1
|
Masatani T, Asada M, Hakimi H, Hayashi K, Yamagishi J, Kawazu SI, Xuan X. Identification and functional analysis of a novel mitochondria-localized 2-Cys peroxiredoxin, BbTPx-2, from Babesia bovis. Parasitol Res 2016; 115:3139-45. [PMID: 27095567 DOI: 10.1007/s00436-016-5071-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/14/2016] [Indexed: 11/25/2022]
Abstract
Cysteine-based peroxidases, known as peroxiredoxins (Prx) or thioredoxin peroxidases (TPx), are important antioxidant enzymes that prevent oxidative damage caused by reactive oxygen species (ROS). In this study, we identified a novel mitochondrial 2-Cys Prx, BbTPx-2, from a bovine Babesia parasite, B. bovis. BbTPx-2 complementary DNA (cDNA) encodes a polypeptide of 254 amino acid residues. This protein has a mitochondrial targeting peptide at the N-terminus and two conserved cysteine residues of the typical 2-Cys Prx. By using a thiol mixed-function oxidation assay, the antioxidant activity of recombinant BbTPx-2 was revealed, and its antioxidant activity was comparable to that of a cytosolic 2-Cys Prx from B. bovis, BbTPx-1. Notably, we confirmed that BbTPx-2 was expressed in the mitochondrion of B. bovis merozoites. Taken together, the results suggest that the mitochondrial BbTPx-2 is an antioxidative enzyme for scavenging ROS in B. bovis.
Collapse
Affiliation(s)
- Tatsunori Masatani
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| | - Masahito Asada
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Hassan Hakimi
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Kei Hayashi
- Laboratory of Veterinary Parasitology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan.,Department of Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, North 20, West 10 Kita-ku, Sapporo, 001-0020, Japan
| | - Shin-Ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
2
|
Turturice BA, Lamm MA, Tasch JJ, Zalewski A, Kooistra R, Schroeter EH, Sharma S, Kawazu SI, Kanzok SM. Expression of cytosolic peroxiredoxins in Plasmodium berghei ookinetes is regulated by environmental factors in the mosquito bloodmeal. PLoS Pathog 2013; 9:e1003136. [PMID: 23382676 PMCID: PMC3561267 DOI: 10.1371/journal.ppat.1003136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 11/29/2012] [Indexed: 11/19/2022] Open
Abstract
The Plasmodium ookinete develops over several hours in the bloodmeal of its mosquito vector where it is exposed to exogenous stresses, including cytotoxic reactive oxygen species (ROS). How the parasite adapts to these challenging conditions is not well understood. We have systematically investigated the expression of three cytosolic antioxidant proteins, thioredoxin-1 (Trx-1), peroxiredoxin-1 (TPx-1), and 1-Cys peroxiredoxin (1-Cys Prx), in developing ookinetes of the rodent parasite Plasmodium berghei under various growth conditions. Transcriptional profiling showed that tpx-1 and 1-cys prx but not trx-1 are more strongly upregulated in ookinetes developing in the mosquito bloodmeal when compared to ookinetes growing under culture conditions. Confocal immunofluorescence imaging revealed comparable expression patterns on the corresponding proteins. 1-Cys Prx in particular exhibited strong expression in mosquito-derived ookinetes but was not detectable in cultured ookinetes. Furthermore, ookinetes growing in culture upregulated tpx-1 and 1-cys prx when challenged with exogenous ROS in a dose-dependent fashion. This suggests that environmental factors in the mosquito bloodmeal induce upregulation of cytosolic antioxidant proteins in Plasmodium ookinetes. We found that in a parasite line lacking TPx-1 (TPx-1KO), expression of 1-Cys Prx occurred significantly earlier in mosquito-derived TPx-1KO ookinetes when compared to wild type (WT) ookinetes. The protein was also readily detectable in cultured TPx-1KO ookinetes, indicating that 1-Cys Prx at least in part compensates for the loss of TPx-1 in vivo. We hypothesize that this dynamic expression of the cytosolic peroxiredoxins reflects the capacity of the developing Plasmodium ookinete to rapidly adapt to the changing conditions in the mosquito bloodmeal. This would significantly increase its chances of survival, maturation and subsequent escape. Our results also emphasize that environmental conditions must be taken into account when investigating Plasmodium-mosquito interactions. The malaria parasite Plasmodium is transmitted by Anopheles mosquitoes. Within the midgut of the insect, it is exposed to multiple environmental stresses, including cytotoxic reactive oxygen species (ROS). To avoid destruction, the parasite develops into a motile ookinete capable of leaving the midgut. Yet, ookinete development lasts over several hours and requires the parasite to adapt to an increasingly challenging environment. Here we show that ookinetes of the rodent parasite Plasmodium berghei during development in the mosquito midgut increase the expression of the protective antioxidant proteins peroxiredoxin-1 (TPx-1) and 1-Cys peroxiredoxin (1-Cys Prx). This upregulation was also inducible in cultured ookinetes by challenging them with ROS. This suggests that ookinetes actively modulate the expression of their antioxidant proteins in response to the changing conditions in the mosquito. We also found that ookinetes lacking TPx-1 (TPx-1KO) upregulated 1-Cys Prx expression significantly earlier than wild type ookinetes. This indicates that the TPx-1KO parasites compensate for the loss of TPx-1 by altering the expression pattern of the functionally related 1-Cys Prx. The observed dynamic regulation of the cytosolic antioxidant proteins may help the Plasmodium ookinete to adapt to rapidly changing environmental conditions and thus to increase the probability of survival, maturation and escape from the mosquito midgut.
Collapse
Affiliation(s)
- Benjamin A. Turturice
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Michael A. Lamm
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - James J. Tasch
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Angelika Zalewski
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Rachel Kooistra
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Eric H. Schroeter
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Sapna Sharma
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Shin-Ichiro Kawazu
- Obihiro University of Agriculture and Veterinarian Medicine, National Research Center for Protozoan Diseases, Obihiro, Hokkaido, Japan
| | - Stefan M. Kanzok
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
3
|
Usui M, Masuda-Suganuma H, Fukumoto S, Angeles JMM, Inoue N, Kawazu SI. Expression profiles of peroxiredoxins in liver stage of the rodent malaria parasite Plasmodium berghei. Parasitol Int 2012; 62:337-40. [PMID: 23237790 DOI: 10.1016/j.parint.2012.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/22/2012] [Accepted: 11/24/2012] [Indexed: 11/15/2022]
Abstract
mRNA and protein expression profiles for three peroxiredoxins (TPx-1, TPx-2 and 1-Cys Prx) of liver stage Plasmodium berghei were examined through quantitative reverse transcription-PCR (RT-PCR) and indirect immunofluorescence microscopy assay (IFA). RT-PCR experiments revealed that mRNA expression for the TPx-1 was detected shortly after the sporozoite infection and kept expressed until the schizont stage. In contrast, the mRNA expression for 1-Cys Prx had begun increasing when the parasite developed into the schizont stage. Using the IFA, TPx-1 and 1-Cys Prx were detected in the cytosol. This finding suggested the developmental stage-specific expression of the cytosolic enzymes in the liver stage parasite. On the other hand, the mRNA expression for TPx-2 had begun increasing at the trophozoite stage and peaked at the schizont stage. In the IFA, TPx-2 was found localized in the mitochondria. The increase of TPx-2 might be explained by the exponential development of the parasite during the schizont stage requiring ATP production which may induce reactive oxygen species (ROS) in the mitochondria.
Collapse
Affiliation(s)
- Miho Usui
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, 2-13 Inada-cho, Obihiro, Hokkaido, Japan
| | | | | | | | | | | |
Collapse
|