1
|
Mukherjee D, Maiti S, Gouda PK, Sharma R, Roy P, Bhattacharyya D. RNABPDB: Molecular Modeling of RNA Structure-From Base Pair Analysis in Crystals to Structure Prediction. Interdiscip Sci 2022; 14:759-774. [PMID: 35705797 DOI: 10.1007/s12539-022-00528-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The stable three-dimensional structure of RNA is known to play several important biochemical roles, from post-transcriptional gene regulation to enzymatic action. These structures contain double-helical regions, which often have different types of non-canonical base pairs in addition to Watson-Crick base pairs. Hence, it is important to study their structures from experimentally obtained or even predicted ones, to understand their role, or to develop a drug against the potential targets. Molecular Modeling of RNA double helices containing non-canonical base pairs is a difficult process, particularly due to the unavailability of structural features of non-Watson-Crick base pairs. Here we show a composite web-server with an associated database that allows one to generate the structure of RNA double helix containing non-canonical base pairs using consensus parameters obtained from the database. The database classification is followed by an evaluation of the central tendency of the structural parameters as well as a quantitative estimation of interaction strengths. These parameters are used to construct three-dimensional structures of double helices composed of Watson-Crick and/or non-canonical base pairs. Our benchmark study to regenerate double-helical fragments of many experimentally derived RNA structures indicate very high accuracy. This composite server is expected to be highly useful in understanding functions of various pre-miRNA by modeling structures of the molecules and estimating binding efficiency. The database can be accessed from http://hdrnas.saha.ac.in/rnabpdb .
Collapse
Affiliation(s)
- Debasish Mukherjee
- Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| | - Satyabrata Maiti
- Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhaba National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Prasanta Kumar Gouda
- Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Richa Sharma
- Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Parthajit Roy
- Department of Computer Science, The University of Burdwan, Golapbag, Burdwan, 713104, India
| | - Dhananjay Bhattacharyya
- Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhaba National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
2
|
Computational and NMR studies of RNA duplexes with an internal pseudouridine-adenosine base pair. Sci Rep 2019; 9:16278. [PMID: 31700156 PMCID: PMC6838189 DOI: 10.1038/s41598-019-52637-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 10/03/2019] [Indexed: 01/28/2023] Open
Abstract
Pseudouridine (Ψ) is the most common chemical modification present in RNA. In general, Ψ increases the thermodynamic stability of RNA. However, the degree of stabilization depends on the sequence and structural context. To explain experimentally observed sequence dependence of the effect of Ψ on the thermodynamic stability of RNA duplexes, we investigated the structure, dynamics and hydration of RNA duplexes with an internal Ψ-A base pair in different nearest-neighbor sequence contexts. The structures of two RNA duplexes containing 5′-GΨC/3′-CAG and 5′-CΨG/3′-GAC motifs were determined using NMR spectroscopy. To gain insight into the effect of Ψ on duplex dynamics and hydration, we performed molecular dynamics (MD) simulations of RNA duplexes with 5′-GΨC/3′-CAG, 5′-CΨG/3′-GAC, 5′-AΨU/3′-UAA and 5′-UΨA/3′-AAU motifs and their unmodified counterparts. Our results showed a subtle impact from Ψ modification on the structure and dynamics of the RNA duplexes studied. The MD simulations confirmed the change in hydration pattern when U is replaced with Ψ. Quantum chemical calculations showed that the replacement of U with Ψ affected the intrinsic stacking energies at the base pair steps depending on the sequence context. The calculated intrinsic stacking energies help to explain the experimentally observed sequence dependent changes in the duplex stability from Ψ modification.
Collapse
|
3
|
Mukherjee D, Bhattacharyya D. Intrinsic structural variability in GNRA-like tetraloops: insight from molecular dynamics simulation. J Mol Model 2017; 23:300. [DOI: 10.1007/s00894-017-3470-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
|
4
|
Warden MS, Tonelli M, Cornilescu G, Liu D, Hopersberger LJ, Ponniah K, Pascal SM. Structure of RNA Stem Loop B from the Picornavirus Replication Platform. Biochemistry 2017; 56:2549-2557. [PMID: 28459542 DOI: 10.1021/acs.biochem.7b00141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The presumptive RNA cloverleaf at the start of the 5'-untranslated region of the picornavirus genome is an essential element in replication. Stem loop B (SLB) of the cloverleaf is a recognition site for the host polyC-binding protein, which initiates a switch from translation to replication. Here we present the solution structure of human rhinovirus isotype 14 SLB using nuclear magnetic resonance spectroscopy. SLB adopts a predominantly A-form helical structure. The stem contains five Watson-Crick base pairs and one wobble base pair and is capped by an eight-nucleotide loop. The wobble base pair introduces perturbations into the helical parameters but does not appear to introduce flexibility. However, the helix major groove appears to be accessible. Flexibility is seen throughout the loop and in the terminal nucleotides. The pyrimidine-rich region of the loop, the apparent recognition site for the polyC-binding protein, is the most disordered region of the structure.
Collapse
Affiliation(s)
- Meghan S Warden
- Department of Chemistry and Biochemistry, Old Dominion University , Norfolk, Virginia 23529, United States
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Gabriel Cornilescu
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Dong Liu
- Department of Chemistry and Biochemistry, Old Dominion University , Norfolk, Virginia 23529, United States
| | - Lorelei J Hopersberger
- Department of Chemistry and Biochemistry, Old Dominion University , Norfolk, Virginia 23529, United States
| | - Komala Ponniah
- Department of Chemistry and Biochemistry, Old Dominion University , Norfolk, Virginia 23529, United States
| | - Steven M Pascal
- Department of Chemistry and Biochemistry, Old Dominion University , Norfolk, Virginia 23529, United States
| |
Collapse
|
5
|
RNAHelix: computational modeling of nucleic acid structures with Watson–Crick and non-canonical base pairs. J Comput Aided Mol Des 2017; 31:219-235. [DOI: 10.1007/s10822-016-0007-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/29/2016] [Indexed: 12/11/2022]
|
6
|
Maiti S, Bhattacharyya D. Stacking interactions involving non-Watson–Crick basepairs: dispersion corrected density functional theory studies. Phys Chem Chem Phys 2017; 19:28718-28730. [DOI: 10.1039/c7cp04904h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stacking interactions between a non Watson–Crick G:A S:HT basepair and C:G basepair is predicted in terms of roll, twist and slide basepair step parameters using DFT-D augmented with coarse-grain energy penalty for sugar–phosphate backbone.
Collapse
Affiliation(s)
- Satyabrata Maiti
- Computational Science Division
- Saha Institute of Nuclear Physics
- Kolkata 700064
- India
- Homi Bhaba National Institute
| | - Dhananjay Bhattacharyya
- Computational Science Division
- Saha Institute of Nuclear Physics
- Kolkata 700064
- India
- Homi Bhaba National Institute
| |
Collapse
|
7
|
Mukherjee S, Kailasam S, Bansal M, Bhattacharyya D. Stacking interactions in RNA and DNA: Roll-slide energy hyperspace for ten unique dinucleotide steps. Biopolymers 2016; 103:134-47. [PMID: 25257334 DOI: 10.1002/bip.22566] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 12/15/2022]
Abstract
Understanding dinucleotide sequence directed structures of nuleic acids and their variability from experimental observation remained ineffective due to unavailability of statistically meaningful data. We have attempted to understand this from energy scan along twist, roll, and slide degrees of freedom which are mostly dependent on dinucleotide sequence using ab initio density functional theory. We have carried out stacking energy analysis in these dinucleotide parameter phase space for all ten unique dinucleotide steps in DNA and RNA using DFT-D by ωB97X-D/6-31G(2d,2p), which appears to satisfactorily explain conformational preferences for AU/AU step in our recent study. We show that values of roll, slide, and twist of most of the dinucleotide sequences in crystal structures fall in the low energy region. The minimum energy regions with large twist values are associated with the roll and slide values of B-DNA, whereas, smaller twist values correspond to higher stability to RNA and A-DNA like conformations. Incorporation of solvent effect by CPCM method could explain the preference shown by some sequences to occur in B-DNA or A-DNA conformations. Conformational preference of BII sub-state in B-DNA is preferentially displayed mainly by pyrimidine-purine steps and partly by purine-purine steps. The purine-pyrimidine steps show largest effect of 5-methyl group of thymine in stacking energy and the introduction of solvent reduces this effect significantly. These predicted structures and variabilities can explain the effect of sequence on DNA and RNA functionality.
Collapse
Affiliation(s)
- Sanchita Mukherjee
- Computational Science Division, Saha Institute of Nuclear Physics, Kolkata, 700064, West Bengal, India
| | | | | | | |
Collapse
|
8
|
Mondal M, Halder S, Chakrabarti J, Bhattacharyya D. Hybrid simulation approach incorporating microscopic interaction along with rigid body degrees of freedom for stacking between base pairs. Biopolymers 2015; 105:212-26. [PMID: 26600167 DOI: 10.1002/bip.22787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/19/2015] [Accepted: 11/17/2015] [Indexed: 11/07/2022]
Abstract
Stacking interaction between the aromatic heterocyclic bases plays an important role in the double helical structures of nucleic acids. Considering the base as rigid body, there are total of 18 degrees of freedom of a dinucleotide step. Some of these parameters show sequence preferences, indicating that the detailed atomic interactions are important in the stacking. Large variants of non-canonical base pairs have been seen in the crystallographic structures of RNA. However, their stacking preferences are not thoroughly deciphered yet from experimental results. The current theoretical approaches use either the rigid body degrees of freedom where the atomic information are lost or computationally expensive all atom simulations. We have used a hybrid simulation approach incorporating Monte-Carlo Metropolis sampling in the hyperspace of 18 stacking parameters where the interaction energies using AMBER-parm99bsc0 and CHARMM-36 force-fields were calculated from atomic positions. We have also performed stacking energy calculations for structures from Monte-Carlo ensemble by Dispersion corrected density functional theory. The available experimental data with Watson-Crick base pairs are compared to establish the validity of the method. Stacking interaction involving A:U and G:C base pairs with non-canonical G:U base pairs also were calculated and showed that these structures were also sequence dependent. This approach could be useful to generate multiscale modeling of nucleic acids in terms of coarse-grained parameters where the atomic interactions are preserved. This method would also be useful to predict structure and dynamics of different base pair steps containing non Watson-Crick base pairs, as found often in the non-coding RNA structures. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 212-226, 2016.
Collapse
Affiliation(s)
- Manas Mondal
- Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700 064, India
| | - Sukanya Halder
- Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700 064, India
| | - Jaydeb Chakrabarti
- Department of Chemical, Biological and Macro-Molecular Sciences, S.N. Bose National Center for Basic Sciences, Sector III, Salt Lake, Kolkata, 700 098, India
| | - Dhananjay Bhattacharyya
- Computational Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700 064, India
| |
Collapse
|
9
|
Mondal M, Mukherjee S, Halder S, Bhattacharyya D. Stacking geometry for non-canonical G:U wobble base pair containing dinucleotide sequences in RNA: dispersion-corrected DFT-D study. Biopolymers 2015; 103:328-38. [DOI: 10.1002/bip.22616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/01/2015] [Accepted: 01/08/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Manas Mondal
- Computational Science Division; Saha Institute of Nuclear Physics; 1/AF Bidhannagar Kolkata 700064 India
| | - Sanchita Mukherjee
- Computational Science Division; Saha Institute of Nuclear Physics; 1/AF Bidhannagar Kolkata 700064 India
| | - Sukanya Halder
- Computational Science Division; Saha Institute of Nuclear Physics; 1/AF Bidhannagar Kolkata 700064 India
| | - Dhananjay Bhattacharyya
- Computational Science Division; Saha Institute of Nuclear Physics; 1/AF Bidhannagar Kolkata 700064 India
| |
Collapse
|
10
|
Bhattacharya S, Mittal S, Panigrahi S, Sharma P, S P P, Paul R, Halder S, Halder A, Bhattacharyya D, Mitra A. RNABP COGEST: a resource for investigating functional RNAs. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav011. [PMID: 25776022 PMCID: PMC4360618 DOI: 10.1093/database/bav011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Structural bioinformatics of RNA has evolved mainly in response to the rapidly accumulating evidence that non-(protein)-coding RNAs (ncRNAs) play critical roles in gene regulation and development. The structures and functions of most ncRNAs are however still unknown. Most of the available RNA structural databases rely heavily on known 3D structures, and contextually correlate base pairing geometry with actual 3D RNA structures. None of the databases provide any direct information about stabilization energies. However, the intrinsic interaction energies of constituent base pairs can provide significant insights into their roles in the overall dynamics of RNA motifs and structures. Quantum mechanical (QM) computations provide the only approach toward their accurate quantification and characterization. ‘RNA Base Pair Count, Geometry and Stability’ (http://bioinf.iiit.ac.in/RNABPCOGEST) brings together information, extracted from literature data, regarding occurrence frequency, experimental and quantum chemically optimized geometries, and computed interaction energies, for non-canonical base pairs observed in a non-redundant dataset of functional RNA structures. The database is designed to enable the QM community, on the one hand, to identify appropriate biologically relevant model systems and also enable the biology community to easily sift through diverse computational results to gain theoretical insights which could promote hypothesis driven biological research. Database URL:http://bioinf.iiit.ac.in/RNABPCOGEST
Collapse
Affiliation(s)
- Sohini Bhattacharya
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, and Computational Science Division, Saha Institute of Nuclear Physics (SINP), 1/AF Bidhannagar, Kolkata 700064, India
| | - Shriyaa Mittal
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, and Computational Science Division, Saha Institute of Nuclear Physics (SINP), 1/AF Bidhannagar, Kolkata 700064, India
| | - Swati Panigrahi
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, and Computational Science Division, Saha Institute of Nuclear Physics (SINP), 1/AF Bidhannagar, Kolkata 700064, India
| | - Purshotam Sharma
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, and Computational Science Division, Saha Institute of Nuclear Physics (SINP), 1/AF Bidhannagar, Kolkata 700064, India
| | - Preethi S P
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, and Computational Science Division, Saha Institute of Nuclear Physics (SINP), 1/AF Bidhannagar, Kolkata 700064, India
| | - Rahul Paul
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, and Computational Science Division, Saha Institute of Nuclear Physics (SINP), 1/AF Bidhannagar, Kolkata 700064, India
| | - Sukanya Halder
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, and Computational Science Division, Saha Institute of Nuclear Physics (SINP), 1/AF Bidhannagar, Kolkata 700064, India
| | - Antarip Halder
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, and Computational Science Division, Saha Institute of Nuclear Physics (SINP), 1/AF Bidhannagar, Kolkata 700064, India
| | - Dhananjay Bhattacharyya
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, and Computational Science Division, Saha Institute of Nuclear Physics (SINP), 1/AF Bidhannagar, Kolkata 700064, India
| | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, and Computational Science Division, Saha Institute of Nuclear Physics (SINP), 1/AF Bidhannagar, Kolkata 700064, India
| |
Collapse
|
11
|
Analysis of stacking overlap in nucleic acid structures: algorithm and application. J Comput Aided Mol Des 2014; 28:851-67. [DOI: 10.1007/s10822-014-9767-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
|