1
|
Mu X, Yuan S, Zhang D, Lai R, Liao C, Li G. Selective modulation of alkali metal ions on acetylcholinesterase. Phys Chem Chem Phys 2023; 25:30308-30318. [PMID: 37934509 DOI: 10.1039/d3cp02887a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Acetylcholinesterase (AChE) is an important hydrolase in cholinergic synapses and a candidate target in the treatment of Alzheimer's disease. The lithium treatment widely used in neurological disorders can alter the AChE activity, yet the underlying mechanism of how the ion species regulate the enzymatic activity remains unclear. In this work, we performed combined quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) simulations and well-tempered metadynamics to understand the modulation of human AChE (hAChE) activity using three alkali metal ions (Li+, Na+, and K+) in different concentrations. Our simulations show that the binding affinity and catalytic activity are affected by different ion species through allosteric ion coordination geometries on the hAChE complex and distant electrostatic screening effect. A Li+ cluster involving D330, E393, and D397 residues and three Li+ ions was found to be highly conserved and can be critical to the enzyme activity. Binding energy calculations indicate that the electrostatic screening from allosterically bound cations can affect the key residues at the catalytic site and active-site gorge, including E199. Furthermore, an increase in ion concentration can lead to lower reactivity, especially for Li+ ions, which exhibit more cation-hAChE contacts than Na+ and K+. The selective ion binding and their preferred modulation on hAChE are highly related to ion species. This work provides a molecular perspective on selective modulation by different ion species of the enzyme catalytic processes.
Collapse
Affiliation(s)
- Xia Mu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Shengwei Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Dinglin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Rui Lai
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Chenyi Liao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
2
|
Le Chua X, Tong CS, Xǔ XJ, Su M, Xiao S, Wu X, Wu M. Competition and Synergy of Arp2/3 and Formins in Nucleating Actin Waves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557508. [PMID: 37745345 PMCID: PMC10515902 DOI: 10.1101/2023.09.13.557508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The assembly and disassembly of actin filaments and their regulatory proteins are crucial for maintaining cell structure or changing physiological state. However, because of the tremendous global impact of actin on diverse cellular processes, dissecting the specific role of actin regulatory proteins remains challenging. In this study, we employ actin waves that propagate on the cortex of mast cell to investigate the interplay between formins and the Arp2/3 complex in the nucleating and turnover of cortical actin. Our findings reveal that the recruitment of FMNL1 and mDia3 precedes the Arp2/3 complex in cortical actin waves. Membrane and GTPase-interaction can drive oscillations of FMNL1 in an actin-dependent manner, but active Cdc42 waves or constitutively-active FMNL1 mutant can form without actin waves. In addition to the apparent coordinated assembly of formins and Arp2/3, we further reveal their antagonism, where inhibition of Arp2/3 complex by CK-666 led to a transient increase in the recruitment of formins and actin polymerization. Our analysis suggest that the antagonism could not be explained for the competition between FMNL1 and Arp2/3 for monomeric actin. Rather, it is regulated by a limited pool of their common upstream regulator, Cdc42, whose level is negatively regulated by Arp2/3. Collectively, our study highlights the multifaceted interactions, cooperative or competitive, between formins and Arp2/3 complex, in the intricate and dynamic control of actin cytoskeletal network.
Collapse
Affiliation(s)
- Xiang Le Chua
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557
| | - Chee San Tong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557
| | - X J Xǔ
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Physics, Yale University, New Haven, CT 06511, USA
| | - Maohan Su
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Shengping Xiao
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557
| | - Xudong Wu
- School of Life Sciences, Westlake University, Hangzhou, China 310024
| | - Min Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore 117557
- Department of Physics, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
3
|
Yang Q, Miao Y, Campanello LJ, Hourwitz MJ, Abubaker-Sharif B, Bull AL, Devreotes PN, Fourkas JT, Losert W. Cortical waves mediate the cellular response to electric fields. eLife 2022; 11:73198. [PMID: 35318938 PMCID: PMC8942472 DOI: 10.7554/elife.73198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Electrotaxis, the directional migration of cells in a constant electric field, is important in regeneration, development, and wound healing. Electrotaxis has a slower response and a smaller dynamic range than guidance by other cues, suggesting that the mechanism of electrotaxis shares both similarities and differences with chemical-gradient-sensing pathways. We examine a mechanism centered on the excitable system consisting of cortical waves of biochemical signals coupled to cytoskeletal reorganization, which has been implicated in random cell motility. We use electro-fused giant Dictyostelium discoideum cells to decouple waves from cell motion and employ nanotopographic surfaces to limit wave dimensions and lifetimes. We demonstrate that wave propagation in these cells is guided by electric fields. The wave area and lifetime gradually increase in the first 10 min after an electric field is turned on, leading to more abundant and wider protrusions in the cell region nearest the cathode. The wave directions display 'U-turn' behavior upon field reversal, and this switch occurs more quickly on nanotopography. Our results suggest that electric fields guide cells by controlling waves of signal transduction and cytoskeletal activity, which underlie cellular protrusions. Whereas surface receptor occupancy triggers both rapid activation and slower polarization of signaling pathways, electric fields appear to act primarily on polarization, explaining why cells respond to electric fields more slowly than to other guidance cues.
Collapse
Affiliation(s)
- Qixin Yang
- Department of Physics, University of Maryland, College Park, United States.,Institute for Physical Science and Technology, University of Maryland, College Park, United States
| | - Yuchuan Miao
- Department of Cell Biology, Johns Hopkins University, Baltimore, United States
| | - Leonard J Campanello
- Department of Physics, University of Maryland, College Park, United States.,Institute for Physical Science and Technology, University of Maryland, College Park, United States
| | - Matt J Hourwitz
- Department of Chemistry & Biochemistry, University of Maryland, College Park, United States
| | | | - Abby L Bull
- Department of Physics, University of Maryland, College Park, United States.,Institute for Physical Science and Technology, University of Maryland, College Park, United States
| | - Peter N Devreotes
- Department of Cell Biology, Johns Hopkins University, Baltimore, United States
| | - John T Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, United States.,Department of Chemistry & Biochemistry, University of Maryland, College Park, United States
| | - Wolfgang Losert
- Department of Physics, University of Maryland, College Park, United States.,Institute for Physical Science and Technology, University of Maryland, College Park, United States
| |
Collapse
|
4
|
Abstract
Classical enzyme kinetic theories are summarized and linked with modern discoveries here. The sequential catalytic events along time axis by enzyme are analyzed at the molecular level, and by using master equations, this writing tries to connect the microscopic molecular behavior of enzyme to kinetic data (like velocity and catalytic coefficient k) obtained in experiment: 1/k = t equals to the sum of the times taken by the constituent individual steps. The relationships between catalytic coefficient k, catalytic rate or velocity, the amount of time taken by each step and physical or biochemical conditions of the system are discussed, and the perspective and hypothetic equations proposed here regarding diffusion, conformational change, chemical conversion, product release steps and the whole catalytic cycle provide an interpretation of previous experimental observations and can be testified by future experiments.
Collapse
|
5
|
Xu J, Xie Y, Lu B, Zhang L. Charged Substrate and Product Together Contribute Like a Nonreactive Species to the Overall Electrostatic Steering in Diffusion-Reaction Processes. J Phys Chem B 2016; 120:8147-53. [PMID: 27070411 DOI: 10.1021/acs.jpcb.6b01393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Debye-Hückel limiting law is used to study the binding kinetics of substrate-enzyme system as well as to estimate the reaction rate of a electrostatically steered diffusion-controlled reaction process. It is based on a linearized Poisson-Boltzmann model and known for its accurate predictions in dilute solutions. However, the substrate and product particles are in nonequilibrium states and are possibly charged, and their contributions to the total electrostatic field cannot be explicitly studied in the Poisson-Boltzmann model. Hence the influences of substrate and product on reaction rate coefficient were not known. In this work, we consider all the charged species, including the charged substrate, product, and mobile salt ions in a Poisson-Nernst-Planck model, and then compare the results with previous work. The results indicate that both the charged substrate and product can significantly influence the reaction rate coefficient with different behaviors under different setups of computational conditions. It is interesting to find that when substrate and product are both considered, under an overall neutral boundary condition for all the bulk charged species, the computed reaction rate kinetics recovers a similar Debye-Hückel limiting law again. This phenomenon implies that the charged product counteracts the influence of charged substrate on reaction rate coefficient. Our analysis discloses the fact that the total charge concentration of substrate and product, though in a nonequilibrium state individually, obeys an equilibrium Boltzmann distribution, and therefore contributes as a normal charged ion species to ionic strength. This explains why the Debye-Hückel limiting law still works in a considerable range of conditions even though the effects of charged substrate and product particles are not specifically and explicitly considered in the theory.
Collapse
Affiliation(s)
- Jingjie Xu
- School of Mathematical Sciences, University of Science and Technology of China , Hefei, China
| | - Yan Xie
- State Key Laboratory of Scientific and Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences , Beijing, China
| | - Benzhuo Lu
- State Key Laboratory of Scientific and Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences , Beijing, China
| | - Linbo Zhang
- State Key Laboratory of Scientific and Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences , Beijing, China
| |
Collapse
|
6
|
Chapleau RR, McElroy CA, Ruark CD, Fleming EJ, Ghering AB, Schlager JJ, Poeppelman LD, Gearhart JM. High-Throughput Screening for Positive Allosteric Modulators Identified Potential Therapeutics against Acetylcholinesterase Inhibition. JOURNAL OF BIOMOLECULAR SCREENING 2015; 20:1142-9. [PMID: 26078409 DOI: 10.1177/1087057115591006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/20/2015] [Indexed: 11/16/2022]
Abstract
The current standard of care for treatment of organophosphate (OP) poisoning includes pretreatment with the weak reversible acetylcholinesterase (AChE) inhibitor pyridostigmine bromide. Because this drug is an AChE inhibitor, similar side effects exist as with OP poisoning. In an attempt to provide a therapeutic capable of mitigating AChE inhibition without such side effects, high-throughput screening was performed to identify a compound capable of increasing the catalytic activity of AChE. Herein, two such novel positive allosteric modulators (PAMs) of AChE are presented. These PAMs increase AChE activity threefold, but they fail to upshift the apparent IC50 of a variety of OPs. Further development and optimization of these compounds may lead to pre- and/or postexposure therapeutics with broad-spectrum efficacy against pesticide and nerve agent poisoning. In addition, they could be used to complement the current therapeutic standard of care to increase the activity of uninhibited AChE, potentially increasing the efficacy of current therapeutics in addition to altering the therapeutic window.
Collapse
Affiliation(s)
- Richard R Chapleau
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Wright Patterson AFB, OH, USA Molecular Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory (711 HPW/RHDJ), Wright Patterson AFB, OH, USA
| | - Craig A McElroy
- College of Pharmacy, Ohio State University, Columbus, OH, USA
| | - Christopher D Ruark
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Wright Patterson AFB, OH, USA Molecular Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory (711 HPW/RHDJ), Wright Patterson AFB, OH, USA
| | - Emily J Fleming
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Wright Patterson AFB, OH, USA Molecular Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory (711 HPW/RHDJ), Wright Patterson AFB, OH, USA
| | - Amy B Ghering
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Wright Patterson AFB, OH, USA Molecular Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory (711 HPW/RHDJ), Wright Patterson AFB, OH, USA
| | - John J Schlager
- Molecular Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory (711 HPW/RHDJ), Wright Patterson AFB, OH, USA
| | - Lee D Poeppelman
- Molecular Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory (711 HPW/RHDJ), Wright Patterson AFB, OH, USA
| | - Jeffery M Gearhart
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Wright Patterson AFB, OH, USA Molecular Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory (711 HPW/RHDJ), Wright Patterson AFB, OH, USA
| |
Collapse
|
7
|
Pan W, Daily M, Baker NA. Numerical calculation of protein-ligand binding rates through solution of the Smoluchowski equation using smoothed particle hydrodynamics. BMC BIOPHYSICS 2015; 8:7. [PMID: 25995835 PMCID: PMC4438506 DOI: 10.1186/s13628-015-0021-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/30/2015] [Indexed: 11/13/2022]
Abstract
Background The calculation of diffusion-controlled ligand binding rates is important for understanding enzyme mechanisms as well as designing enzyme inhibitors. Methods We demonstrate the accuracy and effectiveness of a Lagrangian particle-based method, smoothed particle hydrodynamics (SPH), to study diffusion in biomolecular systems by numerically solving the time-dependent Smoluchowski equation for continuum diffusion. Unlike previous studies, a reactive Robin boundary condition (BC), rather than the absolute absorbing (Dirichlet) BC, is considered on the reactive boundaries. This new BC treatment allows for the analysis of enzymes with “imperfect” reaction rates. Results The numerical method is first verified in simple systems and then applied to the calculation of ligand binding to a mouse acetylcholinesterase (mAChE) monomer. Rates for inhibitor binding to mAChE are calculated at various ionic strengths and compared with experiment and other numerical methods. We find that imposition of the Robin BC improves agreement between calculated and experimental reaction rates. Conclusions Although this initial application focuses on a single monomer system, our new method provides a framework to explore broader applications of SPH in larger-scale biomolecular complexes by taking advantage of its Lagrangian particle-based nature.
Collapse
Affiliation(s)
- Wenxiao Pan
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, MSID K7-90, 99352, Richland, PO Box 999 WA USA
| | - Michael Daily
- Chemical Physics and Analysis Division, Mathematics and Data Division, Pacific Northwest National Laboratory, MSID K1-83, 99352, Richland, PO Box 999 WA USA
| | - Nathan A Baker
- Computational and Statistical Analytics Division, Pacific Northwest National Laboratory, MSID K7-20, 99352, Richland, PO Box 999 WA USA
| |
Collapse
|
8
|
Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins. Toxins (Basel) 2014; 6:1222-43. [PMID: 24686769 PMCID: PMC4014730 DOI: 10.3390/toxins6041222] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 01/05/2023] Open
Abstract
Bacillus thuringiensis subsp. israelensis (Bti) is the first Bacillus thuringiensis to be found and used as an effective biological control agent against larvae of many mosquito and black fly species around the world. Its larvicidal activity resides in four major (of 134, 128, 72 and 27 kDa) and at least two minor (of 78 and 29 kDa) polypeptides encoded respectively by cry4Aa, cry4Ba, cry11Aa, cyt1Aa, cry10Aa and cyt2Ba, all mapped on the 128 kb plasmid known as pBtoxis. These six δ-endotoxins form a complex parasporal crystalline body with remarkably high, specific and different toxicities to Aedes, Culex and Anopheles larvae. Cry toxins are composed of three domains (perforating domain I and receptor binding II and III) and create cation-selective channels, whereas Cyts are composed of one domain that acts as well as a detergent-like membrane perforator. Despite the low toxicities of Cyt1Aa and Cyt2Ba alone against exposed larvae, they are highly synergistic with the Cry toxins and hence their combinations prevent emergence of resistance in the targets. The lack of significant levels of resistance in field mosquito populations treated for decades with Bti-bioinsecticide suggests that this bacterium will be an effective biocontrol agent for years to come.
Collapse
|
9
|
Mereghetti P, Kokh D, McCammon JA, Wade RC. Diffusion and association processes in biological systems: theory, computation and experiment. BMC BIOPHYSICS 2011; 4:2. [PMID: 21595997 PMCID: PMC3093674 DOI: 10.1186/2046-1682-4-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 03/02/2011] [Indexed: 12/17/2022]
Abstract
Macromolecular diffusion plays a fundamental role in biological processes. Here, we give an overview of recent methodological advances and some of the challenges for understanding how molecular diffusional properties influence biological function that were highlighted at a recent workshop, BDBDB2, the second Biological Diffusion and Brownian Dynamics Brainstorm.
Collapse
Affiliation(s)
- Paolo Mereghetti
- Heidelberg Institute for Theoretical Studies (HITS) gGmbH, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.
| | | | | | | |
Collapse
|
10
|
Li B, Lu B, Wang Z, McCammon JA. Solutions to a reduced Poisson-Nernst-Planck system and determination of reaction rates. PHYSICA A 2010; 389:1329-1345. [PMID: 20228879 PMCID: PMC2835320 DOI: 10.1016/j.physa.2009.12.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We study a reduced Poisson-Nernst-Planck (PNP) system for a charged spherical solute immersed in a solvent with multiple ionic or molecular species that are electrostatically neutralized in the far field. Some of these species are assumed to be in equilibrium. The concentrations of such species are described by the Boltzmann distributions that are further linearized. Others are assumed to be reactive, meaning that their concentrations vanish when in contact with the charged solute. We present both semi-analytical solutions and numerical iterative solutions to the underlying reduced PNP system, and calculate the reaction rate for the reactive species. We give a rigorous analysis on the convergence of our simple iteration algorithm. Our numerical results show the strong dependence of the reaction rates of the reactive species on the magnitude of its far field concentration as well as on the ionic strength of all the chemical species. We also find non-monotonicity of electrostatic potential in certain parameter regimes. The results for the reactive system and those for the non-reactive system are compared to show the significant differences between the two cases. Our approach provides a means of solving a PNP system which in general does not have a closed-form solution even with a special geometrical symmetry. Our findings can also be used to test other numerical methods in large-scale computational modeling of electro-diffusion in biological systems.
Collapse
Affiliation(s)
- Bo Li
- Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, Mail code: 0112. La Jolla, CA 92093-0112, USA
- Center for Theoretical Biological Physics, University of California, San Diego, 9500 Gilman Drive, Mail code: 0374. La Jolla, CA 92093-0374, USA
- Corresponding address: Department of Mathematics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0112, USA. Tel.: +1 858 534 6932. (B. Li), (B. Lu), (Z. Wang), (J.A. McCammon)
| | - Benzhuo Lu
- Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhongming Wang
- Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, Mail code: 0112. La Jolla, CA 92093-0112, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Mail code: 0365. La Jolla, CA 92093-0363, USA
| | - J. Andrew McCammon
- Center for Theoretical Biological Physics, University of California, San Diego, 9500 Gilman Drive, Mail code: 0374. La Jolla, CA 92093-0374, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Mail code: 0365. La Jolla, CA 92093-0363, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0365, USA
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093-0365, USA
| |
Collapse
|