1
|
Khattak S, Rauf MA, Khan NH, Zhang QQ, Chen HJ, Muhammad P, Ansari MA, Alomary MN, Jahangir M, Zhang CY, Ji XY, Wu DD. Hydrogen Sulfide Biology and Its Role in Cancer. Molecules 2022; 27:3389. [PMID: 35684331 PMCID: PMC9181954 DOI: 10.3390/molecules27113389] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous biologically active gas produced in mammalian tissues. It plays a very critical role in many pathophysiological processes in the body. It can be endogenously produced through many enzymes analogous to the cysteine family, while the exogenous source may involve inorganic sulfide salts. H2S has recently been well investigated with regard to the onset of various carcinogenic diseases such as lung, breast, ovaries, colon cancer, and neurodegenerative disorders. H2S is considered an oncogenic gas, and a potential therapeutic target for treating and diagnosing cancers, due to its role in mediating the development of tumorigenesis. Here in this review, an in-detail up-to-date explanation of the potential role of H2S in different malignancies has been reported. The study summarizes the synthesis of H2S, its roles, signaling routes, expressions, and H2S release in various malignancies. Considering the critical importance of this active biological molecule, we believe this review in this esteemed journal will highlight the oncogenic role of H2S in the scientific community.
Collapse
Affiliation(s)
- Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Qian-Qian Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Hao-Jie Chen
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China;
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Muhammad Jahangir
- Department of Psychiatric and Mental Health, Central South University, Changsha 410078, China;
| | - Chun-Yang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of General Thoracic Surgery, Hami Central Hospital, Hami 839000, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (S.K.); (N.H.K.); (Q.-Q.Z.); (H.-J.C.)
- School of Stomatology, Henan University, Kaifeng 475004, China
| |
Collapse
|
2
|
Zhang Y, Fu T, Ren Y, Li F, Zheng G, Hong J, Yao X, Xue W, Zhu F. Selective Inhibition of HDAC1 by Macrocyclic Polypeptide for the Treatment of Glioblastoma: A Binding Mechanistic Analysis Based on Molecular Dynamics. Front Mol Biosci 2020; 7:41. [PMID: 32219100 PMCID: PMC7078330 DOI: 10.3389/fmolb.2020.00041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/21/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive intracranial malignant brain tumor, and the abnormal expression of HDAC1 is closely correlated to the progression, recurrence and metastasis of GBM cells, making selective inhibition of HDAC1 a promising strategy for GBM treatments. Among all available selective HDAC1 inhibitors, the macrocyclic peptides have gained great attention due to their remarkable inhibitory selectivity on HDAC1. However, the binding mechanism underlying this selectivity is still elusive, which increases the difficulty of designing and synthesizing the macrocyclic peptide-based anti-GBM drug. Herein, multiple computational approaches were employed to explore the binding behaviors of a typical macrocyclic peptide FK228 in both HDAC1 and HDAC6. Starting from the docking conformations of FK228 in the binding pockets of HDAC1&6, relatively long MD simulation (500 ns) shown that the hydrophobic interaction and hydrogen bonding of E91 and D92 in the Loop2 of HDAC1 with the Cap had a certain traction effect on FK228, and the sub-pocket formed by Loop1 and Loop2 in HDAC1 could better accommodate the Cap group, which had a positive effect on maintaining the active conformation of FK228. While the weakening of the interactions between FK228 and the residues in the Loop2 of HDAC6 during the MD simulation led to the large deflection of FK228 in the binding site, which also resulted in the decrease in the interactions between the Linker region of FK228 and the previously identified key amino acids (H134, F143, H174, and F203). Therefore, the residues located in Loop1 and Loop2 contributed in maintaining the active conformation of FK228, which would provide valuable hints for the discovery and design of novel macrocyclic polypeptide HDAC inhibitors.
Collapse
Affiliation(s)
- Yang Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Tingting Fu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yuxiang Ren
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Guoxun Zheng
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Jiajun Hong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Raimondi L, De Luca A, Giavaresi G, Barone A, Tagliaferri P, Tassone P, Amodio N. Impact of Natural Dietary Agents on Multiple Myeloma Prevention and Treatment: Molecular Insights and Potential for Clinical Translation. Curr Med Chem 2020; 27:187-215. [PMID: 29956610 DOI: 10.2174/0929867325666180629153141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/17/2018] [Accepted: 05/08/2018] [Indexed: 01/30/2023]
Abstract
Chemoprevention is based on the use of non-toxic, pharmacologically active agents to prevent tumor progression. In this regard, natural dietary agents have been described by the most recent literature as promising tools for controlling onset and progression of malignancies. Extensive research has been so far performed to shed light on the effects of natural products on tumor growth and survival, disclosing the most relevant signal transduction pathways targeted by such compounds. Overall, anti-inflammatory, anti-oxidant and cytotoxic effects of dietary agents on tumor cells are supported either by results from epidemiological or animal studies and even by clinical trials. Multiple myeloma is a hematologic malignancy characterized by abnormal proliferation of bone marrow plasma cells and subsequent hypercalcemia, renal dysfunction, anemia, or bone disease, which remains incurable despite novel emerging therapeutic strategies. Notably, increasing evidence supports the capability of dietary natural compounds to antagonize multiple myeloma growth in preclinical models of the disease, underscoring their potential as candidate anti-cancer agents. In this review, we aim at summarizing findings on the anti-tumor activity of dietary natural products, focusing on their molecular mechanisms, which include inhibition of oncogenic signal transduction pathways and/or epigenetic modulating effects, along with their potential clinical applications against multiple myeloma and its related bone disease.
Collapse
Affiliation(s)
| | | | | | - Agnese Barone
- Hospice Cascina Brandezzata-Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine Catanzaro, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine Catanzaro, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine Catanzaro, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
4
|
Mitsiogianni M, Koutsidis G, Mavroudis N, Trafalis DT, Botaitis S, Franco R, Zoumpourlis V, Amery T, Galanis A, Pappa A, Panayiotidis MI. The Role of Isothiocyanates as Cancer Chemo-Preventive, Chemo-Therapeutic and Anti-Melanoma Agents. Antioxidants (Basel) 2019; 8:E106. [PMID: 31003534 PMCID: PMC6523696 DOI: 10.3390/antiox8040106] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Many studies have shown evidence in support of the beneficial effects of phytochemicals in preventing chronic diseases, including cancer. Among such phytochemicals, sulphur-containing compounds (e.g., isothiocyanates (ITCs)) have raised scientific interest by exerting unique chemo-preventive properties against cancer pathogenesis. ITCs are the major biologically active compounds capable of mediating the anticancer effect of cruciferous vegetables. Recently, many studies have shown that a higher intake of cruciferous vegetables is associated with reduced risk of developing various forms of cancers primarily due to a plurality of effects, including (i) metabolic activation and detoxification, (ii) inflammation, (iii) angiogenesis, (iv) metastasis and (v) regulation of the epigenetic machinery. In the context of human malignant melanoma, a number of studies suggest that ITCs can cause cell cycle growth arrest and also induce apoptosis in human malignant melanoma cells. On such basis, ITCs could serve as promising chemo-therapeutic agents that could be used in the clinical setting to potentiate the efficacy of existing therapies.
Collapse
Affiliation(s)
- Melina Mitsiogianni
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Georgios Koutsidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Nikos Mavroudis
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6AP, UK.
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Unit of Clinical Pharmacology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Sotiris Botaitis
- Second Department of Surgery, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Vasilis Zoumpourlis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Tom Amery
- The Watrercress Company / The Wasabi Company, Waddock, Dorchester, Dorset DT2 8QY, UK.
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
5
|
Wang XQ, Bai HM, Li ST, Sun H, Min LZ, Tao BB, Zhong J, Li B. Knockdown of HDAC1 expression suppresses invasion and induces apoptosis in glioma cells. Oncotarget 2018. [PMID: 28624794 PMCID: PMC5564623 DOI: 10.18632/oncotarget.18227] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glioma is the most common malignant tumor of the central nervous system, with a low survival rate of five years worldwide. Although high expression and prognostic value of histone deacetylase 1 (HDAC1) have been recently reported in various types of human tumors, the molecular mechanism underlying the biological function of HDAC1 in glioma is still unclear. We found that HDAC1 was elevated in glioma tissues and cell lines. HDAC1 expression was closely related with pathological grade and overall survival of patients with gliomas. Downregulation of HDAC1 inhibited cell proliferation, prevented invasion of glioma cell lines, and induced cell apoptosis. The expression of apoptosis and metastasis related molecules were detected by RT-PCR and Western blot, respectively, in U251 and T98G cells with HDAC1 knockdown. We found that HDAC1 knockdown upregulated expression of BIM, BAX, cleaved CASPASE3 and E-CADHERIN, and decreased expression of TWIST1, SNAIL and MMP9 in U251 and T98G cells with HDAC1 knockdown. In vivo data showed that knockdown of HDAC1 inhibited tumor growth in nude mice. In summary, HDAC1 may therefore be considered an unfavorable progression indicator for glioma patients, and may also serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Xiao-Qiang Wang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Hong-Min Bai
- Department of Neurosurgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou 510010, China
| | - Shi-Ting Li
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Hui Sun
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ling-Zhao Min
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Bang-Bao Tao
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jun Zhong
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Bin Li
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
6
|
Xu Z, Xiong D, Zhang J, Zhang J, Chen X, Chen Z, Zhan R. Bone marrow stromal cells enhance the survival of chronic lymphocytic leukemia cells by regulating HES-1 gene expression and H3K27me3 demethylation. Oncol Lett 2017; 15:1937-1942. [PMID: 29434893 DOI: 10.3892/ol.2017.7450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/09/2017] [Indexed: 11/05/2022] Open
Abstract
The majority of patients with chronic lymphocytic leukemia (CLL) are not cured by traditional chemotherapy. One possible explanation for this is that the microenvironment protects CLL cells from both spontaneous- and cytotoxic-mediated apoptosis. The present study was designed to investigate the mechanisms accounting for these effects, since this information is crucial to understanding CLL physiopathology and identifying potential treatment targets. The CLL cell line L1210 and primary CLL cells were cultured under different conditions: With serum, cyclophosphamide (CTX), or with monolayers and conditioned medium (CM) from the stromal cell line HESS-5. Apoptosis, Hes family BHLH transcription factor 1 (HES-1) gene and protein expression, and histone H3K27me3 DNA demethylation were determined. Co-culture of L1210 cells with HESS-5 cells significantly inhibited serum deprivation- and CTX-induced apoptosis of leukemia cells, and resulted in a significant increase in short-term proliferation. Soluble factors in the CM from HESS-5 cells had a negligible effect. The HESS-5 cell-mediated inhibition of apoptosis of CLL cells was associated with increased HES-1 expression and hypomethylation of the H3K27me3 gene in the leukemia cells. These results indicate that stromal cells enhance the survival of CLL cells by regulating the HES-1 gene and protein expression, as well as H3K27me3 DNA demethylation, and suggest that specific interactions between stromal and leukemia cells may enhance the resistance of leukemia cells to chemotherapy.
Collapse
Affiliation(s)
- Zhenshu Xu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Donglian Xiong
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Jushun Zhang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Jingyan Zhang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Xiuli Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Zhizhe Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Rong Zhan
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
7
|
Smith EM, Zhang L, Walker BA, Davenport EL, Aronson LI, Krige D, Hooftman L, Drummond AH, Morgan GJ, Davies FE. The combination of HDAC and aminopeptidase inhibitors is highly synergistic in myeloma and leads to disruption of the NFκB signalling pathway. Oncotarget 2016; 6:17314-27. [PMID: 26015393 PMCID: PMC4627310 DOI: 10.18632/oncotarget.1168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/10/2013] [Indexed: 02/05/2023] Open
Abstract
There is a growing body of evidence supporting the use of epigenetic therapies in the treatment of multiple myeloma. We show the novel HDAC inhibitor CHR-3996 induces apoptosis in myeloma cells at concentrations in the nanomolar range and with apoptosis mediated by p53 and caspase pathways. In addition, HDAC inhibitors are highly synergistic, both in vitro and in vivo, with the aminopeptidase inhibitor tosedostat (CHR-2797). We demonstrate that the basis for this synergy is a consequence of changes in the levels of NFκB regulators BIRC3/cIAP2, A20, CYLD, and IκB, which were markedly affected by the combination. When co-administered the HDAC and aminopeptidase inhibitors caused rapid nuclear translocation of NFκB family members p65 and p52, following activation of both canonical and non-canonical NFκB signalling pathways. The subsequent up-regulation of inhibitors of NFκB activation (most significantly BIRC3/cIAP2) turned off the cytoprotective effects of the NFκB signalling response in a negative feedback loop. These results provide a rationale for combining HDAC and aminopeptidase inhibitors clinically for the treatment of myeloma patients and support the disruption of the NFκB signalling pathway as a therapeutic strategy.
Collapse
Affiliation(s)
- Emma M Smith
- Haemato-Oncology Research Unit, Division of Molecular Pathology, Cancer Therapeutics and Clinical Studies, The Institute of Cancer Research, London, UK
| | - Lei Zhang
- Haemato-Oncology Research Unit, Division of Molecular Pathology, Cancer Therapeutics and Clinical Studies, The Institute of Cancer Research, London, UK
| | - Brian A Walker
- Haemato-Oncology Research Unit, Division of Molecular Pathology, Cancer Therapeutics and Clinical Studies, The Institute of Cancer Research, London, UK
| | - Emma L Davenport
- Haemato-Oncology Research Unit, Division of Molecular Pathology, Cancer Therapeutics and Clinical Studies, The Institute of Cancer Research, London, UK
| | - Lauren I Aronson
- Haemato-Oncology Research Unit, Division of Molecular Pathology, Cancer Therapeutics and Clinical Studies, The Institute of Cancer Research, London, UK
| | | | | | | | - Gareth J Morgan
- Haemato-Oncology Research Unit, Division of Molecular Pathology, Cancer Therapeutics and Clinical Studies, The Institute of Cancer Research, London, UK
| | - Faith E Davies
- Haemato-Oncology Research Unit, Division of Molecular Pathology, Cancer Therapeutics and Clinical Studies, The Institute of Cancer Research, London, UK
| |
Collapse
|
8
|
Chang LC, Yu YL. Dietary components as epigenetic-regulating agents against cancer. Biomedicine (Taipei) 2016; 6:2. [PMID: 26872811 PMCID: PMC4752550 DOI: 10.7603/s40681-016-0002-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/08/2016] [Indexed: 12/12/2022] Open
Abstract
Carcinogenesis is a complicated process that involves the deregulation of epigenetics resulting in cellular transformational events, such proliferation, differentiation, and metastasis. Epigenetic machinery changes the accessibility of chromatin to transcriptional regulation through DNA modification. The collaboration of epigenetics and gene transcriptional regulation creates a suitable microenvironment for cancer development, which is proved by the alternation in cell proliferation, differentiation, division, metabolism, DNA repair and movement. Therefore, the reverse of epigenetic dysfunction may provide a possible strategy and new therapeutic targets for cancer treatment. Many dietary components such as sulforaphane and epigallocatechin- 3-gallate have been demonstrated to exert chemopreventive influences, such as reducing tumor growth and enhancing cancer cell death. Anticancer mechanistic studies also indicated that dietary components could display the ability to reverse epigenetic deregulation in assorted tumors via reverting the adverse epigenetic regulation, including alternation of DNA methylation and histone modification, and modulation of microRNA expression. Therefore, dietary components as therapeutic agents on epigenetics becomes an attractive approach for cancer prevention and intervention at the moment. In this review, we summarize the recent discoveries and underlying mechanisms of the most common dietary components for cancer prevention via epigenetic regulation.
Collapse
Affiliation(s)
- Ling-Chu Chang
- Chinese Medicinal Research and Development Center, China Medical University Hospital, 404, Taichung, Taiwan
| | - Yung-Luen Yu
- Graduate Institute of Cancer Biology, China Medical University, 404, Taichung, Taiwan. .,Center for Molecular Medicine, China Medical University Hospital, 404, Taichung, Taiwan. .,Department of Biotechnology, Asia University, 413, Taichung, Taiwan.
| |
Collapse
|
9
|
Schnekenburger M, Dicato M, Diederich M. Plant-derived epigenetic modulators for cancer treatment and prevention. Biotechnol Adv 2014; 32:1123-32. [DOI: 10.1016/j.biotechadv.2014.03.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/14/2014] [Accepted: 03/16/2014] [Indexed: 12/12/2022]
|
10
|
Xue C, Pasolli HA, Piscopo I, Gros DJ, Liu C, Chen Y, Chiao JW. Mitochondrial structure alteration in human prostate cancer cells upon initial interaction with a chemopreventive agent phenethyl isothiocyanate. Cancer Cell Int 2014; 14:30. [PMID: 24685270 PMCID: PMC3994273 DOI: 10.1186/1475-2867-14-30] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 03/27/2014] [Indexed: 11/16/2022] Open
Abstract
Background Phenethyl isothiocyanate (PEITC), present naturally in cruciferous vegetables, is a chemopreventive agent. It blocks initiation and post-initiation progression of carcinogenesis. Mechanism study in human prostate cancer cells revealed that PEITC is a dual inhibitor of aberrant DNA hypermethylation and histone deacetylases, reactivating silenced genes and regulating the androgen-mediated growth of tumor cells. The identity of the cellular organelle that initially interacts with PEITC has not been fully described. Methods Human prostate cancer LNCaP cells were exposed to PEITC and the effects on cellular fine structure examined by transmission electron microscopic studies. Alteration of mitochondrial membrane potential and cytochrome c release were evaluated as early events of apoptosis, and the TUNEL method for quantifying apoptotic cells. Mitochondria were isolated for determining their protein expression. Results Ultrastructural analyses have revealed condensed mitochondria and a perturbed mitochondrial cristae structure, which assumed a rounded and dilated shape within 4-hours of PEITC contact, and became more pronounced with longer PEITC exposure. They presented as the most prominent intracellular alterations in the early hours. Mitochondria structure alterations were demonstrated, for the first time, with the isothiocyanates. An increase in the number of smooth endoplasmic reticulum and vacuoles were also noted that is consistent with the presence of autophagy. Early events of apoptosis were detected, with cytochrome c released along with the appearance of mitochondrial alteration. Mitochondrial membrane potential was disrupted within 18 hours of PEITC exposure, preceding the appearance of apoptotic cells with DNA strand breaks. In parallel, the expression of the mitochondrial class III ß-tubulin in the outer membrane, which associates with the permeability transition pore, was significantly reduced as examined with isolated mitochondria. Conclusion Mitochondria may represent the organelle target of the isothiocyanates, indicating that the isothiocyanates may be mitochondria-interacting agents to inhibit carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jen Wei Chiao
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
11
|
Cang S, Ma Y, Chiao JW, Liu D. Phenethyl isothiocyanate and paclitaxel synergistically enhanced apoptosis and alpha-tubulin hyperacetylation in breast cancer cells. Exp Hematol Oncol 2014; 3:5. [PMID: 24495785 PMCID: PMC3927854 DOI: 10.1186/2162-3619-3-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/03/2014] [Indexed: 12/17/2022] Open
Abstract
Combination of phenethyl isothiocyanate (PEITC) and paclitaxel (taxol) has been shown to work synergistically to increase apoptosis and cell cycle arrest in breast cancer cells. In this report, we further explored the mechanisms for the synergistic activity of PEITC and taxol in MCF7 and MDA-MB-231 (MB) breast cancer cell lines. By Western blotting analysis, treatment of MCF7 cells with both PEITC and taxol led to a 10.4-fold and 5.96-fold increase in specific acetylation of alpha-tubulin over single agent PEITC and taxol, respectively. This synergistic effect on acetylation of alpha-tubulin was also seen in MB cells. The combination of PEITC and taxol also reduced expressions of cell cycle regulator Cdk1, and anti-apoptotic protein bcl-2, enhanced expression of Bax and cleavage of PARP proteins. In conclusion, this study provided biochemical evidence for the mechanism of synergistic effect between the epigenetic agent PEITC and the chemotherapeutic agent taxol.
Collapse
Affiliation(s)
- Shundong Cang
- Department of Oncology, Henan Province People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Yuehua Ma
- Department of Oncology, Henan Province People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Jen-Wei Chiao
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY 10595, USA
| | - Delong Liu
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY 10595, USA.,Institute of Hematology, Henan Tumor Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Health promoting effects of brassica-derived phytochemicals: from chemopreventive and anti-inflammatory activities to epigenetic regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:964539. [PMID: 24454992 PMCID: PMC3885109 DOI: 10.1155/2013/964539] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/20/2013] [Indexed: 12/19/2022]
Abstract
A high intake of brassica vegetables may be associated with a decreased chronic disease risk. Health promoting effects of Brassicaceae have been partly attributed to glucosinolates and in particular to their hydrolyzation products including isothiocyanates. In vitro and in vivo studies suggest a chemopreventive activity of isothiocyanates through the redox-sensitive transcription factor Nrf2. Furthermore, studies in cultured cells, in laboratory rodents, and also in humans support an anti-inflammatory effect of brassica-derived phytochemicals. However, the underlying mechanisms of how these compounds mediate their health promoting effects are yet not fully understood. Recent findings suggest that brassica-derived compounds are regulators of epigenetic mechanisms. It has been shown that isothiocyanates may inhibit histone deacetylase transferases and DNA-methyltransferases in cultured cells. Only a few papers have dealt with the effect of brassica-derived compounds on epigenetic mechanisms in laboratory animals, whereas data in humans are currently lacking. The present review aims to summarize the current knowledge regarding the biological activities of brassica-derived phytochemicals regarding chemopreventive, anti-inflammatory, and epigenetic pathways.
Collapse
|
13
|
Hu J, Zhu X, Lu Q. Antiproliferative effects of γ-secretase inhibitor, a Notch signalling inhibitor, in multiple myeloma cells and its molecular mechanism of action. J Int Med Res 2013; 41:1017-26. [PMID: 23839278 DOI: 10.1177/0300060513485912] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES To investigate the effects of γ-secretase inhibitor (GSI), a Notch signalling inhibitor, on the proliferation of multiple myeloma cells in vitro and its molecular mechanism of action. METHODS RPMI 8226 cells were treated with increasing concentrations of GSI (0-20 µmol/l) for 24-72 h. Proliferation was measured using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay. Cell-cycle analysis was performed on RPMI 8226 cells treated with 0-10 µmol/l GSI for 48 h using flow cytometry. Expression of Notch signalling proteins (Notch1, Jagged 1 and Jagged 2), Bcl-2 and phosphorylated Akt (p-Akt) was determined using Western blotting in RPMI 8226 cells treated with various concentrations of GSI for various time periods. RESULTS GSI inhibited proliferation of RPMI 8226 cells in a concentration- and time-dependent manner by inducing G0/G1 cell-cycle arrest. GSI-mediated antiproliferative effects were associated with significant reductions in the expression of Notch1, Jagged1, Jagged2, p-Akt and Bcl-2. CONCLUSION Inhibition of the Notch signalling pathway by GSI may be a promising therapeutic approach for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Jiasheng Hu
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | | | | |
Collapse
|
14
|
Maes K, Menu E, Van Valckenborgh E, Van Riet I, Vanderkerken K, De Bruyne E. Epigenetic modulating agents as a new therapeutic approach in multiple myeloma. Cancers (Basel) 2013; 5:430-61. [PMID: 24216985 PMCID: PMC3730337 DOI: 10.3390/cancers5020430] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 12/31/2022] Open
Abstract
Multiple myeloma (MM) is an incurable B-cell malignancy. Therefore, new targets and drugs are urgently needed to improve patient outcome. Epigenetic aberrations play a crucial role in development and progression in cancer, including MM. To target these aberrations, epigenetic modulating agents, such as DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi), are under intense investigation in solid and hematological cancers. A clinical benefit of the use of these agents as single agents and in combination regimens has been suggested based on numerous studies in pre-clinical tumor models, including MM models. The mechanisms of action are not yet fully understood but appear to involve a combination of true epigenetic changes and cytotoxic actions. In addition, the interactions with the BM niche are also affected by epigenetic modulating agents that will further determine the in vivo efficacy and thus patient outcome. A better understanding of the molecular events underlying the anti-tumor activity of the epigenetic drugs will lead to more rational drug combinations. This review focuses on the involvement of epigenetic changes in MM pathogenesis and how the use of DNMTi and HDACi affect the myeloma tumor itself and its interactions with the microenvironment.
Collapse
Affiliation(s)
- Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Els Van Valckenborgh
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Ivan Van Riet
- Stem Cell Laboratory, Department Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussel, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel, Belgium
| |
Collapse
|
15
|
Hu J, Huang X, Hong X, Lu Q, Zhu X. Arsenic trioxide inhibits the proliferation of myeloma cell line through notch signaling pathway. Cancer Cell Int 2013; 13:25. [PMID: 23497375 PMCID: PMC3600676 DOI: 10.1186/1475-2867-13-25] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/07/2013] [Indexed: 11/16/2022] Open
Abstract
Arsenic Trioxide (ATO) has shown remarkable efficacy for the treatment of multiple myeloma (MM). However, the mechanism by which ATO exerts its inhibitory effect on the proliferation of myeloma cells remains to be clarified. We study the inhibitory effect of ATO at various concentrations on the proliferation of the myeloma cell line RPMI 8226 and discussed the molecular mechanism of ATO on myeloma cell line. Our results proved that ATO had a significant dose-dependent and time-dependent inhibitory effect on the expressions of the Notch receptor (Notch1) and Notch ligand (Jag2). Data from the real-time PCR assay showed that the mRNA expression levels of the Jag2 gene and its downstream gene Hes1 were both significantly down-regulated after the myeloma cells were treated with ATO while the expression of the tumor suppressor gene PTEN was up-regulated. These results elucidated the molecular mechanism underlying the ATO mediated inhibition of myeloma cell proliferation. This is the first report on the anti-myeloma activity in myeloma cells through inhibition of the Notch signaling pathway.
Collapse
Affiliation(s)
- Jiasheng Hu
- Department of Haematology, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, China.
| | | | | | | | | |
Collapse
|
16
|
Liu K, Cang S, Ma Y, Chiao JW. Synergistic effect of paclitaxel and epigenetic agent phenethyl isothiocyanate on growth inhibition, cell cycle arrest and apoptosis in breast cancer cells. Cancer Cell Int 2013; 13:10. [PMID: 23388416 PMCID: PMC3637186 DOI: 10.1186/1475-2867-13-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/29/2013] [Indexed: 01/11/2023] Open
Abstract
This study examined whether combining paclitaxel (taxol) with a novel epigenetic agent phenethyl isothiocyanate (PEITC) will yield a synergistic effect on inhibiting breast cancer cells. Two drug-resistant breast cancer cell lines, MCF7 and MDA-MB-231, were treated with PEITC and taxol. Cell growth, cell cycle, and apoptosis were examined. The combination of PEITC and taxol significantly decreased the IC50 of PEITC and taxol over each agent alone. The combination also increased apoptosis by more than two fold over each single agent in both cell lines. A significant increase of cells in the G2/M phases was detected. In conclusion, the combination of PEITC and taxol exhibits a synergistic effect on growth inhibition in breast cancer cells. This combination deserves further study in vivo.
Collapse
Affiliation(s)
- Katherine Liu
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Shundong Cang
- Department of Oncology, Henan Province People's Hospital, Zhengzhou, China
| | - Yuehua Ma
- Department of Oncology, Henan Province People's Hospital, Zhengzhou, China
| | - Jen Wei Chiao
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
17
|
Cherblanc FL, Davidson RWM, Di Fruscia P, Srimongkolpithak N, Fuchter MJ. Perspectives on natural product epigenetic modulators in chemical biology and medicine. Nat Prod Rep 2013; 30:605-24. [DOI: 10.1039/c3np20097c] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Barrera LN, Johnson IT, Bao Y, Cassidy A, Belshaw NJ. Colorectal cancer cells Caco-2 and HCT116 resist epigenetic effects of isothiocyanates and selenium in vitro. Eur J Nutr 2012; 52:1327-41. [PMID: 22923034 DOI: 10.1007/s00394-012-0442-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/10/2012] [Indexed: 12/27/2022]
Abstract
PURPOSE It is relatively unknown how different dietary components, in partnership, regulate gene expression linked to colon pathology. It has been suggested that the combination of various bioactive components present in a plant-based diet is crucial for their potential anticancer activities. This study employed a combinatorial chemopreventive strategy to investigate the impact of selenium and/or isothiocyanates on DNA methylation processes in colorectal carcinoma cell lines. METHODS To gain insights into the epigenetic-mediated changes in gene expression in response to these dietary constituents cultured Caco-2 and HCT116 cells were exposed for up to 12 days to different concentrations of selenium methylselenocysteine and selenite (ranging from 0.2 to 5 μM) either alone or in combination with sulforaphane and iberin (ranging from 6 to 8 μM), and changes to gene-specific (p16(INK4A) and ESR1), global (LINE-1) methylation and DNMT expression were quantified using real-time PCR-based assays. RESULTS No effects on the methylation of CpG islands in ESR1, p16(INK4A) or of LINE-1, a marker of global genomic methylation, were observed after exposure of Caco-2 and HCT116 cells to selenium or isothiocyanates. Only transient changes in DNMT mRNA expression, which occurred mostly in the treatment groups containing isothiocyanates, were observed, and these occurred only for specific DNMT transcripts and did not lead to the modification of the aberrant methylation status present in these cells. CONCLUSION These data suggest that treatment for colon cancer cells with selenium and/or isothiocyanates, either individually or in combination does not impact abnormal methylation patterns of key genes involved in the complex multistep process of colon carcinogenesis in vitro.
Collapse
Affiliation(s)
- Lawrence N Barrera
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | | | | | | | | |
Collapse
|
19
|
Zou Y, Ma X, Huang Y, Hong L, Chiao JW. Effect of phenylhexyl isothiocyanate on aberrant histone H3 methylation in primary human acute leukemia. J Hematol Oncol 2012; 5:36. [PMID: 22747680 PMCID: PMC3413588 DOI: 10.1186/1756-8722-5-36] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/07/2012] [Indexed: 11/29/2022] Open
Abstract
Background We have previously studied the histone acetylation in primary human leukemia cells. However, histone H3 methylation in these cells has not been characterized. Methods This study examined the methylation status at histone H3 lysine 4 (H3K4) and histone H3 lysine 9 (H3K9) in primary acute leukemia cells obtained from patients and compared with those in the non-leukemia and healthy cells. We further characterized the effect of phenylhexyl isothiocyanate (PHI), Trichostatin A (TSA), and 5-aza-2’-deoxycytidine (5-Aza) on the cells. Results We found that methylation of histone H3K4 was virtually undetectable, while methylation at H3K9 was significantly higher in primary human leukemia cells. The histone H3K9 hypermethylation and histone H3K4 hypomethylation were observed in both myeloid and lymphoid leukemia cells. PHI was found to be able to normalize the methylation level in the primary leukemia cells. We further showed that PHI was able to enhance the methyltransferase activity of H3K4 and decrease the activity of H3K9 methyltransferase. 5-Aza had similar effect on H3K4, but minimal effect on H3K9, whereas TSA had no effect on H3K4 and H3K9 methyltransferases. Conclusions This study revealed opposite methylation level of H3K4 and H3K9 in primary human leukemia cells and demonstrated for the first time that PHI has different effects on the methyltransferases for H3K4 and H3K9.
Collapse
Affiliation(s)
- Yong Zou
- Department of Hematology, Zhangzhou Hospital of Fujian Medical University, Zhangzhou, Fujian Province, 363000, China
| | | | | | | | | |
Collapse
|
20
|
Abstract
A number of bioactive dietary components are of particular interest in the field of epigenetics. Many of these compounds display anticancer properties and may play a role in cancer prevention. Numerous studies suggest that a number of nutritional compounds have epigenetic targets in cancer cells. Importantly, emerging evidence strongly suggests that consumption of dietary agents can alter normal epigenetic states as well as reverse abnormal gene activation or silencing. Epigenetic modifications induced by bioactive dietary compounds are thought to be beneficial. Substantial evidence is mounting proclaiming that commonly consumed bioactive dietary factors act to modify the epigenome and may be incorporated into an 'epigenetic diet'. Bioactive nutritional components of an epigenetic diet may be incorporated into one's regular dietary regimen and used therapeutically for medicinal or chemopreventive purposes. This article will primarily focus on dietary factors that have been demonstrated to influence the epigenome and that may be used in conjunction with other cancer prevention and chemotherapeutic therapies.
Collapse
Affiliation(s)
- Tabitha M Hardy
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | | |
Collapse
|
21
|
Epigenetic and antioxidant effects of dietary isothiocyanates and selenium: potential implications for cancer chemoprevention. Proc Nutr Soc 2012; 71:237-45. [DOI: 10.1017/s002966511200016x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is evidence from epidemiological studies suggesting that increased consumption of cruciferous vegetables may protect against specific cancers more effectively than total fruit and vegetable intake. These beneficial effects are attributed to the glucosinolate breakdown products, isothiocyanates (ITC). Similarly, selenium (Se) consumption has also been inversely associated with cancer risk and as an integral part of many selenoproteins may influence multiple pathways in the development of cancer. This paper will briefly review the current state of knowledge concerning the effect of Se and ITC in cancer development with a particular emphasis on its antioxidant properties, and will also address whether alterations in DNA methylation may be a potential mechanism whereby these dietary constituents protect against the carcinogenic process. Furthermore, we will discuss the advantages of combining ITC and Se to benefit from their complementary mechanisms of action to potentially protect against the alterations leading to neoplasia. Based on this review it may be concluded that an understanding of the impact of ITC and Se on aberrant DNA methylation in relation to factors modulating gene-specific and global methylation patterns, in addition to the effect of these food constituents as modulators of key selenoenzymes, such as gastrointestinal glutathione peroxidase-2 (GPx2) and thioredoxin reductase-1 (TrxR1), may provide insights into the potential synergy among various components of a plant-based diet that may counteract the genetic and epigenetic alterations that initiate and sustain neoplasia.
Collapse
|
22
|
Gerhauser C. Cancer chemoprevention and nutriepigenetics: state of the art and future challenges. Top Curr Chem (Cham) 2012; 329:73-132. [PMID: 22955508 DOI: 10.1007/128_2012_360] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term "epigenetics" refers to modifications in gene expression caused by heritable, but potentially reversible, changes in DNA methylation and chromatin structure. Epigenetic alterations have been identified as promising new targets for cancer prevention strategies as they occur early during carcinogenesis and represent potentially initiating events for cancer development. Over the past few years, nutriepigenetics - the influence of dietary components on mechanisms influencing the epigenome - has emerged as an exciting new field in current epigenetic research. During carcinogenesis, major cellular functions and pathways, including drug metabolism, cell cycle regulation, potential to repair DNA damage or to induce apoptosis, response to inflammatory stimuli, cell signalling, and cell growth control and differentiation become deregulated. Recent evidence now indicates that epigenetic alterations contribute to these cellular defects, for example epigenetic silencing of detoxifying enzymes, tumor suppressor genes, cell cycle regulators, apoptosis-inducing and DNA repair genes, nuclear receptors, signal transducers and transcription factors by promoter methylation, and modifications of histones and non-histone proteins such as p53, NF-κB, and the chaperone HSP90 by acetylation or methylation.The present review will summarize the potential of natural chemopreventive agents to counteract these cancer-related epigenetic alterations by influencing the activity or expression of DNA methyltransferases and histone modifying enzymes. Chemopreventive agents that target the epigenome include micronutrients (folate, retinoic acid, and selenium compounds), butyrate, polyphenols from green tea, apples, coffee, black raspberries, and other dietary sources, genistein and soy isoflavones, curcumin, resveratrol, dihydrocoumarin, nordihydroguaiaretic acid (NDGA), lycopene, anacardic acid, garcinol, constituents of Allium species and cruciferous vegetables, including indol-3-carbinol (I3C), diindolylmethane (DIM), sulforaphane, phenylethyl isothiocyanate (PEITC), phenylhexyl isothiocyanate (PHI), diallyldisulfide (DADS) and its metabolite allyl mercaptan (AM), cambinol, and relatively unexplored modulators of histone lysine methylation (chaetocin, polyamine analogs). So far, data are still mainly derived from in vitro investigations, and results of animal models or human intervention studies are limited that demonstrate the functional relevance of epigenetic mechanisms for health promoting or cancer preventive efficacy of natural products. Also, most studies have focused on single candidate genes or mechanisms. With the emergence of novel technologies such as next-generation sequencing, future research has the potential to explore nutriepigenomics at a genome-wide level to understand better the importance of epigenetic mechanisms for gene regulation in cancer chemoprevention.
Collapse
Affiliation(s)
- Clarissa Gerhauser
- Division Epigenomics and Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Navarro SL, Li F, Lampe JW. Mechanisms of action of isothiocyanates in cancer chemoprevention: an update. Food Funct 2011; 2:579-87. [PMID: 21935537 PMCID: PMC3204939 DOI: 10.1039/c1fo10114e] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Isothiocyanates (ITC), derived from glucosinolates, are thought to be responsible for the chemoprotective actions conferred by higher cruciferous vegetable intake. Evidence suggests that isothiocyanates exert their effects through a variety of distinct but interconnected signaling pathways important for inhibiting carcinogenesis, including those involved in detoxification, inflammation, apoptosis, and cell cycle and epigenetic regulation, among others. This article provides an update on the latest research on isothiocyanates and these mechanisms, and points out remaining gaps in our understanding of these events. Given the variety of ITC produced from glucosinolates, and the diverse pathways on which these compounds act, a systems biology approach, in vivo, may help to better characterize their integrated role in cancer prevention. In addition, the effects of dose, duration of exposure, and specificity of different ITC should be considered.
Collapse
Affiliation(s)
- Sandi L. Navarro
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, 98109
- Interdisciplinary Graduate Program in Nutritional Sciences, Department of Epidemiology, University of Washington, Seattle, WA 98195
| | - Fei Li
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, 98109
| | - Johanna W. Lampe
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, 98109
- Interdisciplinary Graduate Program in Nutritional Sciences, Department of Epidemiology, University of Washington, Seattle, WA 98195
| |
Collapse
|
24
|
Singh BN, Zhang G, Hwa YL, Li J, Dowdy SC, Jiang SW. Nonhistone protein acetylation as cancer therapy targets. Expert Rev Anticancer Ther 2010; 10:935-54. [PMID: 20553216 DOI: 10.1586/era.10.62] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acetylation and deacetylation are counteracting, post-translational modifications that affect a large number of histone and nonhistone proteins. The significance of histone acetylation in the modification of chromatin structure and dynamics, and thereby gene transcription regulation, has been well recognized. A steadily growing number of nonhistone proteins have been identified as acetylation targets and reversible lysine acetylation in these proteins plays an important role(s) in the regulation of mRNA stability, protein localization and degradation, and protein-protein and protein-DNA interactions. The recruitment of histone acetyltransferases (HATs) and histone deacetylases (HDACs) to the transcriptional machinery is a key element in the dynamic regulation of genes controlling cellular proliferation, differentiation and apoptosis. Many nonhistone proteins targeted by acetylation are the products of oncogenes or tumor-suppressor genes and are directly involved in tumorigenesis, tumor progression and metastasis. Aberrant activity of HDACs has been documented in several types of cancers and HDAC inhibitors (HDACi) have been employed for therapeutic purposes. Here we review the published literature in this field and provide updated information on the regulation and function of nonhistone protein acetylation. While concentrating on the molecular mechanism and pathways involved in the addition and removal of the acetyl moiety, therapeutic modalities of HDACi are also discussed.
Collapse
Affiliation(s)
- Brahma N Singh
- Department of Mycology & Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | | | | | | | | | | |
Collapse
|
25
|
Liu XH, Song HY, Zhang JX, Han BC, Wei XN, Ma XH, Cui WK, Chen YZ. Identifying Novel Type ZBGs and Nonhydroxamate HDAC Inhibitors Through a SVM Based Virtual Screening Approach. Mol Inform 2010; 29:407-20. [PMID: 27463196 DOI: 10.1002/minf.200900014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Accepted: 03/11/2010] [Indexed: 01/30/2023]
Abstract
Histone deacetylase inhibitors (HDACi) have been successfully used for the treatment of cancers and other diseases. Search for novel type ZBGs and development of non-hydroxamate HDACi has become a focus in current research. To complement this, it is desirable to explore a virtual screening (VS) tool capable of identifying different types of potential inhibitors from large compound libraries with high yields and low false-hit rates similar to HTS. This work explored the use of support vector machines (SVM) combined with our newly developed putative non-inhibitor generation method as such a tool. SVM trained by 702 pre-2008 hydroxamate HDACi and 64334 putative non-HDACi showed good yields and low false-hit rates in cross-validation test and independent test using 220 diverse types of HDACi reported since 2008. The SVM hit rates in scanning 13.56 M PubChem and 168K MDDR compounds are comparable to HTS rates. Further structural analysis of SVM virtual hits suggests its potential for identification of non-hydroxamate HDACi. From this analysis, a series of novel ZBG and cap groups were proposed for HDACi design.
Collapse
Affiliation(s)
- X H Liu
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Blk S16,Level 8, 3 Science Drive 2, Singapore 117543 phone: 65-6874-6877, fax: 65-6774-6756
| | - H Y Song
- Institute of Materials Research and Engineering, A*STAR, 3 Research Link, Singapore 117602
| | - J X Zhang
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Blk S16,Level 8, 3 Science Drive 2, Singapore 117543 phone: 65-6874-6877, fax: 65-6774-6756
| | - B C Han
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Blk S16,Level 8, 3 Science Drive 2, Singapore 117543 phone: 65-6874-6877, fax: 65-6774-6756
| | - X N Wei
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Blk S16,Level 8, 3 Science Drive 2, Singapore 117543 phone: 65-6874-6877, fax: 65-6774-6756
| | - X H Ma
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Blk S16,Level 8, 3 Science Drive 2, Singapore 117543 phone: 65-6874-6877, fax: 65-6774-6756
| | - W K Cui
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543
| | - Y Z Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Blk S16,Level 8, 3 Science Drive 2, Singapore 117543 phone: 65-6874-6877, fax: 65-6774-6756.
| |
Collapse
|
26
|
Abstract
This review describes the role that epigenetic changes play in the pathogenesis of cancer, concentrating on the plasma cell malignancy multiple myeloma, and highlights recent findings regarding the efficacy of epigenetic therapeutic agents in laboratory studies and clinical trials. DNA methylation is altered in a wide range of cancers with hypermethylation of CpG islands associated with silencing of tumour suppressor genes. Genes found to be silenced by methylation in myeloma samples include VHL, TP53, CDKN2A, and TGFBR2. Myeloma is linked to the overexpression of a histone methylatransferase (MMSET) and inactivating mutations of a histone demethylase (UTX), suggesting that the regulation of histone methylation is a potential therapeutic target. Abnormal expression of histone deacetylases (HDACs) has been widely described in solid tumours and haematological malignancies. In myeloma, histone deacetylase inhibitors show promising results both in laboratory-based cell culture studies and in clinical trials, where they demonstrate particularly good therapeutic outcome when administered in combination with other standard chemotherapeutic agents. The study of epigenetics shows great promise for understanding the alterations in gene expression that underlie malignancies and provides exciting novel drugable targets.
Collapse
Affiliation(s)
- Emma M Smith
- Institute of Cancer Research, Sutton, Surrey, UK
| | | | | |
Collapse
|
27
|
Cang S, Ma Y, Liu D. New clinical developments in histone deacetylase inhibitors for epigenetic therapy of cancer. J Hematol Oncol 2009; 2:22. [PMID: 19486511 PMCID: PMC2695818 DOI: 10.1186/1756-8722-2-22] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 06/01/2009] [Indexed: 02/08/2023] Open
Abstract
DNA methylation and histone acetylation are two well known epigenetic chromatin modifications. Epigenetic agents leading to DNA hypomethylation and histone hyperacetylation have been approved for treatment of hematological disorders. The first histone deacetylase inhibitor, vorinostat, has been licensed for cutaneous T cell lymphoma treatment. More than 11 new epigenetic agents are in various stages of clinical development for therapy of multiple cancer types. In this review we summarize novel histone deacetylase inhibitors and new regimens from clinical trials for epigenetic therapy of cancer.
Collapse
Affiliation(s)
- Shundong Cang
- Division of Hematology/Oncology, New York Medical College, Valhalla, NY 10595, USA
- Henan Province People's Hospital, Zhengzhou, PR China
| | - Yuehua Ma
- Division of Hematology/Oncology, New York Medical College, Valhalla, NY 10595, USA
- Henan Province People's Hospital, Zhengzhou, PR China
| | - Delong Liu
- Division of Hematology/Oncology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|