1
|
Halabian R, Valizadeh Arshad, Ahmadi A, Saeedi P, Azimzadeh Jamalkandi S, Alivand MR. Laboratory methods to decipher epigenetic signatures: a comparative review. Cell Mol Biol Lett 2021; 26:46. [PMID: 34763654 PMCID: PMC8582164 DOI: 10.1186/s11658-021-00290-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics refers to nucleotide sequence-independent events, and heritable changes, including DNA methylation and histone modification (as the two main processes), contributing to the phenotypic features of the cell. Both genetics and epigenetics contribute to determining the outcome of regulatory gene expression systems. Indeed, the flexibility of epigenetic effects and stability of genetic coding lead to gene regulation complexity in response signals. Since some epigenetic changes are significant in abnormalities such as cancers and neurodegenerative diseases, the initial changes, dynamic and reversible properties, and diagnostic potential of epigenomic phenomena are subject to epigenome-wide association studies (EWAS) for therapeutic aims. Based on recent studies, methodological developments are necessary to improve epigenetic research. As a result, several methods have been developed to explore epigenetic alterations at low, medium, and high scales, focusing on DNA methylation and histone modification detection. In this research field, bisulfite-, enzyme sensitivity- and antibody specificity-based techniques are used for DNA methylation, whereas histone modifications are gained based on antibody recognition. This review provides a mechanism-based understanding and comparative overview of the most common techniques for detecting the status of epigenetic effects, including DNA methylation and histone modifications, for applicable approaches from low- to high-throughput scales.
Collapse
Affiliation(s)
- Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Valizadeh Arshad
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute For Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Pardis Saeedi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Mollasadra Ave., 14359-16471, Tehran, Iran.
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Galardi F, De Luca F, Romagnoli D, Biagioni C, Moretti E, Biganzoli L, Di Leo A, Migliaccio I, Malorni L, Benelli M. Cell-Free DNA-Methylation-Based Methods and Applications in Oncology. Biomolecules 2020; 10:E1677. [PMID: 33334040 PMCID: PMC7765488 DOI: 10.3390/biom10121677] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Liquid biopsy based on cell-free DNA (cfDNA) enables non-invasive dynamic assessment of disease status in patients with cancer, both in the early and advanced settings. The analysis of DNA-methylation (DNAm) from cfDNA samples holds great promise due to the intrinsic characteristics of DNAm being more prevalent, pervasive, and cell- and tumor-type specific than genomics, for which established cfDNA assays already exist. Herein, we report on recent advances on experimental strategies for the analysis of DNAm in cfDNA samples. We describe the main steps of DNAm-based analysis workflows, including pre-analytics of cfDNA samples, DNA treatment, assays for DNAm evaluation, and methods for data analysis. We report on protocols, biomolecular techniques, and computational strategies enabling DNAm evaluation in the context of cfDNA analysis, along with practical considerations on input sample requirements and costs. We provide an overview on existing studies exploiting cell-free DNAm biomarkers for the detection and monitoring of cancer in early and advanced settings, for the evaluation of drug resistance, and for the identification of the cell-of-origin of tumors. Finally, we report on DNAm-based tests approved for clinical use and summarize their performance in the context of liquid biopsy.
Collapse
Affiliation(s)
- Francesca Galardi
- «Sandro Pitigliani» Translational Research Unit, Hospital of Prato, 59100 Prato, Italy; (F.G.); (F.D.L.); (I.M.); (L.M.)
| | - Francesca De Luca
- «Sandro Pitigliani» Translational Research Unit, Hospital of Prato, 59100 Prato, Italy; (F.G.); (F.D.L.); (I.M.); (L.M.)
| | - Dario Romagnoli
- Bioinformatics Unit, Hospital of Prato, 59100 Prato, Italy; (D.R.); (C.B.)
| | - Chiara Biagioni
- Bioinformatics Unit, Hospital of Prato, 59100 Prato, Italy; (D.R.); (C.B.)
- «Sandro Pitigliani» Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy; (E.M.); (L.B.); (A.D.L.)
| | - Erica Moretti
- «Sandro Pitigliani» Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy; (E.M.); (L.B.); (A.D.L.)
| | - Laura Biganzoli
- «Sandro Pitigliani» Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy; (E.M.); (L.B.); (A.D.L.)
| | - Angelo Di Leo
- «Sandro Pitigliani» Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy; (E.M.); (L.B.); (A.D.L.)
| | - Ilenia Migliaccio
- «Sandro Pitigliani» Translational Research Unit, Hospital of Prato, 59100 Prato, Italy; (F.G.); (F.D.L.); (I.M.); (L.M.)
| | - Luca Malorni
- «Sandro Pitigliani» Translational Research Unit, Hospital of Prato, 59100 Prato, Italy; (F.G.); (F.D.L.); (I.M.); (L.M.)
- «Sandro Pitigliani» Medical Oncology Department, Hospital of Prato, 59100 Prato, Italy; (E.M.); (L.B.); (A.D.L.)
| | - Matteo Benelli
- Bioinformatics Unit, Hospital of Prato, 59100 Prato, Italy; (D.R.); (C.B.)
| |
Collapse
|
3
|
Hosgood Iii HD, Díaz-Peña R, Blansky D, Jaime S, Parra V, Boekstegers F, Bermejo JL, García-Valero J, Montes JF, Valdivia G, Miravitlles M, Agustí À, Silva RS, Olloquequi J. PRDM15 Is Associated with Risk of Chronic Obstructive Pulmonary Disease in a Rural Population in Chile. Respiration 2020; 99:307-315. [PMID: 32222710 DOI: 10.1159/000506649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/17/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have accelerated our understanding of the genetic underpinnings of chronic obstructive pulmonary disease (COPD); however, GWAS populations have typically consisted of European descent, with ∼1% of Latin American ancestry. OBJECTIVE To overcome this limitation, we conducted a GWAS in a rural Chilean population with increased COPD risk to investigate genetic variation of COPD risk in this understudied minority population. METHOD We carried out a case-control study of 214 COPD patients (defined by the GOLD criteria) and 193 healthy controls in Talca, Chile. DNA was extracted from venous blood and genotyped on the Illumina Global Screening Array (n = 754,159 markers). After exclusion based on Hardy-Weinberg equilibrium (p ≤ 0.001), call rates (<95%), and minor allele frequencies (<0.5%) in controls, 455,564 markers were available for logistic regression. RESULTS PRDM15 rs1054761 C allele (p = 2.22 × 10-7) was associated with decreased COPD risk. Three PRDM15 SNPs located on chromosome 21 were significantly associated with COPD risk (p < 10-6). Two of these SNPs, rs1054761 and rs4075967, were located on a noncoding transcript variant region of the gene. CONCLUSION PRDM15 overexpression may play a role in the B-cell dysregulation in COPD pathogenesis. To the best of our knowledge, the association between PRDM15 and COPD risk was not previously found in GWAS studies in largely European populations, highlighting the importance of investigating novel variants associated with COPD risk among ethnically diverse populations.
Collapse
Affiliation(s)
- H Dean Hosgood Iii
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Roberto Díaz-Peña
- Laboratory of Cellular and Molecular Pathology, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Deanna Blansky
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sergio Jaime
- Unidad Respiratorio, Centro de Diagnóstico Terapéutico, Hospital Regional de Talca, Talca, Chile
| | - Viviana Parra
- Unidad Respiratorio, Centro de Diagnóstico Terapéutico, Hospital Regional de Talca, Talca, Chile
| | - Felix Boekstegers
- Statistical Genetics Group, Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Justo Lorenzo Bermejo
- Statistical Genetics Group, Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - José García-Valero
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Juan F Montes
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Gonzalo Valdivia
- Departamento de Salud Pública, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d'Hebron/Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Àlvar Agustí
- Respiratory Institute, Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Rafael S Silva
- Unidad Respiratorio, Centro de Diagnóstico Terapéutico, Hospital Regional de Talca, Talca, Chile
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile,
| |
Collapse
|
4
|
Corso-Díaz X, Jaeger C, Chaitankar V, Swaroop A. Epigenetic control of gene regulation during development and disease: A view from the retina. Prog Retin Eye Res 2018; 65:1-27. [PMID: 29544768 PMCID: PMC6054546 DOI: 10.1016/j.preteyeres.2018.03.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 12/20/2022]
Abstract
Complex biological processes, such as organogenesis and homeostasis, are stringently regulated by genetic programs that are fine-tuned by epigenetic factors to establish cell fates and/or to respond to the microenvironment. Gene regulatory networks that guide cell differentiation and function are modulated and stabilized by modifications to DNA, RNA and proteins. In this review, we focus on two key epigenetic changes - DNA methylation and histone modifications - and discuss their contribution to retinal development, aging and disease, especially in the context of age-related macular degeneration (AMD) and diabetic retinopathy. We highlight less-studied roles of DNA methylation and provide the RNA expression profiles of epigenetic enzymes in human and mouse retina in comparison to other tissues. We also review computational tools and emergent technologies to profile, analyze and integrate epigenetic information. We suggest implementation of editing tools and single-cell technologies to trace and perturb the epigenome for delineating its role in transcriptional regulation. Finally, we present our thoughts on exciting avenues for exploring epigenome in retinal metabolism, disease modeling, and regeneration.
Collapse
Affiliation(s)
- Ximena Corso-Díaz
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catherine Jaeger
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Klinkebiel D, Zhang W, Akers SN, Odunsi K, Karpf AR. DNA Methylome Analyses Implicate Fallopian Tube Epithelia as the Origin for High-Grade Serous Ovarian Cancer. Mol Cancer Res 2016; 14:787-94. [PMID: 27259716 DOI: 10.1158/1541-7786.mcr-16-0097] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/16/2016] [Indexed: 12/29/2022]
Abstract
UNLABELLED High-grade serous ovarian cancer (HGSC) is the most common and lethal form of epithelial ovarian cancer (EOC). Two distinct tissues have been suggested as the tissue of origin: ovarian surface epithelia (OSE) and fallopian tube epithelia (FTE). We hypothesized that the DNA methylome of HGSC should more closely resemble the methylome of its tissue of origin. To this end, we profiled HGSC (n = 10), and patient-matched OSE and FTE (n = 5) primary fresh-frozen tissues, and analyzed the DNA methylome using Illumina 450K arrays (n = 20) and Agilent Sure Select methyl-seq (n = 7). Methylomes were compared using statistical analyses of differentially methylated CpG sites (DMC) and differentially methylated regions (DMR). In addition, methylation was evaluated within a variety of different genomic contexts, including CpG island shores and Homeobox (HOX) genes, due to their roles in tissue specification. Publicly available HGSC methylome data (n = 628) were interrogated to provide additional comparisons with FTE and OSE for validation. These analyses revealed that HGSC and FTE methylomes are significantly and consistently more highly conserved than are HGSC and OSE. Pearson correlations and hierarchal clustering of genes, promoters, CpG islands, CpG island shores, and HOX genes all revealed increased relatedness of HGSC and FTE methylomes. Thus, these findings reveal that the landscape of FTE more closely resembles HGSC, the most common and deadly EOC subtype. IMPLICATIONS DNA methylome analyses support the hypothesis that HGSC arise from the fallopian tube and that due to its tissue-specificity and biochemical stability, interrogation of the methylome may be a valuable approach to examine cell/tissue lineage in cancer. Mol Cancer Res; 14(9); 787-94. ©2016 AACR.
Collapse
Affiliation(s)
- David Klinkebiel
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Wa Zhang
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska
| | - Stacey N Akers
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York. Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York. Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York
| | - Adam R Karpf
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, Nebraska. The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
6
|
Mo A, Luo C, Davis FP, Mukamel EA, Henry GL, Nery JR, Urich MA, Picard S, Lister R, Eddy SR, Beer MA, Ecker JR, Nathans J. Epigenomic landscapes of retinal rods and cones. eLife 2016; 5:e11613. [PMID: 26949250 PMCID: PMC4798964 DOI: 10.7554/elife.11613] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/18/2016] [Indexed: 12/28/2022] Open
Abstract
Rod and cone photoreceptors are highly similar in many respects but they have important functional and molecular differences. Here, we investigate genome-wide patterns of DNA methylation and chromatin accessibility in mouse rods and cones and correlate differences in these features with gene expression, histone marks, transcription factor binding, and DNA sequence motifs. Loss of NR2E3 in rods shifts their epigenomes to a more cone-like state. The data further reveal wide differences in DNA methylation between retinal photoreceptors and brain neurons. Surprisingly, we also find a substantial fraction of DNA hypo-methylated regions in adult rods that are not in active chromatin. Many of these regions exhibit hallmarks of regulatory regions that were active earlier in neuronal development, suggesting that these regions could remain undermethylated due to the highly compact chromatin in mature rods. This work defines the epigenomic landscapes of rods and cones, revealing features relevant to photoreceptor development and function. DOI:http://dx.doi.org/10.7554/eLife.11613.001 Vision in humans is made possible by a light-sensing sheet of cells at the back of the eye called the retina. The surface of the retina is populated by specialized sensory cells, known as rods and cones. The rod cells detect very dim light, while the cones are less sensitive to light but are used to detect color. Together, the rods and cones gather the information needed to create a picture that is then transmitted to the brain. Rods and cones have been studied for decades, and genetic analyses have revealed the patterns of gene expression that lead a cell to develop into either a rod or a cone. Researchers have also identified several key regulatory genes that control these patterns, but less is known about the role of other factors that control the expression of genes. Chemical modifications to DNA or modifications to the proteins associated with DNA – which are collectively called epigenetic modifications – can either promote or inhibit the activation of nearby genes. Now, Mo et al. have shown that rods and cones from mice have very different patterns of epigenetic modifications. The experiments also revealed that many sections of DNA that are marked to promote gene activation contain known rod-specific or cone-specific genes; and that rod cells need a known regulatory gene to develop their specific pattern of epigenetic modifications. Finally, Mo et al. showed that epigenetic regulation differed between brain cells and rods and cones. These insights into epigenetic regulation of rod and cone genes may help explain why some people with eye diseases caused by the same genetic mutation may develop symptoms at different ages or lose vision at different rates. The new information about gene regulation may also help scientists to reprogram stem cells to become healthy rods or cones that could be transplanted into people with eye disease to restore their vision. DOI:http://dx.doi.org/10.7554/eLife.11613.002
Collapse
Affiliation(s)
- Alisa Mo
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Chongyuan Luo
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States.,Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, United States
| | - Fred P Davis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Eran A Mukamel
- Department of Cognitive Science, University of California San Diego, La Jolla, United States
| | - Gilbert L Henry
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Mark A Urich
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Serge Picard
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ryan Lister
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States.,The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Australia
| | - Sean R Eddy
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Michael A Beer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, United States
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States.,Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, United States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
7
|
Wee EJH, Ha Ngo T, Trau M. A simple bridging flocculation assay for rapid, sensitive and stringent detection of gene specific DNA methylation. Sci Rep 2015; 5:15028. [PMID: 26458746 PMCID: PMC4602207 DOI: 10.1038/srep15028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/15/2015] [Indexed: 02/06/2023] Open
Abstract
The challenge of bringing DNA methylation biomarkers into clinic is the lack of simple methodologies as most current assays have been developed for research purposes. To address the limitations of current methods, we describe herein a novel methyl-protein domain (MBD) enrichment protocol for simple yet rapid and highly stringent selection of highly methylated DNA from limiting input samples. We then coupled this with a DNA-mediated flocculation assay for rapid and low cost naked-eye binary evaluation of highly methylated genes in cell line and blood DNA. The low resource requirements of our method may enable widespread adoption of DNA methylation-based diagnostics in clinic and may be useful for small-scale research.
Collapse
Affiliation(s)
- Eugene J H Wee
- Centre for Personalized NanoMedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Thu Ha Ngo
- Centre for Personalized NanoMedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.,Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Matt Trau
- Centre for Personalized NanoMedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
8
|
Wee EJH, Ngo TH, Trau M. Colorimetric detection of both total genomic and loci-specific DNA methylation from limited DNA inputs. Clin Epigenetics 2015; 7:65. [PMID: 26167236 PMCID: PMC4498563 DOI: 10.1186/s13148-015-0100-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/25/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Aberrant DNA methylation marks are potential disease biomarkers, and detecting both total genomic and gene-specific DNA methylation can aid in clinical decisions. While a plethora of methods exist in research, simpler, more convenient alternatives are needed to enhance both routine diagnostics and research. RESULTS Herein, we describe colorimetric assays using methyl-binding domain (MBD) proteins for rapid and convenient evaluation of total genomic and gene-specific methylation from 50 ng or less DNA input in under 2 h. As little as 5 % methylation differences can be detected and are enhanced by a novel MBD protocol for improved specificity. Our assays could differentiate naïve from de-methylating drug-treated cells and detect the presence of a methylated prostate cancer biomarker in the urine. Finally, the assay was evolved onto disposable screen-printed electrodes for convenient detection of gene-specific methylation in urine. CONCLUSIONS Rapid MBD-based colorimetric and electrochemical approaches to detect DNA methylation from limited samples were successfully demonstrated and applied to clinical samples. We envision that the ease, low sample requirements and speed of these assays could have both clinical and research-wide applications.
Collapse
Affiliation(s)
- Eugene J H Wee
- Centre for Personalized NanoMedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland Australia
| | - Thu Ha Ngo
- Centre for Personalized NanoMedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland Australia ; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland Australia ; Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Matt Trau
- Centre for Personalized NanoMedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland Australia ; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland Australia
| |
Collapse
|
9
|
Yang HJ, Ratnapriya R, Cogliati T, Kim JW, Swaroop A. Vision from next generation sequencing: multi-dimensional genome-wide analysis for producing gene regulatory networks underlying retinal development, aging and disease. Prog Retin Eye Res 2015; 46:1-30. [PMID: 25668385 PMCID: PMC4402139 DOI: 10.1016/j.preteyeres.2015.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/18/2015] [Accepted: 01/21/2015] [Indexed: 01/10/2023]
Abstract
Genomics and genetics have invaded all aspects of biology and medicine, opening uncharted territory for scientific exploration. The definition of "gene" itself has become ambiguous, and the central dogma is continuously being revised and expanded. Computational biology and computational medicine are no longer intellectual domains of the chosen few. Next generation sequencing (NGS) technology, together with novel methods of pattern recognition and network analyses, has revolutionized the way we think about fundamental biological mechanisms and cellular pathways. In this review, we discuss NGS-based genome-wide approaches that can provide deeper insights into retinal development, aging and disease pathogenesis. We first focus on gene regulatory networks (GRNs) that govern the differentiation of retinal photoreceptors and modulate adaptive response during aging. Then, we discuss NGS technology in the context of retinal disease and develop a vision for therapies based on network biology. We should emphasize that basic strategies for network construction and analyses can be transported to any tissue or cell type. We believe that specific and uniform guidelines are required for generation of genome, transcriptome and epigenome data to facilitate comparative analysis and integration of multi-dimensional data sets, and for constructing networks underlying complex biological processes. As cellular homeostasis and organismal survival are dependent on gene-gene and gene-environment interactions, we believe that network-based biology will provide the foundation for deciphering disease mechanisms and discovering novel drug targets for retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Hyun-Jin Yang
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA
| | - Rinki Ratnapriya
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA
| | - Tiziana Cogliati
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA
| | - Jung-Woong Kim
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA.
| |
Collapse
|
10
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
11
|
Wan J, Oliver VF, Wang G, Zhu H, Zack DJ, Merbs SL, Qian J. Characterization of tissue-specific differential DNA methylation suggests distinct modes of positive and negative gene expression regulation. BMC Genomics 2015; 16:49. [PMID: 25652663 PMCID: PMC4331481 DOI: 10.1186/s12864-015-1271-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/22/2015] [Indexed: 01/20/2023] Open
Abstract
Background DNA methylation plays an important role in regulating gene expression during many biological processes. However, the mechanism of DNA-methylation-dependent gene regulation is not fully understood. Here, we explore two possible DNA methylation regulatory mechanisms with opposite modes of gene expression regulation. Results By comparing the genome-wide methylation and expression patterns in different tissues, we find that majority of tissue-specific differentially methylated regions (T-DMRs) are negatively correlated with expression of their associated genes (negative T-DMRs), consistent with the classical dogma that DNA methylation suppresses gene expression; however, a significant portion of T-DMRs are positively correlated with gene expression (positive T-DMRs). We observe that the positive T-DMRs have similar genomic location as negative T-DMRs, except that the positive T-DMRs are more enriched in the promoter regions. Both positive and negative T-DMRs are enriched in DNase I hypersensitivity sites (DHSs), suggesting that both are likely to be functional. The CpG sites of both positive and negative T-DMRs are also more evolutionarily conserved than the genomic background. Interestingly, the putative target genes of the positive T-DMR are enriched for negative regulators such as transcriptional repressors, suggesting a novel mode of indirect DNA methylation inhibition of expression through transcriptional repressors. Likewise, two distinct sets of DNA sequence motifs exist for positive and negative T-DMRs, suggesting that two distinct sets of transcription factors (TFs) are involved in positive and negative regulation mediated by DNA methylation. Conclusions We find both negative and positive association between T-DMRs and gene expression, which implies the existence of two different mechanisms of DNA methylation-dependent gene regulation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1271-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Wan
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, MA, USA.
| | - Verity F Oliver
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, MA, USA.
| | - Guohua Wang
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, MA, USA.
| | - Heng Zhu
- Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, Baltimore, MA, USA.
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, MA, USA. .,Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MA, USA. .,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MA, USA. .,Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MA, USA. .,Institut de la Vision, Université Pierre et Marie Curie, 17 rue Moreau, Paris, France.
| | - Shannath L Merbs
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, MA, USA.
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, MA, USA.
| |
Collapse
|
12
|
Advances in the profiling of DNA modifications: cytosine methylation and beyond. Nat Rev Genet 2014; 15:647-61. [PMID: 25159599 DOI: 10.1038/nrg3772] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemical modifications of DNA have been recognized as key epigenetic mechanisms for maintenance of the cellular state and memory. Such DNA modifications include canonical 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC). Recent advances in detection and quantification of DNA modifications have enabled epigenetic variation to be connected to phenotypic consequences on an unprecedented scale. These methods may use chemical or enzymatic DNA treatment, may be targeted or non-targeted and may utilize array-based hybridization or sequencing. Key considerations in the choice of assay are cost, minimum sample input requirements, accuracy and throughput. This Review discusses the principles behind recently developed techniques, compares their respective strengths and limitations and provides general guidelines for selecting appropriate methods for specific experimental contexts.
Collapse
|
13
|
Oliver VF, Franchina M, Jaffe AE, Branham KE, Othman M, Heckenlively JR, Swaroop A, Campochiaro B, Vote BJ, Craig JE, Saffery R, Mackey DA, Qian J, Zack DJ, Hewitt AW, Merbs SL. Hypomethylation of the IL17RC promoter in peripheral blood leukocytes is not a hallmark of age-related macular degeneration. Cell Rep 2014; 5:1527-35. [PMID: 24373284 DOI: 10.1016/j.celrep.2013.11.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/25/2013] [Accepted: 11/26/2013] [Indexed: 01/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of visual impairment worldwide. Aberrant DNA methylation within the promoter of IL17RC in peripheral blood mononuclear cells has recently been reported in AMD. To validate this association, we examined DNA methylation of the IL17RC promoter in peripheral blood. First, we used Illumina Human Methylation450 Bead Arrays, a widely accepted platform for measuring global DNA methylation. Second, methylation status at multiple sites within the IL17RC promoter was determined by bisulfite pyrosequencing in two cohorts. Third, a methylation-sensitive quantitative PCR-based assay was performed on a subset of samples. In contrast to previous findings, we did not find evidence of differential methylation between AMD cases and age-matched controls. We conclude that hypomethylation within the IL17RC gene promoter in peripheral blood is not suitable for use as a clinical biomarker of AMD. This study highlights the need for considerable replication of epigenetic association studies prior to clinical application.
Collapse
Affiliation(s)
- Verity F Oliver
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Maria Franchina
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, WA 6009, Australia
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21287, USA
| | - Kari E Branham
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Mohammad Othman
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - John R Heckenlively
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Anand Swaroop
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Betsy Campochiaro
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Brendan J Vote
- Launceston Eye Institute, University of Tasmania, Launceston 7249, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, SA 5042, Australia
| | - Richard Saffery
- Cancer and Disease Epigenetics, Murdoch Childrens Research Institute, University of Melbourne, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, WA 6009, Australia
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Molecular Biology and Genetics, Department of Neuroscience, and Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; Institut de la Vision, Université Pierre et Marie Curie, Paris 75012, France
| | - Alex W Hewitt
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, WA 6009, Australia; Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia.
| | - Shannath L Merbs
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| |
Collapse
|
14
|
|
15
|
Zou D, Zhang D, Liu S, Zhao B, Wang H. Interplay of binding stoichiometry and recognition specificity for the interaction of MBD2b protein and methylated DNA revealed by affinity capillary electrophoresis coupled with laser-induced fluorescence analysis. Anal Chem 2014; 86:1775-82. [PMID: 24422445 DOI: 10.1021/ac4036636] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The methyl-CpG binding domain (MBD) family proteins can specifically bind methylated DNA sequences and thereby mediate gene transcription. In this study, we used neutral capillary electrophoresis coupled with laser-induced fluorescence to investigate the interactions of DNA and MBD2b, a model MBD family protein with the highest affinity. For this purpose, we synthesized 13 double-stranded oligonucleotides of varying length (20 bp to 80 bp) and of varying methylation density. The sequences of these oligonucleotides were adapted from a frequently methylated promoter region of human p16(INK4a) gene. We demonstrate that multiple MBD2b proteins can bind to one DNA molecule with a DNA length-dependent binding stoichiometry. Each MBD2b protein can occupy 20 nucleotides in a bound DNA molecule regardless of the methylation status of DNA. By binding multiple MBD2b proteins (up to four protein molecules) to one dsDNA molecule (80 bp), methylated and unmethylated DNA were bound at similar percentages. Although the total amount of the DNA-MBD2b complexes increases with increasing DNA length for both unmethylated and methylated DNA, the DNA-MBD2b complexes of 1:1 display more than 10-fold higher affinity for methylated DNA (e.g., 40 bp DNA) accompanying a 20-fold lower dissociation rate constant. Hence, our study clarifies for the first time that the specificity of MBD2b to methylated DNA decreases as more MBD2b monomers binding to the same region of DNA. Additionally, this study opens a new venue to improve MBD protein-based assays for detecting DNA methylation.
Collapse
Affiliation(s)
- Dandan Zou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 China
| | | | | | | | | |
Collapse
|
16
|
Wan J, Oliver VF, Zhu H, Zack DJ, Qian J, Merbs SL. Integrative analysis of tissue-specific methylation and alternative splicing identifies conserved transcription factor binding motifs. Nucleic Acids Res 2013; 41:8503-14. [PMID: 23887936 PMCID: PMC3794605 DOI: 10.1093/nar/gkt652] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The exact role of intragenic DNA methylation in regulating tissue-specific gene regulation is unclear. Recently, the DNA-binding protein CTCF has been shown to participate in the regulation of alternative splicing in a DNA methylation-dependent manner. To globally evaluate the relationship between DNA methylation and tissue-specific alternative splicing, we performed genome-wide DNA methylation profiling of mouse retina and brain. In protein-coding genes, tissue-specific differentially methylated regions (T-DMRs) were preferentially located in exons and introns. Gene ontology and evolutionary conservation analysis suggest that these T-DMRs are likely to be biologically relevant. More than 14% of alternatively spliced genes were associated with a T-DMR. T-DMR-associated genes were enriched for developmental genes, suggesting that a specific set of alternatively spliced genes may be regulated through DNA methylation. Novel DNA sequences motifs overrepresented in T-DMRs were identified as being associated with positive and/or negative regulation of alternative splicing in a position-dependent context. The majority of these evolutionarily conserved motifs contain a CpG dinucleotide. Some transcription factors, which recognize these motifs, are known to be involved in splicing. Our results suggest that DNA methylation-dependent alternative splicing is widespread and lay the foundation for further mechanistic studies of the role of DNA methylation in tissue-specific splicing regulation.
Collapse
Affiliation(s)
- Jun Wan
- Department of Ophthalmology, Wilmer Institute, Johns Hopkins University School of Medicine, 600 North Wolfe Street, 21287 Baltimore, MD, USA, Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, 21287 Baltimore, MD, USA, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 600 North Wolfe Street, 21287 Baltimore, MD, USA, Department of Neuroscience, Johns Hopkins University School of Medicine, 600 North Wolfe Street, 21287 Baltimore, MD, USA, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 600 North Wolfe Street, 21287 Baltimore, MD, USA and Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | | | | | | | | | | |
Collapse
|