1
|
Shen CY, Xue W, Pang C, Alireza A, Mao X, Han J, Chen H, Fu C. Characterization of the complete mitochondrial genome of Quasilineus sinicus Gibson, 1990 (Nemertea: Heteronemertea) and its phylogenetic implications. Mitochondrial DNA B Resour 2022; 7:1749-1751. [PMID: 36213866 PMCID: PMC9542323 DOI: 10.1080/23802359.2022.2126287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In this study, we sequenced and characterized the complete mitochondrial genome (mitogenome) of Quasilineus sinicus Gibson, 1990 (Heteronemertea, Nemertea) using Illumina sequencing technology. The circular mitogenome was 16,358 bp in length and comprised 22 transfer RNA genes, 13 protein-coding genes, and two ribosomal RNA genes. Its overall base composition included 20.82% A, 41.06% T, 26.68% G, and 11.44% C; in fact, the mitogenome had a high A + T content of 61.88%. Furthermore, our phylogenetic analysis demonstrated that Paleonemertea, Pilidiophora, and Hoplonemertea were monophyletic groups, and Q. sinicus was most closely related to Iwatanemertes piperata.
Collapse
Affiliation(s)
- Chun-Yang Shen
- Department of Biology, Chengde Medical University, Chengde, Hebei Province, China
| | - Wei Xue
- Department of Chemical Engineering, Hebei Petroleum University of Technology, Chengde, Hebei Province, China
| | - Chong Pang
- Department of Pharmacology, Chengde Medical University, Chengde, Hebei Province, China
| | - Asem Alireza
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, Hainan Province, China
| | - Xiaonan Mao
- Department of Biology, Chengde Medical University, Chengde, Hebei Province, China
| | - Jiahui Han
- Department of Biology, Chengde Medical University, Chengde, Hebei Province, China
| | - Haonan Chen
- Department of Biology, Chengde Medical University, Chengde, Hebei Province, China
| | - Chunzheng Fu
- Institute of Sericulture, Chengde Medical University, Chengde, Hebei Province, China
| |
Collapse
|
2
|
Kutyumov VA, Predeus AV, Starunov VV, Maltseva AL, Ostrovsky AN. Mitochondrial gene order of the freshwater bryozoan Cristatella mucedo retains ancestral lophotrochozoan features. Mitochondrion 2021; 59:96-104. [PMID: 33631347 DOI: 10.1016/j.mito.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022]
Abstract
Bryozoans are aquatic colonial suspension-feeders abundant in many marine and freshwater benthic communities. At the same time, the phylum is under studied on both morphological and molecular levels, and its position on the metazoan tree of life is still disputed. Bryozoa include the exclusively marine Stenolaemata, predominantly marine Gymnolaemata and exclusively freshwater Phylactolaemata. Here we report the mitochondrial genome of the phylactolaemate bryozoan Cristatella mucedo. This species has the largest (21,008 bp) of all currently known bryozoan mitogenomes, containing a typical metazoan gene compendium as well as a number of non-coding regions, three of which are longer than 1500 bp. The trnS1/trnG/nad3 region is presumably duplicated in this species. Comparative analysis of the gene order in C. mucedo and another phylactolaemate bryozoan, Pectinatella magnifica, confirmed their close relationships, and revealed a stronger similarity to mitogenomes of phoronids and other lophotrochozoan species than to marine bryozoans, indicating the ancestral nature of their gene arrangement. We suggest that the ancestral gene order underwent substantial changes in different bryozoan cladesshowing mosaic distribution of conservative gene blocks regardless of their phylogenetic position. Altogether, our results support the early divergence of Phylactolaemata from the rest of Bryozoa.
Collapse
Affiliation(s)
- Vladimir A Kutyumov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia.
| | - Alexander V Predeus
- Bioinformatics Institute, Kantemirovskaya 2A, 197342 Saint Petersburg, Russia
| | - Viktor V Starunov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia; Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia
| | - Arina L Maltseva
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Andrew N Ostrovsky
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia; Department of Palaeontology, Faculty of Geography, Geology and Astronomy, University of Vienna, Althanstr. 14, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Lorenz C, Alves JMP, Foster PG, Sallum MAM, Suesdek L. First record of translocation in Culicidae (Diptera) mitogenomes: evidence from the tribe Sabethini. BMC Genomics 2019; 20:721. [PMID: 31561749 PMCID: PMC6765231 DOI: 10.1186/s12864-019-6069-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/29/2019] [Indexed: 12/04/2022] Open
Abstract
Background The tribe Sabethini (Diptera: Culicidae) contains important vectors of the yellow fever virus and presents remarkable morphological and ecological diversity unequalled in other mosquito groups. However, there is limited information about mitochondrial genomes (mitogenomes) from these species. As mitochondrial genetics has been fundamental for posing evolutionary hypotheses and identifying taxonomical markers, in this study we sequenced the first sabethine mitogenomes: Sabethes undosus, Trichoprosopon pallidiventer, Runchomyia reversa, Limatus flavisetosus, and Wyeomyia confusa. In addition, we performed phylogenetic analyses of Sabethini within Culicidae and compared its mitogenomic architecture to that of other insects. Results Similar to other insects, the Sabethini mitogenome contains 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a control region. However, the gene order is not the same as that in other mosquitoes; the tyrosine (Y) and cysteine (C) tRNA genes have translocated. In general, mitogenome rearrangements within insects are uncommon events; the translocation reported here is unparalleled among Culicidae and can be considered an autapomorphy for the Neotropical sabethines. Conclusions Our study provides clear evidence of gene rearrangements in the mitogenomes of these Neotropical genera in the tribe Sabethini. Gene order can be informative at the taxonomic level of tribe. The translocations found, along with the mitogenomic sequence data and other recently published findings, reinforce the status of Sabethini as a well-supported monophyletic taxon. Furthermore, T. pallidiventer was recovered as sister to R. reversa, and both were placed as sisters of other Sabethini genera (Sabethes, Wyeomyia, and Limatus).
Collapse
Affiliation(s)
- Camila Lorenz
- Department of Epidemiology, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, São Paulo, CEP 05509-300, Brazil.
| | - João Marcelo Pereira Alves
- Department of Parasitology, Institute of Biological Science, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-000, Brazil
| | - Peter Gordon Foster
- Department of Life Sciences, Natural History Museum, Cromwell Rd, London, UK
| | - Maria Anice Mureb Sallum
- Department of Epidemiology, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, São Paulo, CEP 05509-300, Brazil
| | - Lincoln Suesdek
- Butantan Institute, Av. Vital Brazil 1500, Butanta, São Paulo, SP, CEP 05503-900, Brazil.,Institute of Tropical Medicine, University of Sao Paulo, Av. Dr. Enéas de Carvalho Aguiar 470, Jardim América, São Paulo, SP, CEP 05403-000, Brazil
| |
Collapse
|
4
|
Sun L, Li TJ, Fu WB, Yan ZT, Si FL, Zhang YJ, Mao QM, Demari-Silva B, Chen B. The complete mt genomes of Lutzia halifaxia, Lt. fuscanus and Culex pallidothorax (Diptera: Culicidae) and comparative analysis of 16 Culex and Lutzia mt genome sequences. Parasit Vectors 2019; 12:368. [PMID: 31349856 PMCID: PMC6660957 DOI: 10.1186/s13071-019-3625-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/19/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite the medical importance of the genus Culex, the mitochondrial genome (mt genome) characteristics of Culex spp. are not well understood. The phylogeny of the genus and particularly the generic status of the genus Lutzia and the subgenus Culiciomyia remain unclear. METHODS The present study sequenced and analyzed the complete mt genomes of Lutzia halifaxia, Lutzia fuscanus and Cx. (Culiciomyia) pallidothorax and assessed the general characteristics and phylogenetics of all known 16 mt genome sequences for species in the genera Culex and Lutzia. RESULTS The complete mt genomes of Lt. halifaxia, Lt. fuscanus and Cx. pallidothorax are 15,744, 15,803 and 15,578 bp long, respectively, including 13 PCGs, 22 tRNAs, two tRNAs and a control region (CR). Length variations in the Culex and Lutzia mt genomes involved mainly the CR, and gene arrangements are the same as in other mosquitoes. We identified four types of repeat units in the CR sequences, and the poly-T stretch exists in all of these mt genomes. The repeat units of CR are conserved to different extent and provide information on their evolution. Phylogenetic analyses demonstrated that the Coronator and Sitiens groups are each monophyletic, whereas the monophyletic status of the Pipiens Group was not supported; Cx. pallidothorax is more closely related to the Sitiens and Pipiens groups; and both phylogenetics analysis and repeat unit features in CR show that Lutzia is a characteristic monophyletic entity, which should be an independent genus. CONCLUSIONS To our knowledge, this is the first comprehensive review of the mt genome sequences and taxonomic discussion based on the mt genomes of Culex spp. and Lutzia spp. The research provides general information on the mt genome of these two genera, and the phylogenetic and taxonomic status of Lutzia and Culiciomyia.
Collapse
Affiliation(s)
- Ling Sun
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331 P. R. China
| | - Ting-Jing Li
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331 P. R. China
| | - Wen-Bo Fu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331 P. R. China
| | - Zhen-Tian Yan
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331 P. R. China
| | - Feng-Ling Si
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331 P. R. China
| | - Yu-Juan Zhang
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331 P. R. China
| | - Qi-Meng Mao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331 P. R. China
| | - Bruna Demari-Silva
- Faculdade de Saúde Pública, Departamento de Epidemiologia, Universidade de São Paulo, Avenida Dr. Arnaldo, 715, São Paulo, Brazil
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331 P. R. China
| |
Collapse
|
5
|
Demari-Silva B, Foster PG, de Oliveira TMP, Bergo ES, Sanabani SS, Pessôa R, Sallum MAM. Mitochondrial genomes and comparative analyses of Culex camposi, Culex coronator, Culex usquatus and Culex usquatissimus (Diptera:Culicidae), members of the coronator group. BMC Genomics 2015; 16:831. [PMID: 26489754 PMCID: PMC4618934 DOI: 10.1186/s12864-015-1951-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/23/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The Coronator Group currently encompasses six morphologically similar species (Culex camposi Dyar, Culex coronator Dyar and Knab, Culex covagarciai Forattini, Culex usquatus Dyar, Culex usquatissimus Dyar, and Culex ousqua Dyar). Culex coronator has been incriminated as a potential vector of West Nile Virus (WNV), Saint Louis Encephalitis Virus (SLEV), and Venezuelan Equine Encephalitis Virus (VEEV). The complete mitochondrial genome of Cx. coronator, Cx. usquatus, Cx.usquatissimus, and Cx. camposi was sequenced, annotated, and analyzed to provide genetic information about these species. RESULTS The mitochondrial genomes of Cx. coronator, Cx. usquatus, Cx.usquatissimus, and Cx. camposi varied from 15,573 base pairs in Cx. usquatus to 15,576 in Cx. coronator. They contained 37 genes (13 protein-encoding genes, 2 rRNA genes, and 22 tRNA genes) and the AT-rich control region. Comparative analyses of the 37 genes demonstrated the mitochondrial genomes to be composed of variable and conserved genes. Despite the small size, the ATP8, ATP6 plus NADH5 protein-encoding genes were polymorphic, whereas tRNAs and rRNAs were conserved. The control region contained some poly-T stretch. The Bayesian phylogenetic tree corroborated that both the Coronator Group and the Culex pipens complex are monophyletic taxa. CONCLUSIONS The mitochondrial genomes of Cx. coronator, Cx. usquatus, Cx. usquatissimus and Cx. camposi share the same gene composition and arrangement features that match to those reported for most Culicidae species. They are composed of the same 37 genes and the AT-rich control region, which contains poly-T stretches that may be involved in the functional role of the mitochondrial genome. Taken together, results of the dN/dS ratios, the sliding window analyses and the Bayesian phylogenetic analyses suggest that ATP6, ATP8 and NADH5 are promising genes to be employed in phylogenetic studies involving species of the Coronator Group, and probably other species groups of the subgenus Culex. Bayesian topology corroborated the morphological hypothesis of the Coronator Group as monophyletic lineage within the subgenus Culex.
Collapse
Affiliation(s)
- Bruna Demari-Silva
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil.
| | - Peter G Foster
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, England.
| | - Tatiane M P de Oliveira
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil.
| | - Eduardo S Bergo
- Superintendência de Controle de Endemias, Secretaria de Estado da Saúde de São Paulo, Araraquara, São Paulo, Brazil.
| | - Sabri S Sanabani
- Department of Pathology, LIM 03, Hospital das Clínicas (HC), School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Rodrigo Pessôa
- Department of Pathology, LIM 03, Hospital das Clínicas (HC), School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Maria Anice M Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|