structures for both MBP and Bri2 were not known, we used computational methods of structural biology including an artificial intelligence system AlphaFold2 and high ambiguity driven protein-protein docking (HADDOCK 2.1) to gain a mechanistic explanation of the found protein-protein interaction and elucidate a possible structure of the complex of MBP with Bri23R peptide. As expected, MBP was mostly unstructured, although it has well-defined α-helical regions, while Bri23R forms a stable β-hairpin. Simulation of the interaction between MBP and Bri23R in two different environments, as parts of the two-hybrid system fusion proteins and in the form of single polypeptides, showed that MBP twists around Bri23R. The observed interaction results in the adjustment of the size of the internal space between MBP α-helices to the size of the β-hairpin of Bri23R. Since Bri23 is known to inhibit aggregation of amyloid oligomers, and the association of MBP to the inner leaflet of the membrane bilayer shares features with amyloid fibril formation, Bri23 may serve as a peptide chaperon for MBP, thus participating in myelin membrane assembly.
Collapse
|
4
|
Phongpreecha T, Gajera CR, Liu CC, Vijayaragavan K, Chang AL, Becker M, Fallahzadeh R, Fernandez R, Postupna N, Sherfield E, Tebaykin D, Latimer C, Shively CA, Register TC, Craft S, Montine KS, Fox EJ, Poston KL, Keene CD, Angelo M, Bendall SC, Aghaeepour N, Montine TJ. Single-synapse analyses of Alzheimer's disease implicate pathologic tau, DJ1, CD47, and ApoE. SCIENCE ADVANCES 2021; 7:eabk0473. [PMID: 34910503 PMCID: PMC8673771 DOI: 10.1126/sciadv.abk0473] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Synaptic molecular characterization is limited for Alzheimer’s disease (AD). Our newly invented mass cytometry–based method, synaptometry by time of flight (SynTOF), was used to measure 38 antibody probes in approximately 17 million single-synapse events from human brains without pathologic change or with pure AD or Lewy body disease (LBD), nonhuman primates (NHPs), and PS/APP mice. Synaptic molecular integrity in humans and NHP was similar. Although not detected in human synapses, Aβ was in PS/APP mice single-synapse events. Clustering and pattern identification of human synapses showed expected disease-specific differences, like increased hippocampal pathologic tau in AD and reduced caudate dopamine transporter in LBD, and revealed previously unidentified findings including increased hippocampal CD47 and lowered DJ1 in AD and higher ApoE in AD with dementia. Our results were independently supported by multiplex ion beam imaging of intact tissue. This highlights the higher depth and breadth of insight on neurodegenerative diseases obtainable through SynTOF.
Collapse
Affiliation(s)
- Thanaphong Phongpreecha
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | | | - Candace C. Liu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Alan L. Chang
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Martin Becker
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Ramin Fallahzadeh
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Nadia Postupna
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Emily Sherfield
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Dmitry Tebaykin
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Caitlin Latimer
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Carol A. Shively
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Thomas C. Register
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Suzanne Craft
- Department of Internal Medicine–Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Edward J. Fox
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Kathleen L. Poston
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - C. Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Michael Angelo
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Sean C. Bendall
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Thomas J. Montine
- Department of Pathology, Stanford University, Stanford, CA, USA
- Corresponding author.
| |
Collapse
|
5
|
Smirnova EV, Rakitina TV, Ziganshin RH, Arapidi GP, Saratov GA, Kudriaeva AA, Belogurov AA. Comprehensive Atlas of the Myelin Basic Protein Interaction Landscape. Biomolecules 2021; 11:1628. [PMID: 34827627 PMCID: PMC8615356 DOI: 10.3390/biom11111628] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Intrinsically disordered myelin basic protein (MBP) is one of the key autoantigens in autoimmune neurodegeneration and multiple sclerosis particularly. MBP is highly positively charged and lacks distinct structure in solution and therefore its intracellular partners are still mostly enigmatic. Here we used combination of formaldehyde-induced cross-linking followed by immunoprecipitation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to elucidate the interaction network of MBP in mammalian cells and provide the list of potential MBP interacting proteins. Our data suggest that the largest group of MBP-interacting proteins belongs to cellular proteins involved in the protein translation machinery, as well as in the spatial and temporal regulation of translation. MBP interacts with core ribosomal proteins, RNA helicase Ddx28 and RNA-binding proteins STAU1, TDP-43, ADAR-1 and hnRNP A0, which are involved in various stages of RNA biogenesis and processing, including specific maintaining MBP-coding mRNA. Among MBP partners we identified CTNND1, which has previously been shown to be necessary for myelinating Schwann cells for cell-cell interactions and the formation of a normal myelin sheath. MBP binds proteins MAGEB2/D2 associated with neurotrophin receptor p75NTR, involved in pathways that promote neuronal survival and neuronal death. Finally, we observed that MBP interacts with RNF40-a component of heterotetrameric Rnf40/Rnf20 E3 ligase complex, recruited by Egr2, which is the central transcriptional regulator of peripheral myelination. Concluding, our data suggest that MBP may be more actively involved in myelination not only as a main building block but also as a self-regulating element.
Collapse
Affiliation(s)
- Evgeniya V. Smirnova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Tatiana V. Rakitina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Georgij P. Arapidi
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Moscow Region, Russia
| | - George A. Saratov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Moscow Region, Russia
| | - Anna A. Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia
| |
Collapse
|
6
|
Tahir U, Hussam A, Roy P, Hashmi I. Noncovalent Association and Partitioning of Some Perfume Components at Infinite Dilution with Myelin Basic Protein Pseudophase in Normal Saline. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4793-4801. [PMID: 33851853 DOI: 10.1021/acs.langmuir.0c03475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Myelin basic protein (MBP), one of the major protein constituents of the myelin sheath, possesses unique ligand-binding features. We present a novel equilibrium headspace gas chromatographic technique to examine the thermodynamics of noncovalent interactions between common perfume components: Lilial, Hedione, Hexylcinnamic aldehyde, and Versalide with MBP monomers and its hexameric MBP-pseudophase. A general theoretical model is used to calculate the critical aggregation concentration (cac) of MBP, perfume component binding constants with monomeric MBP, K11, and MBP as pseudophase, Kn1, and free energies for perfume component binding with monomeric MBP, ΔGb,11, and MBP as pseudophase, ΔGb,n1. In addition, the pseudophase-water partition coefficients, Kx, the free energies of transfer of perfume from bulk water to the MBP-pseudophase, ΔGt, and the intra-aggregate activity coefficients, γm∞, at infinite dilution were also determined. The cac value measured by the method of fractional distribution is a unique and precise approach in understanding the aggregation phenomenon. Within the experimental error, the 1:1 binding free energies did not differ by more than 1 kJ/mol among the perfume components but favored the MBP pseudophase binding by 6 kJ/mol. Therefore, that protein aggregation can enhance the binding of small molecules is probably a general conclusion. While the magnitudes of K11, Kn1, ΔGb, Kx, and ΔGt show weak trends, the γm∞ values show a strong and distinct trend in interaction, spanning 4 orders of magnitude among the perfume components.
Collapse
Affiliation(s)
| | | | | | - Irina Hashmi
- Department of Information Science and Technology, George Mason University, Fairfax, Virginia 22030, United States
| |
Collapse
|
7
|
Raasakka A, Kursula P. Flexible Players within the Sheaths: The Intrinsically Disordered Proteins of Myelin in Health and Disease. Cells 2020; 9:cells9020470. [PMID: 32085570 PMCID: PMC7072810 DOI: 10.3390/cells9020470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023] Open
Abstract
Myelin ensheathes selected axonal segments within the nervous system, resulting primarily in nerve impulse acceleration, as well as mechanical and trophic support for neurons. In the central and peripheral nervous systems, various proteins that contribute to the formation and stability of myelin are present, which also harbor pathophysiological roles in myelin disease. Many myelin proteins have common attributes, including small size, hydrophobic segments, multifunctionality, longevity, and regions of intrinsic disorder. With recent advances in protein biophysical characterization and bioinformatics, it has become evident that intrinsically disordered proteins (IDPs) are abundant in myelin, and their flexible nature enables multifunctionality. Here, we review known myelin IDPs, their conservation, molecular characteristics and functions, and their disease relevance, along with open questions and speculations. We place emphasis on classifying the molecular details of IDPs in myelin, and we correlate these with their various functions, including susceptibility to post-translational modifications, function in protein–protein and protein–membrane interactions, as well as their role as extended entropic chains. We discuss how myelin pathology can relate to IDPs and which molecular factors are potentially involved.
Collapse
Affiliation(s)
- Arne Raasakka
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90220 Oulu, Finland
- Correspondence:
| |
Collapse
|
8
|
Kudriaeva A, Kuzina ES, Zubenko O, Smirnov IV, Belogurov A. Charge‐mediated proteasome targeting. FASEB J 2019; 33:6852-6866. [DOI: 10.1096/fj.201802237r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
| | - Ekaterina S. Kuzina
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
| | - Oleg Zubenko
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
| | - Ivan V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
- Kazan Federal UniversityKazanRussian Federation
| | - Alexey Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
- Department of Fundamental MedicineLomonosov Moscow State UniversityMoscowRussian Federation
| |
Collapse
|
9
|
Bessonov K, Vassall KA, Harauz G. Docking and molecular dynamics simulations of the Fyn-SH3 domain with free and phospholipid bilayer-associated 18.5-kDa myelin basic protein (MBP)-Insights into a noncanonical and fuzzy interaction. Proteins 2017; 85:1336-1350. [PMID: 28380689 DOI: 10.1002/prot.25295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/03/2017] [Accepted: 03/27/2017] [Indexed: 01/06/2023]
Abstract
The molecular details of the association between the human Fyn-SH3 domain, and the fragment of 18.5-kDa myelin basic protein (MBP) spanning residues S38-S107 (denoted as xα2-peptide, murine sequence numbering), were studied in silico via docking and molecular dynamics over 50-ns trajectories. The results show that interaction between the two proteins is energetically favorable and heavily dependent on the MBP proline-rich region (P93-P98) in both aqueous and membrane environments. In aqueous conditions, the xα2-peptide/Fyn-SH3 complex adopts a "sandwich""-like structure. In the membrane context, the xα2-peptide interacts with the Fyn-SH3 domain via the proline-rich region and the β-sheets of Fyn-SH3, with the latter wrapping around the proline-rich region in a form of a clip. Moreover, the simulations corroborate prior experimental evidence of the importance of upstream segments beyond the canonical SH3-ligand. This study thus provides a more-detailed glimpse into the context-dependent interaction dynamics and importance of the β-sheets in Fyn-SH3 and proline-rich region of MBP. Proteins 2017; 85:1336-1350. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kyrylo Bessonov
- Systems and Modeling Unit, Montefiore Institute, Université de Liège, Quartier Polytech 1, Allée de la Découverte 10, Liège, 4000, Belgium
| | - Kenrick A Vassall
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group, and Collaborative Program in Neuroscience, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group, and Collaborative Program in Neuroscience, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
10
|
Abstract
Abstract
There are numerous biomarkers of central and peripheral nervous system damage described in human and veterinary medicine. Many of these are already used as tools in the diagnosis of human neurological disorders, and many are investigated in regard to their use in small and large animal veterinary medicine. The following review presents the current knowledge about the application of cell-type (glial fibrillary acidic protein, neurofilament subunit NF-H, myelin basic protein) and central nervous system specific proteins (S100B, neuron specific enolase, tau protein, alpha II spectrin, ubiquitin carboxy-terminal hydrolase L1, creatine kinase BB) present in the cerebrospinal fluid and/or serum of animals in the diagnosis of central or peripheral nervous system damage in veterinary medicine.
Collapse
Affiliation(s)
- Marta Płonek
- Department of Internal Diseases with Clinic for Diseases of Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw
| | - Marcin Wrzosek
- Department of Internal Diseases with Clinic for Diseases of Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw
| | - Józef Nicpoń
- Department of Internal Diseases with Clinic for Diseases of Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw
- Centre for Experimental Diagnostics and Biomedical Innovations, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw
| |
Collapse
|
11
|
Glu-tubulin is a marker for Schwann cells and can distinguish between schwannomas and neurofibromas. Histochem Cell Biol 2016; 146:467-77. [PMID: 27278446 DOI: 10.1007/s00418-016-1455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
Schwann cells generate myelin sheaths around the axons of the peripheral nervous system, thus facilitating efficient nerve impulse propagation. Two main tumor types can arise from peripheral nerves, schwannomas and neurofibromas, which are sometimes difficult to distinguish and may require the use of diagnostic biomarkers. Here, we characterize a new marker for Schwann cells and its potential use as a diagnostic marker for schwannomas. Immunohistochemistry for Glu-tubulin, a posttranslational modification of α-tubulin, was performed in mouse and human tissues. This technique labels Schwann cells but not oligodendrocytes. All peripheral nerves were immunoreactive for this antibody, including large nerve trunks, thin myelinated nerves, as well as the myenteric and submucous plexus of the digestive tract. In the mouse brain, many neurons were immunoreactive for Glu-tubulin but oligodendrocytes were negative. During embryo development, immunoreactive nerves were already found at E10. In Schwann cells, the staining is restricted to the myelin sheaths and is not present in the perinuclear cytoplasm or the Ranvier nodes. Primary cultures of fibroblasts and Schwann cells were established from mouse sciatic nerves, and Western blot analysis showed that Glu-tubulin immunoreactivity was found in the Schwann cells but not in the fibroblasts. Clinical specimens of schwannomas (n = 20) and neurofibromas (n = 20) were stained with anti-Glu-tubulin antibodies. Schwannomas presented a strong staining in all tumor cells, whereas neurofibromas had a light speckled staining pattern, easily distinguishable from the one found in schwannomas. In conclusion, Glu-tubulin can be used as a marker of Schwann cells and can help in diagnosing peripheral nerve tumors.
Collapse
|
12
|
MyelStones: the executive roles of myelin basic protein in myelin assembly and destabilization in multiple sclerosis. Biochem J 2015; 472:17-32. [DOI: 10.1042/bj20150710] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The classic isoforms of myelin basic protein (MBP, 14–21.5 kDa) are essential to formation of the multilamellar myelin sheath of the mammalian central nervous system (CNS). The predominant 18.5-kDa isoform links together the cytosolic surfaces of oligodendrocytes, but additionally participates in cytoskeletal turnover and membrane extension, Fyn-mediated signalling pathways, sequestration of phosphoinositides and maintenance of calcium homoeostasis. All MBP isoforms are intrinsically disordered proteins (IDPs) that interact via molecular recognition fragments (MoRFs), which thereby undergo local disorder-to-order transitions. Their conformations and associations are modulated by environment and by a dynamic barcode of post-translational modifications, particularly phosphorylation by mitogen-activated and other protein kinases and deimination [a hallmark of demyelination in multiple sclerosis (MS)]. The MBPs are thus to myelin what basic histones are to chromatin. Originally thought to be merely structural proteins forming an inert spool, histones are now known to be dynamic entities involved in epigenetic regulation and diseases such as cancer. Analogously, the MBPs are not mere adhesives of compact myelin, but active participants in oligodendrocyte proliferation and in membrane process extension and stabilization during myelinogenesis. A central segment of these proteins is pivotal in membrane-anchoring and SH3 domain (Src homology 3) interaction. We discuss in the present review advances in our understanding of conformational conversions of this classic basic protein upon membrane association, including new thermodynamic analyses of transitions into different structural ensembles and how a shift in the pattern of its post-translational modifications is associated with the pathogenesis and potentially onset of demyelination in MS.
Collapse
|
13
|
Vassall KA, Jenkins AD, Bamm VV, Harauz G. Thermodynamic Analysis of the Disorder-to-α-Helical Transition of 18.5-kDa Myelin Basic Protein Reveals an Equilibrium Intermediate Representing the Most Compact Conformation. J Mol Biol 2015; 427:1977-92. [DOI: 10.1016/j.jmb.2015.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/11/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
|
14
|
Zienowicz A, Bamm VV, Vassall KA, Harauz G. Myelin basic protein is a glial microtubule-associated protein – Characterization of binding domains, kinetics of polymerization, and regulation by phosphorylation and a lipidic environment. Biochem Biophys Res Commun 2015; 461:136-41. [DOI: 10.1016/j.bbrc.2015.03.181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 03/31/2015] [Indexed: 12/12/2022]
|
15
|
The proline-rich region of 18.5 kDa myelin basic protein binds to the SH3-domain of Fyn tyrosine kinase with the aid of an upstream segment to form a dynamic complex in vitro. Biosci Rep 2014; 34:e00157. [PMID: 25343306 PMCID: PMC4266924 DOI: 10.1042/bsr20140149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The intrinsically disordered 18.5 kDa classic isoform of MBP (myelin basic protein) interacts with Fyn kinase during oligodendrocyte development and myelination. It does so primarily via a central proline-rich SH3 (Src homology 3) ligand (T92–R104, murine 18.5 kDa MBP sequence numbering) that is part of a molecular switch due to its high degree of conservation and modification by MAP (mitogen-activated protein) and other kinases, especially at residues T92 and T95. Here, we show using co-transfection experiments of an early developmental oligodendroglial cell line (N19) that an MBP segment upstream of the primary ligand is involved in MBP–Fyn–SH3 association in cellula. Using solution NMR spectroscopy in vitro, we define this segment to comprise MBP residues (T62–L68), and demonstrate further that residues (V83–P93) are the predominant SH3-target, assessed by the degree of chemical shift change upon titration. We show by chemical shift index analysis that there is no formation of local poly-proline type II structure in the proline-rich segment upon binding, and by NOE (nuclear Overhauser effect) and relaxation measurements that MBP remains dynamic even while complexed with Fyn–SH3. The association is a new example first of a non-canonical SH3-domain interaction and second of a fuzzy MBP complex. MBP interacts with Fyn kinase during oligodendrocyte development and myelination. We show that there is no binding-induced PPII formation in the primary ligand segment, and that a region upstream is required for in vitro interaction.
Collapse
|
16
|
Glatiramer acetate and nanny proteins restrict access of the multiple sclerosis autoantigen myelin basic protein to the 26S proteasome. BIOMED RESEARCH INTERNATIONAL 2014; 2014:926394. [PMID: 25276831 PMCID: PMC4172982 DOI: 10.1155/2014/926394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/13/2014] [Accepted: 08/16/2014] [Indexed: 12/23/2022]
Abstract
We recently showed that myelin basic protein (MBP) is hydrolyzed by 26S proteasome without ubiquitination. The previously suggested concept of charge-mediated interaction between MBP and the proteasome led us to attempt to compensate or mimic its positive charge to inhibit proteasomal degradation. We demonstrated that negatively charged actin and calmodulin (CaM), as well as basic histone H1.3, inhibit MBP hydrolysis by competing with the proteasome and MBP, respectively, for binding their counterpart. Interestingly, glatiramer acetate (GA), which is used to treat multiple sclerosis (MS) and is structurally similar to MBP, inhibits intracellular and in vitro proteasome-mediated MBP degradation. Therefore, the data reported in this study may be important for myelin biogenesis in both the normal state and pathophysiological conditions.
Collapse
|