• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4754008)   Today's Articles (370)
For: Sahigara F, Ballabio D, Todeschini R, Consonni V. Defining a novel k-nearest neighbours approach to assess the applicability domain of a QSAR model for reliable predictions. J Cheminform 2013;5:27. [PMID: 23721648 DOI: 10.1186/1758-2946-5-27] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/23/2013] [Indexed: 11/18/2022]  Open

Collapse
Number Cited by Other Article(s)
1
Ulrich N, Voigt K, Kudria A, Böhme A, Ebert RU. Prediction of the water solubility by a graph convolutional-based neural network on a highly curated dataset. J Cheminform 2025;17:55. [PMID: 40259418 PMCID: PMC12012962 DOI: 10.1186/s13321-025-01000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/30/2025] [Indexed: 04/23/2025]  Open
2
Duy HA, Srisongkram T. Protecting your skin: a highly accurate LSTM network integrating conjoint features for predicting chemical-induced skin irritation. J Cheminform 2025;17:39. [PMID: 40148987 PMCID: PMC11951793 DOI: 10.1186/s13321-025-00980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 02/28/2025] [Indexed: 03/29/2025]  Open
3
Jaiswal R, Bhati G, Ahmed S, Siddiqi MI. iDCNNPred: an interpretable deep learning model for virtual screening and identification of PI3Ka inhibitors against triple-negative breast cancer. Mol Divers 2024:10.1007/s11030-024-11055-9. [PMID: 39648257 DOI: 10.1007/s11030-024-11055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/12/2024] [Indexed: 12/10/2024]
4
Ambe K, Nakamori M, Tohno R, Suzuki K, Sasaki T, Tohkin M, Yoshinari K. Machine Learning-Based In Silico Prediction of the Inhibitory Activity of Chemical Substances Against Rat and Human Cytochrome P450s. Chem Res Toxicol 2024;37:1843-1850. [PMID: 39427263 DOI: 10.1021/acs.chemrestox.4c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
5
Abou Hajal A, Bryce RA, Amor BB, Atatreh N, Ghattas MA. Boosting the Accuracy and Chemical Space Coverage of the Detection of Small Colloidal Aggregating Molecules Using the BAD Molecule Filter. J Chem Inf Model 2024;64:4991-5005. [PMID: 38920403 DOI: 10.1021/acs.jcim.4c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
6
Kehrein J, Bunker A, Luxenhofer R. POxload: Machine Learning Estimates Drug Loadings of Polymeric Micelles. Mol Pharm 2024;21:3356-3374. [PMID: 38805643 PMCID: PMC11394009 DOI: 10.1021/acs.molpharmaceut.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
7
Karamertzanis PG, Patlewicz G, Sannicola M, Paul-Friedman K, Shah I. Systematic Approaches for the Encoding of Chemical Groups: A Case Study. Chem Res Toxicol 2024;37:600-619. [PMID: 38498310 PMCID: PMC11258607 DOI: 10.1021/acs.chemrestox.3c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
8
Viganò EL, Ballabio D, Roncaglioni A. Artificial Intelligence and Machine Learning Methods to Evaluate Cardiotoxicity following the Adverse Outcome Pathway Frameworks. TOXICS 2024;12:87. [PMID: 38276722 PMCID: PMC10820364 DOI: 10.3390/toxics12010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
9
Jovic O, Mouras R. Extreme Gradient Boosting Combined with Conformal Predictors for Informative Solubility Estimation. Molecules 2023;29:19. [PMID: 38202602 PMCID: PMC10779886 DOI: 10.3390/molecules29010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024]  Open
10
Yuan W, Hibi Y, Tamura R, Sumita M, Nakamura Y, Naito M, Tsuda K. Revealing factors influencing polymer degradation with rank-based machine learning. PATTERNS (NEW YORK, N.Y.) 2023;4:100846. [PMID: 38106610 PMCID: PMC10724228 DOI: 10.1016/j.patter.2023.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/07/2023] [Accepted: 08/30/2023] [Indexed: 12/19/2023]
11
Dost K, Pullar-Strecker Z, Brydon L, Zhang K, Hafner J, Riddle PJ, Wicker JS. Combatting over-specialization bias in growing chemical databases. J Cheminform 2023;15:53. [PMID: 37208694 DOI: 10.1186/s13321-023-00716-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/25/2023] [Indexed: 05/21/2023]  Open
12
Cheng Z, Bhave M, Hwang SS, Rahman T, Chee XW. Identification of Potential p38γ Inhibitors via In Silico Screening, In Vitro Bioassay and Molecular Dynamics Simulation Studies. Int J Mol Sci 2023;24:ijms24087360. [PMID: 37108523 PMCID: PMC10139033 DOI: 10.3390/ijms24087360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]  Open
13
Ma W, Wang M, Jiang R, Chen W. A machine learning based approach for estimating site-specific partition coefficient Kd of organic compounds: Application to nonionic pesticides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023;323:121297. [PMID: 36796665 DOI: 10.1016/j.envpol.2023.121297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
14
De León G, Fröhlich E, Fink E, Di Pizio A, Salar-Behzadi S. Premexotac: Machine learning bitterants predictor for advancing pharmaceutical development. Int J Pharm 2022;628:122263. [DOI: 10.1016/j.ijpharm.2022.122263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
15
Xiang R, Fernandez-Lopez L, Robles-Martín A, Ferrer M, Guallar V. EP-Pred: A Machine Learning Tool for Bioprospecting Promiscuous Ester Hydrolases. Biomolecules 2022;12:1529. [PMID: 36291739 PMCID: PMC9599548 DOI: 10.3390/biom12101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022]  Open
16
Collins SP, Barton-Maclaren TS. Novel machine learning models to predict endocrine disruption activity for high-throughput chemical screening. FRONTIERS IN TOXICOLOGY 2022;4:981928. [PMID: 36204696 PMCID: PMC9530987 DOI: 10.3389/ftox.2022.981928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022]  Open
17
Bitam S, Hamadache M, Hanini S. 2D-QSAR, docking, molecular dynamics, studies of PF-07321332 analogues to identify alternative inhibitors against 3CLpro enzyme in SARS-CoV disease. J Biomol Struct Dyn 2022:1-10. [PMID: 35983623 DOI: 10.1080/07391102.2022.2113822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
18
Morita K, Mizuno T, Kusuhara H. Investigation of a Data Split Strategy Involving the Time Axis in Adverse Event Prediction Using Machine Learning. J Chem Inf Model 2022;62:3982-3992. [PMID: 35971760 DOI: 10.1021/acs.jcim.2c00765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
19
Karpov K, Mitrofanov A, Korolev V, Tkachenko V. Size Doesn't Matter: Predicting Physico- or Biochemical Properties Based on Dozens of Molecules. J Phys Chem Lett 2021;12:9213-9219. [PMID: 34529429 DOI: 10.1021/acs.jpclett.1c02477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
20
Gonzalez E, Jain S, Shah P, Torimoto-Katori N, Zakharov A, Nguyễn ÐT, Sakamuru S, Huang R, Xia M, Obach RS, Hop CECA, Simeonov A, Xu X. Development of Robust Quantitative Structure-Activity Relationship Models for CYP2C9, CYP2D6, and CYP3A4 Catalysis and Inhibition. Drug Metab Dispos 2021;49:822-832. [PMID: 34183376 PMCID: PMC11022912 DOI: 10.1124/dmd.120.000320] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/17/2021] [Indexed: 11/22/2022]  Open
21
Meyer H, Pebesma E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13650] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
22
Tang BH, Guan Z, Allegaert K, Wu YE, Manolis E, Leroux S, Yao BF, Shi HY, Li X, Huang X, Wang WQ, Shen AD, Wang XL, Wang TY, Kou C, Xu HY, Zhou Y, Zheng Y, Hao GX, Xu BP, Thomson AH, Capparelli EV, Biran V, Simon N, Meibohm B, Lo YL, Marques R, Peris JE, Lutsar I, Saito J, Burggraaf J, Jacqz-Aigrain E, van den Anker J, Zhao W. Drug Clearance in Neonates: A Combination of Population Pharmacokinetic Modelling and Machine Learning Approaches to Improve Individual Prediction. Clin Pharmacokinet 2021;60:1435-1448. [PMID: 34041714 DOI: 10.1007/s40262-021-01033-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
23
Bugeac CA, Ancuceanu R, Dinu M. QSAR Models for Active Substances against Pseudomonas aeruginosa Using Disk-Diffusion Test Data. Molecules 2021;26:molecules26061734. [PMID: 33808845 PMCID: PMC8003670 DOI: 10.3390/molecules26061734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/02/2022]  Open
24
Liu Y, Zhang D, Tang Y, Zhang Y, Chang Y, Zheng J. Machine Learning-Enabled Design and Prediction of Protein Resistance on Self-Assembled Monolayers and Beyond. ACS APPLIED MATERIALS & INTERFACES 2021;13:11306-11319. [PMID: 33635641 DOI: 10.1021/acsami.1c00642] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
25
Hao Y, Sun G, Fan T, Tang X, Zhang J, Liu Y, Zhang N, Zhao L, Zhong R, Peng Y. In vivo toxicity of nitroaromatic compounds to rats: QSTR modelling and interspecies toxicity relationship with mouse. JOURNAL OF HAZARDOUS MATERIALS 2020;399:122981. [PMID: 32534390 DOI: 10.1016/j.jhazmat.2020.122981] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
26
Cappelli CI, Manganelli S, Toma C, Benfenati E, Mombelli E. Prediction of the Partition Coefficient between Adipose Tissue and Blood for Environmental Chemicals: From Single QSAR Models to an Integrated Approach. Mol Inform 2020;40:e2000072. [PMID: 33135856 DOI: 10.1002/minf.202000072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
27
Fuzzy Divisive Hierarchical Clustering of Solvents According to Their Experimentally and Theoretically Predicted Descriptors. Symmetry (Basel) 2020. [DOI: 10.3390/sym12111763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
28
Montanari F, Knasmüller B, Kohlbacher S, Hillisch C, Baierová C, Grandits M, Ecker GF. Vienna LiverTox Workspace-A Set of Machine Learning Models for Prediction of Interactions Profiles of Small Molecules With Transporters Relevant for Regulatory Agencies. Front Chem 2020;7:899. [PMID: 31998690 PMCID: PMC6966498 DOI: 10.3389/fchem.2019.00899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022]  Open
29
Ancuceanu R, Tamba B, Stoicescu CS, Dinu M. Use of QSAR Global Models and Molecular Docking for Developing New Inhibitors of c-src Tyrosine Kinase. Int J Mol Sci 2019;21:ijms21010019. [PMID: 31861445 PMCID: PMC6981969 DOI: 10.3390/ijms21010019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]  Open
30
Miyao T, Funatsu K. Iterative Screening Methods for Identification of Chemical Compounds with Specific Values of Various Properties. J Chem Inf Model 2019;59:2626-2641. [PMID: 31058504 DOI: 10.1021/acs.jcim.9b00093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
31
Zhang Y, Wang Y, Zhou W, Fan Y, Zhao J, Zhu L, Lu S, Lu T, Chen Y, Liu H. A combined drug discovery strategy based on machine learning and molecular docking. Chem Biol Drug Des 2019;93:685-699. [PMID: 30688405 DOI: 10.1111/cbdd.13494] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/04/2019] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
32
Ancuceanu R, Dinu M, Neaga I, Laszlo FG, Boda D. Development of QSAR machine learning-based models to forecast the effect of substances on malignant melanoma cells. Oncol Lett 2019;17:4188-4196. [PMID: 31007759 PMCID: PMC6466999 DOI: 10.3892/ol.2019.10068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/15/2018] [Indexed: 11/20/2022]  Open
33
Hanser T, Barber C, Guesné S, Marchaland JF, Werner S. Applicability Domain: Towards a More Formal Framework to Express the Applicability of a Model and the Confidence in Individual Predictions. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2019. [DOI: 10.1007/978-3-030-16443-0_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
34
Neighborhood Attribute Reduction: A Multicriterion Strategy Based on Sample Selection. INFORMATION 2018. [DOI: 10.3390/info9110282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
35
Villaverde JJ, Sevilla-Morán B, López-Goti C, Alonso-Prados JL, Sandín-España P. Considerations of nano-QSAR/QSPR models for nanopesticide risk assessment within the European legislative framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018;634:1530-1539. [PMID: 29710651 DOI: 10.1016/j.scitotenv.2018.04.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
36
Lo YC, Rensi SE, Torng W, Altman RB. Machine learning in chemoinformatics and drug discovery. Drug Discov Today 2018;23:1538-1546. [PMID: 29750902 DOI: 10.1016/j.drudis.2018.05.010] [Citation(s) in RCA: 483] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/29/2018] [Accepted: 05/02/2018] [Indexed: 01/03/2023]
37
Bitam S, Hamadache M, Hanini S. Prediction of therapeutic potency of tacrine derivatives as BuChE inhibitors from quantitative structure-activity relationship modelling. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2018;29:213-230. [PMID: 29390887 DOI: 10.1080/1062936x.2018.1423640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/01/2018] [Indexed: 06/07/2023]
38
Guan D, Fan K, Spence I, Matthews S. QSAR ligand dataset for modelling mutagenicity, genotoxicity, and rodent carcinogenicity. Data Brief 2018. [PMID: 29516034 PMCID: PMC5835004 DOI: 10.1016/j.dib.2018.01.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]  Open
39
Grisoni F, Ballabio D, Todeschini R, Consonni V. Molecular Descriptors for Structure-Activity Applications: A Hands-On Approach. Methods Mol Biol 2018;1800:3-53. [PMID: 29934886 DOI: 10.1007/978-1-4939-7899-1_1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
40
Algamal ZY, Qasim MK, Ali HTM. A QSAR classification model for neuraminidase inhibitors of influenza A viruses (H1N1) based on weighted penalized support vector machine. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017;28:415-426. [PMID: 28539063 DOI: 10.1080/1062936x.2017.1326402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
41
Zang Q, Mansouri K, Williams AJ, Judson RS, Allen DG, Casey WM, Kleinstreuer NC. In Silico Prediction of Physicochemical Properties of Environmental Chemicals Using Molecular Fingerprints and Machine Learning. J Chem Inf Model 2017;57:36-49. [PMID: 28006899 PMCID: PMC6131700 DOI: 10.1021/acs.jcim.6b00625] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
42
Shoombuatong W, Prathipati P, Owasirikul W, Worachartcheewan A, Simeon S, Anuwongcharoen N, Wikberg JES, Nantasenamat C. Towards the Revival of Interpretable QSAR Models. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2017. [DOI: 10.1007/978-3-319-56850-8_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
43
Aniceto N, Freitas AA, Bender A, Ghafourian T. A novel applicability domain technique for mapping predictive reliability across the chemical space of a QSAR: reliability-density neighbourhood. J Cheminform 2016. [PMCID: PMC5395519 DOI: 10.1186/s13321-016-0182-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]  Open

.

44
Nembri S, Grisoni F, Consonni V, Todeschini R. In Silico Prediction of Cytochrome P450-Drug Interaction: QSARs for CYP3A4 and CYP2C9. Int J Mol Sci 2016;17:ijms17060914. [PMID: 27294921 PMCID: PMC4926447 DOI: 10.3390/ijms17060914] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 11/16/2022]  Open
45
Zhang S, Cheng D, Zong M, Gao L. Self-representation nearest neighbor search for classification. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.08.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
46
Quantitative structure–activity relationships to predict sweet and non-sweet tastes. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1812-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
47
Mathea M, Klingspohn W, Baumann K. Chemoinformatic Classification Methods and their Applicability Domain. Mol Inform 2016;35:160-80. [PMID: 27492083 DOI: 10.1002/minf.201501019] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/20/2016] [Indexed: 11/08/2022]
48
Ain QU, Méndez-Lucio O, Ciriano IC, Malliavin T, van Westen GJP, Bender A. Modelling ligand selectivity of serine proteases using integrative proteochemometric approaches improves model performance and allows the multi-target dependent interpretation of features. Integr Biol (Camb) 2015;6:1023-33. [PMID: 25255469 DOI: 10.1039/c4ib00175c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
49
Sheridan RP. The Relative Importance of Domain Applicability Metrics for Estimating Prediction Errors in QSAR Varies with Training Set Diversity. J Chem Inf Model 2015;55:1098-107. [DOI: 10.1021/acs.jcim.5b00110] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
50
Li H, Zhong Z, Li L, Gao R, Cui J, Gao T, Hu LH, Lu Y, Su ZM, Li H. A cascaded QSAR model for efficient prediction of overall power conversion efficiency of all-organic dye-sensitized solar cells. J Comput Chem 2015;36:1036-46. [DOI: 10.1002/jcc.23886] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/25/2014] [Accepted: 02/08/2015] [Indexed: 01/19/2023]
PrevPage 1 of 2 12Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA