1
|
Borghini N, Lazzaretti M, Lunghi P, Malpeli G, Barbi S, Perris R. A translational perspective of the malignant hematopoietic proteoglycome. Cell Biosci 2025; 15:25. [PMID: 39980017 PMCID: PMC11844096 DOI: 10.1186/s13578-025-01360-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Proteoglycans are an ample family of complex extracellular matrix/cell surface components known to impact on virtually all biological processes that take place during life of a human being, in its healthy and diseased conditions. They are consolidated multivalent regulators of the behaviour of normal and malignant hematopoietic cells because of being critical components of their membranes, because of their pivotal role as multifaceted factors of the hematopoietic niches and because of acting as pillars of the tumour microenvironment. Likewise, they act as promoters of the growth, spreading and therapeutic resistance of diseased hematopoietic cells, also by modulating intracellular processes through a dual utilization of core protein domains and their glycosaminoglycan side chains. The intricate pattern of expression of the myriads of proteoglycan isoforms generated by differential glycanations of the core proteins is differentiation- and cell activation-dependent and often associates with genomic aberrations and gene amplifications. Selected proteoglycans stand out as widely recognized, disease type-specific markers and as alluring but still unappreciated therapeutic targets. We therefore pose here a clinical-translational view on the hematopoietic proteoglycome to highlight its underestimated biological and pathological significance during normal and neoplastic hematopoiesis. We underscore the potential of several proteoglycans to be exploited as key markers for prognostication and therapeutic targeting of hematopoietic cancers.
Collapse
Affiliation(s)
- Naomi Borghini
- COMT- Centre for Molecular and Translational Oncology, University of Parma, Parco Area delle Scienze, 11/A, Parma, 43124, Italy
- Department of Chemical and Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, Parma, 43124, Italy
| | - Mirca Lazzaretti
- COMT- Centre for Molecular and Translational Oncology, University of Parma, Parco Area delle Scienze, 11/A, Parma, 43124, Italy
- Department of Chemical and Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, Parma, 43124, Italy
| | - Paolo Lunghi
- COMT- Centre for Molecular and Translational Oncology, University of Parma, Parco Area delle Scienze, 11/A, Parma, 43124, Italy
- Department of Chemical and Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, Parma, 43124, Italy
| | - Giorgio Malpeli
- Department of Life Science, Health, and Health Professions, Link Campus University, Via del Casale di San Pio V, 44, Roma, 00165, Italy
| | - Stefano Barbi
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Piazzale L.A. Scuro, 10, Verona, 37134, Italy
| | - Roberto Perris
- COMT- Centre for Molecular and Translational Oncology, University of Parma, Parco Area delle Scienze, 11/A, Parma, 43124, Italy.
- Department of Chemical and Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, Parma, 43124, Italy.
| |
Collapse
|
2
|
Reuvekamp T, Bachas C, Cloos J. Immunophenotypic features of early haematopoietic and leukaemia stem cells. Int J Lab Hematol 2024; 46:795-808. [PMID: 39045906 DOI: 10.1111/ijlh.14348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
Many tumours are organised in a hierarchical structure with at its apex a cell that can maintain, establish, and repopulate the tumour-the cancer stem cell. The haematopoietic stem cell (HSC) is the founder cell for all functional blood cells. Like HSCs, the leukaemia stem cells (LSC) are hypothesised to be the leukaemia-initiating cells, which have features of stemness such as self-renewal, quiescence, and resistance to cytotoxic drugs. Immunophenotypically, CD34+CD38- defines HSCs by adding lineage negativity and CD90+CD45RA-. At which stage of maturation the further differentiation is blocked, determines the type of leukaemia, and determines the immunophenotype of the LSC specific to the leukaemia type. No apparent LSC phenotype has been described in lymphoid leukaemia, and it is debated if a specific acute lymphocytic leukaemia-initiating cell is present, as all cells are capable of engraftment in a secondary mouse model. In chronic lymphocytic leukaemia, a B-cell clone is responsible for uncontrolled proliferation, not a specific LSC. In chronic and acute myeloid leukaemia, LSC is described as CD34+CD38- with the expression of a marker that is aberrantly expressed (LSC marker), such as CD45RA, CD123 or in the case of chronic myeloid leukaemia CD26. In acute myeloid leukaemia, the LSC load had prognostic relevance and might be a biomarker that can be used for monitoring and as an addition to measurable residual disease. However, challenges such as the CD34-negative immunophenotype need to be explored.
Collapse
Affiliation(s)
- Tom Reuvekamp
- Department of Hematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location Universiteit van Amsterdam, Amsterdam, The Netherlands
| | - Costa Bachas
- Department of Hematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Ishikawa K, Suzuki H, Kaneko MK, Kato Y. Establishment of a Novel Anti-CD44 Variant 10 Monoclonal Antibody C 44Mab-18 for Immunohistochemical Analysis against Oral Squamous Cell Carcinomas. Curr Issues Mol Biol 2023; 45:5248-5262. [PMID: 37504249 PMCID: PMC10378409 DOI: 10.3390/cimb45070333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common type of head and neck cancer, and has been revealed as the second-highest expression of CD44 in cancers. CD44 has been investigated as a cancer stem cell marker of HNSCC and plays a critical role in tumor malignant progression. Especially, splicing variant isoforms of CD44 (CD44v) are overexpressed in cancers and considered a promising target for cancer diagnosis and therapy. We developed monoclonal antibodies (mAbs) against CD44 by immunizing mice with CD44v3-10-overexpressed PANC-1 cells. Among the established clones, C44Mab-18 (IgM, kappa) reacted with CHO/CD44v3-10, but not with CHO/CD44s and parental CHO-K1 using flow cytometry. The epitope mapping using peptides that cover variant exon-encoded regions revealed that C44Mab-18 recognized the border sequence between variant 10 and the constant exon 16-encoded sequence. These results suggest that C44Mab-18 recognizes variant 10-containing CD44v, but not CD44s. Furthermore, C44Mab-18 could recognize the human oral squamous cell carcinoma (OSCC) cell line, HSC-3, in flow cytometry. The apparent dissociation constant (KD) of C44Mab-18 for CHO/CD44v3-10 and HSC-3 was 1.6 × 10-7 M and 1.7 × 10-7 M, respectively. Furthermore, C44Mab-18 detected CD44v3-10 but not CHO/CD44s in Western blotting, and endogenous CD44v10 in immunohistochemistry using OSCC tissues. These results indicate that C44Mab-18 is useful for detecting CD44v10 in flow cytometry and immunohistochemistry.
Collapse
Affiliation(s)
- Kenichiro Ishikawa
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mika K Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
4
|
Effect of CD44 signal axis in the gain of mesenchymal stem cell surface antigens from synovial fibroblasts in vitro. Heliyon 2022; 8:e10739. [PMID: 36247177 PMCID: PMC9557910 DOI: 10.1016/j.heliyon.2022.e10739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/24/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
|
5
|
Zhao Y, Sun H, Zhao Y, Liu Q, Liu Y, Hou Y, Jin W. NSrp70 suppresses metastasis in triple-negative breast cancer by modulating Numb/TβR1/EMT axis. Oncogene 2022; 41:3409-3422. [PMID: 35568738 DOI: 10.1038/s41388-022-02349-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 11/09/2022]
Abstract
Alternative splicing of mRNA precursors allows cancer cells to create different protein isoforms that promote growth and survival. Compared to normal cells, cancer cells frequently exhibit a higher diversity of their transcriptomes. A comprehensive understanding of splicing regulation is required to correct the splicing alterations for the future precision oncology. A quantitative proteomic screen was performed to identify the regulators associated the metastasis in triple-negative breast cancer. Multiple in vitro and in vivo functional analyses were used to study the effects of NSrp70 on breast cancer metastasis. Next, transcriptomic sequencing (RNA-seq) and alternative splicing bioinformatics analysis was applied to screen the potential targets of NSrp70. Moreover, in vitro splicing assays, RNA pull-down, and RNA immunoprecipitation assay were used to confirm the specific binding between NSrp70 and downstream target genes. Furthermore, the prognostic value of NSrp70 was analyzed in a cohort of patients by performing IHC. We uncovered NSrp70 as a novel suppressor of breast cancer metastasis. We discovered that NSrp70 inhibited the skipped exon alternative splicing of NUMB, promoted the degradation of transforming growth factor receptor 1 through lysosome pathway, and regulated TGFβ/SMAD-mediated epithelial-mesenchymal transition phenotype in breast cancer cells. Furthermore, high NSrp70 expression correlated with a better prognosis in breast cancer patients. Our findings revealed that splicing regulator NSrp70 serves as a metastasis suppressor.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hefen Sun
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yuanyuan Zhao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qiqi Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yang Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yifeng Hou
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Jin
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Aureli A, Marziani B, Sconocchia T, Del Principe MI, Buzzatti E, Pasqualone G, Venditti A, Sconocchia G. Immunotherapy as a Turning Point in the Treatment of Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246246. [PMID: 34944865 PMCID: PMC8699368 DOI: 10.3390/cancers13246246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Despite recent progress achieved in the management of acute myeloid leukemia (AML), it remains a life-threatening disease with a poor prognosis, particularly in the elderly, having an average 5-year survival of approximately 28%. However, recent evidence suggests that immunotherapy can provide the background for developing personalized targeted therapy to improve the clinical course of AML patients. Our review aimed to assess the immunotherapy effectiveness in AML by discussing the impact of monoclonal antibodies, immune checkpoint inhibitors, chimeric antigen receptor T cells, and vaccines in AML preclinical and clinical studies. Abstract Acute myeloid leukemia (AML) is a malignant disease of hematopoietic precursors at the earliest stage of maturation, resulting in a clonalproliferation of myoblasts replacing normal hematopoiesis. AML represents one of the most common types of leukemia, mostly affecting elderly patients. To date, standard chemotherapy protocols are only effective in patients at low risk of relapse and therapy-related mortality. The average 5-year overall survival (OS) is approximately 28%. Allogeneic hematopoietic stem cell transplantation (HSCT) improves prognosis but is limited by donor availability, a relatively young age of patients, and absence of significant comorbidities. Moreover, it is associated with significant morbidity and mortality. However, increasing understanding of AML immunobiology is leading to the development of innovative therapeutic strategies. Immunotherapy is considered an attractive strategy for controlling and eliminating the disease. It can be a real breakthrough in the treatment of leukemia, especially in patients who are not eligible forintensive chemotherapy. In this review, we focused on the progress of immunotherapy in the field of AML by discussing monoclonal antibodies (mAbs), immune checkpoint inhibitors, chimeric antigen receptor T cells (CAR-T cells), and vaccine therapeutic choices.
Collapse
Affiliation(s)
- Anna Aureli
- CNR Institute of Translational Pharmacology, 00133 Rome, Italy
- Correspondence: (A.A.); (G.S.)
| | - Beatrice Marziani
- Emergency and Urgent Department, University Hospital Sant’Anna of Ferrara, 44124 Ferrara, Italy;
| | | | - Maria Ilaria Del Principe
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Elisa Buzzatti
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Gianmario Pasqualone
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Adriano Venditti
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.I.D.P.); (E.B.); (G.P.); (A.V.)
| | - Giuseppe Sconocchia
- CNR Institute of Translational Pharmacology, 00133 Rome, Italy
- Correspondence: (A.A.); (G.S.)
| |
Collapse
|
7
|
Bioinformatics analysis of microarray data reveals epithelial-mesenchymal-transition in pediatric ependymoma. Anticancer Drugs 2021; 32:437-447. [PMID: 33595943 DOI: 10.1097/cad.0000000000001046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The objectives of this study were to explore the possible mechanisms of pediatric ependymoma using bioinformatics methods and provide potential genes and signaling pathways for pediatric ependymoma study. The data of GES74195 from Gene Expression Ominibus was analyzed by R language for pediatric ependymoma study. The differentially expressed genes were explored using gene set enrichment analysis, search tool for the retrieval of interacting genes, Cytoscape as well as other mainstream bioinformatics methods. Extracellular matrix-receptors interaction pathways and focal adhesion pathway were demonstrated as the key signaling pathway for pediatric ependymoma. The potential hub genes enriched in the two signaling pathways were regarded as final hub genes for this microarray analysis. The development and progression of pediatric ependymoma were associated with epithelial-mesenchymal-transition. Various potential hub genes and potential key signaling pathways in order to further explore their values in the diagnosis and treatment of this disease in the future.
Collapse
|
8
|
Cheng JH, Zhang WJ, Zhu JF, Cui D, Song KD, Qiang P, Mei CZ, Nie ZC, Ding BS, Han Z, Ding ZE, Zheng WW. CaMKIIγ regulates the viability and self-renewal of acute myeloid leukaemia stem-like cells by the Alox5/NF-κB pathway. Int J Lab Hematol 2020; 43:699-706. [PMID: 33369192 DOI: 10.1111/ijlh.13440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/22/2020] [Accepted: 11/28/2020] [Indexed: 12/23/2022]
Abstract
Acute myeloid leukaemia (AML) is a frequently fatal malignant disease of haematopoietic stem and progenitor cells. The molecular and phenotypic characteristics of AML are highly heterogeneous. Our previous study concluded that CaMKIIγ was the trigger of chronic myeloid leukaemia progression from the chronic phase to blast crisis, but how CaMKIIγ influences AML stem-like cells remains elusive. In this study, we found that CaMKIIγ was overexpressed in AML patients and AML cell lines, as measured by qRT-PCR and Western blot assays. Moreover, CaMKIIγ decreased when the disease was in remission. Using an shRNA lentivirus expression system, we established CaMKIIγ stable-knockdown AML cell lines and found that knockdown of CaMKIIγ inhibited the viability and self-renewal of AML stem-like cell lines. Additionally, the ratio of CD34 + AML cell lines decreased, and CaMKIIγ knockdown induced the downregulation of Alox5 levels. We further detected downstream molecules of the Alox5/NF-κB pathway and found that c-myc and p-IκBα decreased while total IκBα remained normal. In conclusion, our study describes a new role for CaMKIIγ as a stem-like cell marker that is highly regulated by the Alox5/NF-κB pathway in AML stem-like cells. CaMKIIγ can participate in the viability and self-renewal of AML stem-like cells by regulating the Alox5/NF-κB pathway.
Collapse
Affiliation(s)
- Jiang-Hua Cheng
- School of Tea & Food Science, Anhui Agricultural University, Hefei, China.,Institute of Agro-products Processing Research, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Wen-Jing Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jun-Feng Zhu
- Department of Hematology, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Di Cui
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| | - Kai-Di Song
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ping Qiang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chuan-Zhong Mei
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| | - Zheng-Chao Nie
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bang-Sheng Ding
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhong Han
- Department of Clinical Laboratory, Shengzhou People's Hospital, Shenzhou Branch of the First Affiliated Hospital of Zhejiang University, Shengzhou, China
| | - Zhi-En Ding
- School of Tea & Food Science, Anhui Agricultural University, Hefei, China.,Department of Biology and Food Engineering, Bozhou University, Bozhou, China
| | - Wei-Wei Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
9
|
Hari SG, Annamaneni S, Nanchari SR, Meka P, Satti V. CD44 3′UTR C > T polymorphism as a predictive marker for breast cancer development. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
10
|
Si D, Yin F, Peng J, Zhang G. High Expression of CD44 Predicts a Poor Prognosis in Glioblastomas. Cancer Manag Res 2020; 12:769-775. [PMID: 32099472 PMCID: PMC7006859 DOI: 10.2147/cmar.s233423] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose Glioblastoma multiforme (GBM) is the most common of the malignant and invasive gliomas. High grade glioma is prone to relapse and has a poor prognosis. However, there is a big difference in terms of survival time with the same grade glioma. Cluster of differentiation 44 (CD44) is an indicator of cancer stem cells with abnormal expression in many malignant tumors, however the expression in GBM is unknown. Methods Tissue specimens were collected from 62 GBM patients to investigate CD44 expression and their prognosis was followed-up. Chi-square test was used to identify the association between CD44 staining and clinical characteristics of the patients. Kaplan-Meier analysis was performed to draw survival curves and Cox regression analysis to confirm the independent prognostic factors of GBM patients. Results In total, 38.7% (24/62) of the patients had high CD44 staining. The median survival times were 3.5 months and 18.5 months for high and low expressions of CD44, respectively. Kaplan-Meier analysis revealed that tumor location, the extent of tumor resection, adjuvant chemotherapy, and CD44 expression were related to overall survival time of GBM patients (P<0.05). Multivariate analysis showed that non-usage of adjuvant chemotherapy (HR=4.097, 95% CI=1.489-11.277, P=0.006) and CD44 overexpression (HR=3.216, 95% CI=1.452-7.125, P=0.004) were independent unfavorable prognostic factors for GBM patients. Conclusion The results demonstrate that high expression of CD44 acts as a poor prognosis indicator in GBM patients.
Collapse
Affiliation(s)
- Daolin Si
- Department of Pediatric Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, People's Republic of China
| | - Fei Yin
- Department of Pediatric Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, People's Republic of China
| | - Jing Peng
- Department of Pediatric Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, People's Republic of China
| | - Guangying Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, People's Republic of China
| |
Collapse
|
11
|
Heldin P, Kolliopoulos C, Lin CY, Heldin CH. Involvement of hyaluronan and CD44 in cancer and viral infections. Cell Signal 2019; 65:109427. [PMID: 31654718 DOI: 10.1016/j.cellsig.2019.109427] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
Hyaluronan and its major receptor CD44 are ubiquitously distributed. They have important structural as well as signaling roles, regulating tissue homeostasis, and their expression levels are tightly regulated. In addition to signaling initiated by the interaction of the intracellular domain of CD44 with cytoplasmic signaling molecules, CD44 has important roles as a co-receptor for different types of receptors of growth factors and cytokines. Dysregulation of hyaluronan-CD44 interactions is seen in diseases, such as inflammation and cancer. In the present communication, we discuss the mechanism of hyaluronan-induced signaling via CD44, as well as the involvement of hyaluronan-engaged CD44 in malignancies and in viral infections.
Collapse
Affiliation(s)
- Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden.
| | - Constantinos Kolliopoulos
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Chun-Yu Lin
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden; Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University Department of Surgery, Uppsala University, Sweden; Department of Surgical Sciences, Uppsala University, Akademiska Hospital, 751 85 Uppsala, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
12
|
Azevedo R, Gaiteiro C, Peixoto A, Relvas-Santos M, Lima L, Santos LL, Ferreira JA. CD44 glycoprotein in cancer: a molecular conundrum hampering clinical applications. Clin Proteomics 2018; 15:22. [PMID: 29983670 PMCID: PMC6020424 DOI: 10.1186/s12014-018-9198-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/23/2018] [Indexed: 12/23/2022] Open
Abstract
CD44 is a heavily glycosylated membrane receptor playing a key role in cell adhesion, signal transduction and cytoskeleton remodelling. It is also one of the most studied glycoproteins in cancer, frequently explored for stem cell identification, and associated with chemoresistance and metastasis. However, CD44 is a general designation for a large family of splicing variants exhibiting different degrees of glycosylation and, potentially, functionally distinct roles. Moreover, structural diversity associated with ambiguous nomenclature has delayed clinical developments. Herein, we attempt to comprehensively address these aspects and systematize CD44 nomenclature, setting milestones for biomarker discovery. In addition, we support that CD44 may be an important source of cancer neoantigens, most likely resulting from altered splicing and/or glycosylation. The discovery of potentially targetable CD44 (glyco)isoforms will require the combination of glycomics with proteogenomics approaches, exploring customized protein sequence databases generated using genomics and transcriptomics. Nevertheless, the necessary high-throughput analytical and bioinformatics tools are now available to address CD44 role in health and disease.
Collapse
Affiliation(s)
- Rita Azevedo
- 1Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,2Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Cristiana Gaiteiro
- 1Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,2Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,3Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Andreia Peixoto
- 1Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,2Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,4Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
| | - Marta Relvas-Santos
- 1Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Luís Lima
- 1Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,4Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
| | - Lúcio Lara Santos
- 1Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,2Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal.,6University Fernando Pessoa, Porto, Portugal
| | - José Alexandre Ferreira
- 1Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,2Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,4Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal.,7Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,8International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| |
Collapse
|
13
|
Kumar R, Godavarthy PS, Krause DS. The bone marrow microenvironment in health and disease at a glance. J Cell Sci 2018; 131:131/4/jcs201707. [PMID: 29472498 DOI: 10.1242/jcs.201707] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The bone marrow microenvironment (BMM) is the 'domicile' of hematopoietic stem cells, as well as of malignant processes that can develop there. Multiple and complex interactions with the BMM influence hematopoietic stem cell (HSC) physiology, but also the pathophysiology of hematological malignancies. Reciprocally, hematological malignancies alter the BMM, in order to render it more hospitable for malignant progression. In this Cell Science at a Glance article and accompanying poster, we highlight concepts of the normal and malignant hematopoietic stem cell niches. We present the intricacies of the BMM in malignancy and provide approaches for targeting the interactions between malignant cells and their BMM. This is done in an effort to augment existing treatment strategies in the future.
Collapse
Affiliation(s)
- Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, D-60596 Frankfurt am Main, Germany
| | - P Sonika Godavarthy
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, D-60596 Frankfurt am Main, Germany
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
14
|
Karantanou C, Godavarthy PS, Krause DS. Targeting the bone marrow microenvironment in acute leukemia. Leuk Lymphoma 2018; 59:2535-2545. [PMID: 29431560 DOI: 10.1080/10428194.2018.1434886] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite individual differences between certain leukemias, the overall survival rate in acute leukemia remains low at approximately 40%. Novel therapeutics, including targeted therapies like tyrosine kinase inhibitors, have been incorporated into treatment regimens, but most have failed at eradicating leukemic stem cells (LSCs). The causes of disease relapse, progression, and resistance to chemotherapy are as yet not entirely clear but thought to be linked to protection in the bone marrow microenvironment (BMM). In this review, we summarize current knowledge on the BMM in acute leukemias and examine the ongoing efforts to target the BMM, which include treatment strategies targeting (a) leukemia-BMM interactions, (b) leukemia-cell intrinsic pathways influenced by the BMM, and (c) direct BMM targeting strategies. It is likely that the future ploy against leukemia will involve these and other innovative strategies designed to eradicate the last remaining warrior - the LSC.
Collapse
Affiliation(s)
- Christina Karantanou
- a Institute for Tumor Biology and Experimental Therapy , Georg-Speyer-Haus , Frankfurt am Main , Germany
| | - Parimala Sonika Godavarthy
- a Institute for Tumor Biology and Experimental Therapy , Georg-Speyer-Haus , Frankfurt am Main , Germany
| | - Daniela S Krause
- a Institute for Tumor Biology and Experimental Therapy , Georg-Speyer-Haus , Frankfurt am Main , Germany
| |
Collapse
|
15
|
Motohara T, Katabuchi H. Emerging Role of CD44 Variant 6 in Driving the Metastatic Journey of Ovarian Cancer Stem Cells. CELL BIOLOGY OF THE OVARY 2018:73-88. [DOI: 10.1007/978-981-10-7941-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Wang Z, Zhao K, Hackert T, Zöller M. CD44/CD44v6 a Reliable Companion in Cancer-Initiating Cell Maintenance and Tumor Progression. Front Cell Dev Biol 2018; 6:97. [PMID: 30211160 PMCID: PMC6122270 DOI: 10.3389/fcell.2018.00097] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022] Open
Abstract
Metastasis is the leading cause of cancer death, tumor progression proceeding through emigration from the primary tumor, gaining access to the circulation, leaving the circulation, settling in distant organs and growing in the foreign environment. The capacity of a tumor to metastasize relies on a small subpopulation of cells in the primary tumor, so called cancer-initiating cells (CIC). CIC are characterized by sets of markers, mostly membrane anchored adhesion molecules, CD44v6 being the most frequently recovered marker. Knockdown and knockout models accompanied by loss of tumor progression despite unaltered primary tumor growth unraveled that these markers are indispensable for CIC. The unexpected contribution of marker molecules to CIC-related activities prompted research on underlying molecular mechanisms. This review outlines the contribution of CD44, particularly CD44v6 to CIC activities. A first focus is given to the impact of CD44/CD44v6 to inherent CIC features, including the crosstalk with the niche, apoptosis-resistance, and epithelial mesenchymal transition. Following the steps of the metastatic cascade, we report on supporting activities of CD44/CD44v6 in migration and invasion. These CD44/CD44v6 activities rely on the association with membrane-integrated and cytosolic signaling molecules and proteases and transcriptional regulation. They are not restricted to, but most pronounced in CIC and are tightly regulated by feedback loops. Finally, we discuss on the engagement of CD44/CD44v6 in exosome biogenesis, loading and delivery. exosomes being the main acteurs in the long-distance crosstalk of CIC with the host. In brief, by supporting the communication with the niche and promoting apoptosis resistance CD44/CD44v6 plays an important role in CIC maintenance. The multifaceted interplay between CD44/CD44v6, signal transducing molecules and proteases facilitates the metastasizing tumor cell journey through the body. By its engagement in exosome biogenesis CD44/CD44v6 contributes to disseminated tumor cell settlement and growth in distant organs. Thus, CD44/CD44v6 likely is the most central CIC biomarker.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Oncology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong, China
| | - Kun Zhao
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
| | - Thilo Hackert
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
| | - Margot Zöller
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany
- *Correspondence: Margot Zöller
| |
Collapse
|
17
|
Goswami M, Hourigan CS. Novel Antigen Targets for Immunotherapy of Acute Myeloid Leukemia. Curr Drug Targets 2017; 18:296-303. [PMID: 25706110 DOI: 10.2174/1389450116666150223120005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) was the first malignancy for which immunotherapy, in the form of allogeneic hematopoietic stem cell transplantation (allo-HSCT), was integrated into the standard of care. Allo-HSCT however is an imperfect therapy associated with significant morbidity and mortality while offering only incomplete prevention of AML clinical relapse. These limitations have motivated the search for AML-related antigens that might be used as more specific and effective targets of immunotherapy. While historically such investigations have focused on protein targets expressed uniquely in AML or at significantly higher levels than in normal tissues, this article will review recent discoveries which have identified a novel selection of potential antigen targets for AML immunotherapy, such as non-protein targets including lipids and carbohydrates, neo-antigens created from genetic somatic mutations or altered splicing and post-translational modification of protein targets, together with innovative ways to target overexpressed protein targets presented by cell surface peptide-MHC complexes. These novel antigens represent promising candidates for further development as targets of AML immunotherapy.
Collapse
Affiliation(s)
- Meghali Goswami
- Myeloid Malignancies Section, National Heart, Lung and Blood Institute, Room 6C-104, 10 Center Drive, Bethesda, Maryland 20892-1583, United States
| | | |
Collapse
|
18
|
|
19
|
Morath I, Hartmann T, Orian-Rousseau V. CD44: More than a mere stem cell marker. Int J Biochem Cell Biol 2016; 81:166-173. [DOI: 10.1016/j.biocel.2016.09.009] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 09/05/2016] [Accepted: 09/10/2016] [Indexed: 01/15/2023]
|
20
|
Krause DS, Scadden DT. A hostel for the hostile: the bone marrow niche in hematologic neoplasms. Haematologica 2016; 100:1376-87. [PMID: 26521296 DOI: 10.3324/haematol.2014.113852] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Our understanding of the biology of the normal hematopoietic stem cell niche has increased steadily due to improved murine models and sophisticated imaging tools. Less well understood, but of growing interest, is the interaction between cells in the bone marrow during the initiation, maintenance and treatment of hematologic neoplasms. This review summarizes the emerging concepts of the normal and leukemic hematopoietic bone marrow niche. Furthermore, it reviews current models of how the microenvironment of the bone marrow may contribute to or be modified by leukemogenesis. Finally, it provides the rationale for a "two-pronged" approach, directly targeting cancer cells themselves while also targeting the bone microenvironment to make it inhospitable to malignant cells and, ultimately, eradicating cancer stem-like cells.
Collapse
Affiliation(s)
- Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, USA
| |
Collapse
|
21
|
Xu H, Wu K, Tian Y, Liu Q, Han N, Yuan X, Zhang L, Wu GS, Wu K. CD44 correlates with clinicopathological characteristics and is upregulated by EGFR in breast cancer. Int J Oncol 2016; 49:1343-50. [PMID: 27499099 PMCID: PMC5021250 DOI: 10.3892/ijo.2016.3639] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/15/2016] [Indexed: 12/15/2022] Open
Abstract
Cluster of differentiation 44 (CD44), a well-known transmembrane glycoprotein, serves as a promoting factor in the carcinogenesis and progression of a variety of neoplasms. Previous studies have demonstrated that aberrant expression of CD44 was associated with the initiation, invasion, metastasis, and therapy-resistance of breast cancer, but whether there was any association between CD44 and pathological characteristics of breast cancer or epidermal growth factor receptor (EGFR) has not been clearly elucidated. In this study, we utilized public microarray data analysis and tissue microarray technologies to display that CD44 level was enhanced in breast cancer and was significantly correlated with histological grade and the status of estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2 (HER2) and EGFR. Furthermore, mRNA expression of CD44 in breast tumors was positively correlated with basal cytokeratin markers KRT5 and KRT17, but inversely associated with luminal marker FOXA1. Besides, Kaplan-Meier analysis showed that high CD44 mRNA level had adverse impact on the progression-free survival of patients with HER2-expressing or basal-like breast cancer. Functionally, inhibition of EGFR activity by erlotinib impaired the invasion and migration ability of breast cancer cell lines. Western blot assays demonstrated that erlotinib treatment decreased the expression of CD44, accompanied with the reduced protein levels of mesenchymal and cancer stem cell markers. Collectively, this study suggested that the expression of CD44 was upregulated by EGFR pathway and CD44 had a robust impact on the development of breast cancer.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kongju Wu
- Nursing School of Pingdingshan University, Pingdingshan, Henan 467000, P.R. China
| | - Yijun Tian
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Na Han
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Lu Zhang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Gen Sheng Wu
- Departments of Oncology and Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
22
|
Evidence that high-migration drug-surviving MOLT4 leukemia cells exhibit cancer stem cell-like properties. Int J Oncol 2016; 49:343-51. [PMID: 27210806 DOI: 10.3892/ijo.2016.3526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 04/28/2016] [Indexed: 11/05/2022] Open
Abstract
Leukemia represents a spectrum of hematological malignancies threatening human health. Resistance to treatments and metastasis of leukemia are the main causes of death in patients. Leukemia stem cells (LSCs) are the initiating cells of leukemia as well as the main source of drug resistance, invasion and metastasis. Consequently, eliminating LSCs is a prerequisite to eradicate leukemia. Preliminary studies in our laboratory have shown that chemokines and their related receptors play an important role in the drug resistance and metastasis of leukemic cells. In this study, we obtained high migration drug-surviving (short term) MOLT4 cells (hMDSCs-MOLT4) with treatment of doxorubicin (DOX) after Transwell assay. Then we detected stem cell-associated molecular markers on hMDSCs-MOLT4 cells and the parental MOLT4 cells by FCM, QPCR, western blotting, H&E staining and immunohisto-chemistry experimental techniques in vitro and in vivo. Moreover, we explored its impact on drug resistance and tumor formation. Then we found that compared with the parental MOLT4 cells, the mRNA expression levels of stem cell-related factors Sox2, Oct4, C-myc, Klf4, Nanog, Bmi-1, CXCR4 are increased in hMDSCs-MOLT4 cells, together with the protein expression levels of Sox2, Oct4, Klf4, Nanog, CXCR4 and CD34. Our results indicated that hMDSCs-MOLT4 cells exhibited strong drug resistance and certain cancer stem cell-like characteristics. It is the first indication that the targeting stemness factors such as Sox2, Oct4, Klf4, Nanog and CXCR4 may represent plausible options for eliminating T-ALL stem-like cells. The present findings shed light on the relationship between drug-tolerant leukemic cells and cancer stem cells.
Collapse
|
23
|
The Importance of CD44 as a Stem Cell Biomarker and Therapeutic Target in Cancer. Stem Cells Int 2016; 2016:2087204. [PMID: 27200096 PMCID: PMC4856920 DOI: 10.1155/2016/2087204] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/27/2016] [Indexed: 02/07/2023] Open
Abstract
CD44 is a cell surface HA-binding glycoprotein that is overexpressed to some extent by almost all tumors of epithelial origin and plays an important role in tumor initiation and metastasis. CD44 is a compelling marker for cancer stem cells of many solid malignancies. In addition, interaction of HA and CD44 promotes EGFR-mediated pathways, consequently leading to tumor cell growth, tumor cell migration, and chemotherapy resistance in solid cancers. Accumulating evidence indicates that major HA-CD44 signaling pathways involve a specific variant of CD44 isoforms; however, the particular variant almost certainly depends on the type of tumor cell and the stage of the cancer progression. Research to date suggests use of monoclonal antibodies against different CD44 variant isoforms and targeted inhibition of HA/CD44-mediated signaling combined with conventional radio/chemotherapy may be the most favorable therapeutic strategy for future treatments of advanced stage malignancies. Thus, this paper briefly focuses on the association of the major CD44 variant isoforms in cancer progression, the role of HA-CD44 interaction in oncogenic pathways, and strategies to target CD44-overexpressed tumor cells.
Collapse
|
24
|
Gao Y, Gao J, Li M, Zheng Y, Wang Y, Zhang H, Wang W, Chu Y, Wang X, Xu M, Cheng T, Ju Z, Yuan W. Rheb1 promotes tumor progression through mTORC1 in MLL-AF9-initiated murine acute myeloid leukemia. J Hematol Oncol 2016; 9:36. [PMID: 27071307 PMCID: PMC4830070 DOI: 10.1186/s13045-016-0264-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/03/2016] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The constitutive hyper-activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways has frequently been associated with acute myeloid leukemia (AML). While many inhibitors targeting these pathways have been developed, the anti-leukemic effect was not as robust as expected. As part of the molecular link between PI3K/Akt and mTOR kinase, the role of Rheb1 in AML remains unexplored. Our study aims to explore the role of Rheb1 in AML and estimate whether Rheb1 could be a potential target of AML treatment. METHODS The expressions of Rheb1 and other indicated genes were analyzed using real-time PCR. AML mouse model was established by retrovirus transduction. Leukemia cell properties and related signaling pathways were dissected by in vitro and in vivo studies. The transcriptional changes were analyzed via gene chip analysis. Molecular reagents including mTOR inhibitor and mTOR activator were used to evaluate the function of related signaling pathway in the mouse model. RESULTS We observed that Rheb1 is overexpressed in AML patients and the change of Rheb1 level in AML patients is associated with their median survival. Using a Rheb1-deficient MLL-AF9 murine AML model, we revealed that Rheb1 deletion prolonged the survival of AML mice by weakening LSC function. In addition, Rheb1 deletion arrested cell cycle progression and enhanced apoptosis of AML cells. Furthermore, while Rheb1 deletion reduced mTORC1 activity in AML cells, additional rapamycin treatment further decreased mTORC1 activity and increased the apoptosis of Rheb1 (Δ/Δ) AML cells. The mTOR activator 3BDO partially rescued mTORC1 signaling and inhibited apoptosis in Rheb1 (Δ/Δ) AML cells. CONCLUSIONS Our data suggest that Rheb1 promotes AML progression through mTORC1 signaling pathway and combinational drug treatments targeting Rheb1 and mTOR might have a better therapeutic effect on leukemia.
Collapse
Affiliation(s)
- Yanan Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, CAMS & PUMC, Beijing, China
| | - Juan Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, CAMS & PUMC, Beijing, China
| | - Minghao Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, CAMS & PUMC, Beijing, China
| | - Yawei Zheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, CAMS & PUMC, Beijing, China
| | - Yajie Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, CAMS & PUMC, Beijing, China
| | - Hongyan Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, CAMS & PUMC, Beijing, China
| | - Weili Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, CAMS & PUMC, Beijing, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, CAMS & PUMC, Beijing, China
| | - Xiaomin Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, CAMS & PUMC, Beijing, China.
| | - Mingjiang Xu
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, CAMS & PUMC, Beijing, China
| | - Zhenyu Ju
- Institute of Aging, Hangzhou Normal University, Hangzhou, 310036, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, CAMS & PUMC, Beijing, China.
| |
Collapse
|
25
|
Xu H, Tian Y, Yuan X, Liu Y, Wu H, Liu Q, Wu GS, Wu K. Enrichment of CD44 in basal-type breast cancer correlates with EMT, cancer stem cell gene profile, and prognosis. Onco Targets Ther 2016; 9:431-44. [PMID: 26855592 PMCID: PMC4727509 DOI: 10.2147/ott.s97192] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cluster of differentiation 44 (CD44) is a transmembrane glycoprotein that serves as the receptor for the extracellular matrix component hyaluronic acid. CD44 has been reported to play key roles in cell proliferation, motility, and survival, but its role in breast cancer remains controversial. In this study, we conducted a meta-analysis. A total of 23 published Gene Expression Omnibus databases were included to evaluate the association between CD44 mRNA expression and clinicopathological characteristics or prognosis of the patients with breast cancer. Our analysis revealed that CD44 expression was associated with clinicopathological features, including the histological grade, estrogen receptor status, progesterone receptor status, and human epidermal growth factor receptor-2 status. Higher levels of CD44 expression were observed in the basal subtype of breast cancer both at the mRNA and protein levels (odds ratio [OR] =2.08, 95% confidence interval [CI]: 1.72–2.52; OR =2.11, 95% CI: 1.67–2.68). Patients with CD44 overexpression exhibited significantly worse overall survival (hazard ratio =1.27; 95% CI: 1.04–1.55). Whole gene profile analysis revealed that CD44 expression was enriched in basal-type breast cancer and correlated with epithelial–mesenchymal transition and cancer stem cell gene profiles. In summary, our analyses indicated that CD44 potentially might be a prognostic marker for breast cancer and thus can serve as a therapeutic target for basal-type breast cancer.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yijun Tian
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xun Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yu Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hua Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qian Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Gen Sheng Wu
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kongming Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
26
|
Xu H, Tian Y, Yuan X, Wu H, Liu Q, Pestell RG, Wu K. The role of CD44 in epithelial-mesenchymal transition and cancer development. Onco Targets Ther 2015; 8:3783-92. [PMID: 26719706 PMCID: PMC4689260 DOI: 10.2147/ott.s95470] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
CD44, a multi-structural and multifunctional transmembrane glycoprotein, was initially identified as a receptor for hyaluronan that participates in both physiological and pathological processes. CD44 is found to be closely linked to the development of various solid tumors. Molecular studies have revealed that high CD44 expression was correlated with the phenotypes of cancer stem cells and epithelial–mesenchymal transition, thereby contributing to tumor invasion, metastasis, recurrence, and chemoresistance. Correspondingly, blockade of CD44 has been demonstrated to be capable of attenuating the malignant phenotype, slowing cancer progression, and reversing therapy resistance. Clinical analyses showed that high CD44 expression is associated with poor survival of various cancer patients, indicating that CD44 can be a potential prognostic marker. In this review, we summarize recent research progress of CD44 on tumor biology and the clinical significance of CD44.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yijun Tian
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xun Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hua Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qian Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Richard G Pestell
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kongming Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
27
|
Li G, Liu X, Du Q, Gao M, An J. Three dimensional de novo micro bone marrow and its versatile application in drug screening and regenerative medicine. Exp Biol Med (Maywood) 2015; 240:1029-38. [PMID: 26283705 DOI: 10.1177/1535370215594583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The finding that bone marrow hosts several types of multipotent stem cell has prompted extensive research aimed at regenerating organs and building models to elucidate the mechanisms of diseases. Conventional research depends on the use of two-dimensional (2D) bone marrow systems, which imposes several obstacles. The development of 3D bone marrow systems with appropriate molecules and materials however, is now showing promising results. In this review, we discuss the advantages of 3D bone marrow systems over 2D systems and then point out various factors that can enhance the 3D systems. The intensive research on 3D bone marrow systems has revealed multiple important clinical applications including disease modeling, drug screening, regenerative medicine, etc. We also discuss some possible future directions in the 3D bone marrow research field.
Collapse
Affiliation(s)
- Guanqun Li
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA
| | - Xujun Liu
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA
| | - Qian Du
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA
| | - Mei Gao
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA SUNY Upstate Cancer Research Institute, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA
| | - Jing An
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA SUNY Upstate Cancer Research Institute, State University of New York, Upstate Medical University, Syracuse, NY 13202, USA
| |
Collapse
|
28
|
Zöller M. CD44, Hyaluronan, the Hematopoietic Stem Cell, and Leukemia-Initiating Cells. Front Immunol 2015; 6:235. [PMID: 26074915 PMCID: PMC4443741 DOI: 10.3389/fimmu.2015.00235] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/30/2015] [Indexed: 12/14/2022] Open
Abstract
CD44 is an adhesion molecule that varies in size due to glycosylation and insertion of so-called variant exon products. The CD44 standard isoform (CD44s) is highly expressed in many cells and most abundantly in cells of the hematopoietic system, whereas expression of CD44 variant isoforms (CD44v) is more restricted. CD44s and CD44v are known as stem cell markers, first described for hematopoietic stem cells and later on confirmed for cancer- and leukemia-initiating cells. Importantly, both abundantly expressed CD44s as well as CD44v actively contribute to the maintenance of stem cell features, like generating and embedding in a niche, homing into the niche, maintenance of quiescence, and relative apoptosis resistance. This is surprising, as CD44 is not a master stem cell gene. I here will discuss that the functional contribution of CD44 relies on its particular communication skills with neighboring molecules, adjacent cells and, last not least, the surrounding matrix. In fact, it is the interaction of the hyaluronan receptor CD44 with its prime ligand, which strongly assists stem cells to fulfill their special and demanding tasks. Recent fundamental progress in support of this “old” hypothesis, which may soon pave the way for most promising new therapeutics, is presented for both hematopoietic stem cell and leukemia-initiating cell. The contribution of CD44 to the generation of a stem cell niche, to homing of stem cells in their niche, to stem cell quiescence and apoptosis resistance will be in focus.
Collapse
Affiliation(s)
- Margot Zöller
- Department of Tumor Cell Biology, University Hospital of Surgery , Heidelberg , Germany
| |
Collapse
|
29
|
Prochazka L, Tesarik R, Turanek J. Regulation of alternative splicing of CD44 in cancer. Cell Signal 2014; 26:2234-9. [PMID: 25025570 DOI: 10.1016/j.cellsig.2014.07.011] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 07/02/2014] [Accepted: 07/08/2014] [Indexed: 02/07/2023]
Abstract
CD44 is a hyaluronan binding cell surface signal transducing receptor that influences motility, cell survival and proliferation as well as the formation of tumor microenvironment. CD44 contains two variable regions encoded by variable exons. Alternative splicing, which is often deregulated in cancer, can produce various isoforms of CD44 with properties that may have different tissue specific effects and therefore even diverse effects on cancer progression. This review summarizes and puts together all major regulators of alternative splicing of CD44 in cancer that have been documented so far and that have an experimentally proved effect on CD44 isoform switching. It is important to better understand the mechanisms of alternative splicing of CD44, where all the variability of CD44 originates, to be able to explain the isoform switching and occurrence of variant isoforms of CD44 (CD44v) in cancer.
Collapse
Affiliation(s)
- Lubomir Prochazka
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic.
| | - Radek Tesarik
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | - Jaroslav Turanek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|