1
|
Jakobsen MK, Traynor S, Nielsen AY, Dahl C, Staehr M, Jakobsen ST, Madsen MS, Siersbaek R, Terp MG, Jensen JB, Pedersen CB, Shrestha A, Brewer JR, Duijf PHG, Gammelgaard OL, Ditzel HJ, Kirkin AF, Guldberg P, Gjerstorff MF. Stochastic demethylation and redundant epigenetic suppressive mechanisms generate highly heterogeneous responses to pharmacological DNA methyltransferase inhibition. J Exp Clin Cancer Res 2025; 44:21. [PMID: 39844304 PMCID: PMC11755921 DOI: 10.1186/s13046-025-03294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Despite promising preclinical studies, the application of DNA methyltransferase inhibitors in treating patients with solid cancers has thus far produced only modest outcomes. The presence of intratumoral heterogeneity in response to DNA methyltransferase inhibitors could significantly influence clinical efficacy, yet our understanding of the single-cell response to these drugs in solid tumors remains very limited. METHODS In this study, we used cancer/testis antigen genes as a model for methylation-dependent gene expression to examine the activity of DNA methyltransferase inhibitors and their potential synergistic effect with histone deacetylase inhibitors at the single-cancer cell level. The analysis was performed on breast cancer patient-derived xenograft tumors and cell lines, employing a comprehensive set of techniques, including targeted single-cell mRNA sequencing. Mechanistic insights were further gained through DNA methylation profiling and chromatin structure analysis. RESULTS We show that breast cancer tumors and cell cultures exhibit a highly heterogenous response to DNA methyltransferase inhibitors, persisting even under high drug concentrations and efficient DNA methyltransferase depletion. The observed variability in response to DNA methyltransferase inhibitors was independent of cancer-associated aberrations and clonal genetic diversity. Instead, these variations were attributed to stochastic demethylation of regulatory CpG sites and the DNA methylation-independent suppressive function of histone deacetylases. CONCLUSIONS Our findings point to intratumoral heterogeneity as a limiting factor in the use of DNA methyltransferase inhibitors as single agents in treatment of solid cancers and highlight histone deacetylase inhibitors as essential partners to DNA methyltransferase inhibitors in the clinic.
Collapse
Affiliation(s)
- Mie K Jakobsen
- Department of Cancer Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sofie Traynor
- Department of Cancer Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Aaraby Y Nielsen
- Department of Cancer Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Mette Staehr
- Department of Cancer Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Simon T Jakobsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Maria S Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Rasmus Siersbaek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mikkel G Terp
- Department of Cancer Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Josefine B Jensen
- Department of Cancer Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christina B Pedersen
- Department of Cancer Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anup Shrestha
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jonathan R Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Pascal H G Duijf
- Centre for Cancer Biology, Clinical and Health Sciences, University of South Australia & SA Pathology, Adelaide, SA, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Odd L Gammelgaard
- Department of Cancer Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik J Ditzel
- Department of Cancer Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| | | | - Per Guldberg
- Department of Cancer Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Danish Cancer Institute, Copenhagen, Denmark
| | - Morten F Gjerstorff
- Department of Cancer Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
- Department of Oncology, Odense University Hospital, Odense, Denmark.
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark.
| |
Collapse
|
2
|
Exosomal circRNA BTG2 derived from RBP-J overexpressed-macrophages inhibits glioma progression via miR-25-3p/PTEN. Cell Death Dis 2022; 13:506. [PMID: 35643814 PMCID: PMC9148311 DOI: 10.1038/s41419-022-04908-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 04/19/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
Macrophage-derived exosomes (Mφ-Exos) are involved in tumor progression, but its role in glioma is not fully understood. RBP-J is related to macrophage activation. In this study, we assess the role of exosomes derived from RBP-J-overexpressed macrophages (RBP-J OE Mφ-Exos) in glioma. The circular RNA (circRNA) profiles in RBP-J OE Mφ-Exos and THP-1-like macrophages (WT Mφ)-Exos were evaluated using circRNA microarray. Then the functions of Mφ-Exo-circRNA in glioma cells were assessed via CCK-8, EdU, Transwell invasion, and nude mouse assays. Besides, luciferase reporter assay, RNA immunoprecipitation, and Pearson's correlation analysis were adopted to confirm interactions. We found that circRNA BTG (circBTG2) is upregulated in RBP-J OE Mφ-Exos compared to WT Mφ-Exos. RBP-J OE Mφ-Exos co-culture and circBTG2 overexpression inhibited proliferation and invasion of glioma cells, whereas circBTG2 knockdown promotes tumor growth in vivo. The effects of RBP-J OE Mφ-Exos on glioma cells can be reversed by the circBTG2 knockdown. In conclusions, Exo-circBTG2 secreted from RBP-J OE Mφ inhibits tumor progression through the circBTG2/miR-25-3p/PTEN pathway, and circBTG2 is probably a diagnostic biomarker and potential target for glioma therapy.
Collapse
|
3
|
Zhao W, Jiang X, Weisenthal K, Ma J, Botticelli EM, Zhou Y, Hedley-Whyte ET, Wang B, Swearingen B, Soberman RJ, Klibanski A, Zhang X. High Histone Deacetylase 2/3 Expression in Non-Functioning Pituitary Tumors. Front Oncol 2022; 12:875122. [PMID: 35646715 PMCID: PMC9136140 DOI: 10.3389/fonc.2022.875122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Epigenetic modification of chromatin is involved in non-malignant pituitary neoplasia by causing abnormal expression of tumor suppressors and oncogenes. These changes are potentially reversible, suggesting the possibility of targeting tumor cells by restoring the expression of epigenetically silenced tumor suppressors. The role of the histone deacetylase (HDAC) family in pituitary tumorigenesis is not known. We report that HDAC2 and 3, Class I HDAC members, are highly expressed in clinically non-functioning pituitary adenomas (NFPAs) compared to normal pituitary (NP) samples as determined by RT-PCR and immunohistochemical staining (IHC). Treatment of a human NFPA derived folliculostellate cell line, PDFS, with the HDAC3 inhibitor RGFP966 for 96 hours resulted in inhibition of cell proliferation by 70%. Furthermore, the combination of RGFP966 with a methyltransferase/DNMT inhibitor, 5’-aza-2’-deoxycytidine, led to the restoration of the expression of several tumor suppressor genes, including STAT1, P16, PTEN, and the large non-coding RNA tumor suppressor MEG3, in PDFS cells. Our data support the hypothesis that both histone modification and DNA methylation are involved in the pathogenesis of human NFPAs and suggest that targeting HDACs and DNA methylation can be incorporated into future therapies.
Collapse
Affiliation(s)
- Wenxiu Zhao
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xiaobin Jiang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Karrin Weisenthal
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jun Ma
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Erin M. Botticelli
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yunli Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - E. Tessa Hedley-Whyte
- Neuropathology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Baiyao Wang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Brooke Swearingen
- Neurosurgical Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Roy J. Soberman
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xun Zhang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Xun Zhang,
| |
Collapse
|
4
|
Zhu X, Ju S, Yuan F, Chen G, Shu Y, Li C, Xu Y, Luo J, Xia L. microRNA-664 enhances proliferation, migration and invasion of lung cancer cells. Exp Ther Med 2017; 13:3555-3562. [PMID: 28588679 DOI: 10.3892/etm.2017.4433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/03/2017] [Indexed: 12/12/2022] Open
Abstract
Altered microRNA (miR) expression serves an important role in the development and progression of lung cancer. In the present study, the effect of miR-664 on proliferation, migration and invasion of lung cancer cells was assessed. The proliferation of lung cancer cells with an overexpression of miR-664 was examined via MTT assay. The Caspase-Glo3/7 assay was used to examine the effect of miR-664 on cisplatin-induced apoptosis in lung cancer cells. The migration and invasion of lung cancer cells were assessed by Transwell migration and matrigel invasion assays. Western blot analysis was used to examine the protein expression levels. miR-664 improved the proliferation of lung cancer cells and inhibited cisplatin-induced apoptosis of A549 and A427 cells. Furthermore, altered expression of miR-664 affected migration and invasion of lung cancer cells. In addition, a miR-664 mimic decreased E-cadherin expression and increased vementin and Snail expression in lung cancer cells. Notably, the expression level of protein kinase B in A549 cells was changed following altered expression of miR-664. The results of the present study suggest that miR-664 serves an essential role in tumor development and progression in lung cancer.
Collapse
Affiliation(s)
- Xinhai Zhu
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Sheng Ju
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Feng Yuan
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Guoping Chen
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Yue Shu
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Chuanchuan Li
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Yanhui Xu
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Jing Luo
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Lilong Xia
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
5
|
Huang W, Yang J, Ren J, Tang J. Expression of PTEN and KAI1 tumor suppressor genes in pancreatic carcinoma and its association with different pathological factors. Oncol Lett 2016; 11:559-562. [PMID: 26870247 PMCID: PMC4727065 DOI: 10.3892/ol.2015.3932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/17/2015] [Indexed: 11/06/2022] Open
Abstract
Pancreatic carcinoma is a common cancer type with a poor prognosis. The aim of the present study was to examine the expression of tumor suppressor genes phosphatase and tensin homolog deleted in chromosome 10 (PTEN) and KAI1 in pancreatic carcinoma and its association with clinical pathological factors. A total of 50 hospitalized cases of pancreatic cancer including 28 males and 22 females aged 31-82 years were included in the present study. Ten cases of normal pancreatic tissue were obtained from cadavers and served as the controls. The pancreatic specimens were embedded in paraffin blocks and slides were prepared for immunohistochemical analysis to determine the expression of PTEN and KAI1 in normal pancreatic tissue and pancreatic carcinoma samples. The positive expression rate of PTEN in the normal pancreatic tissue was higher than that in pancreatic carcinoma (P<0.05), while the positive expression rate of KAI1 in the normal pancreatic tissue was lower than that in pancreatic carcinoma (P<0.05). Pathological factors such as clinical stage of disease, histological grade and the presence or absence of lymphatic metastasis significantly affected the expression of PTEN and KAI1 (P<0.05). In conclusion, the positive expression of PTEN and KAI1 in pancreatic carcinoma is closely associated with the development of pancreatic carcinoma.
Collapse
Affiliation(s)
- Weidong Huang
- Department of General Surgery, Xiangyang Hospital Affiliated to Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Jie Yang
- Department of General Surgery, Xiangyang Hospital Affiliated to Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Jun Ren
- Department of General Surgery, Xiangyang Hospital Affiliated to Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Jianjun Tang
- Department of General Surgery, Xiangyang Hospital Affiliated to Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| |
Collapse
|
6
|
Fang Y, Xu C, Fu Y. MicroRNA-17-5p induces drug resistance and invasion of ovarian carcinoma cells by targeting PTEN signaling. ACTA ACUST UNITED AC 2015; 22:12. [PMID: 26500892 PMCID: PMC4619013 DOI: 10.1186/s40709-015-0035-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/12/2015] [Indexed: 11/18/2022]
Abstract
Background The miR-17-5p was overexpressed in ovarian cancer cells, and those cells were treated with paclitaxel. The proliferation of ovarian cancer cells was assessed by MTT assay. The Caspase-Glo3/7 and TUNEL assay were used to examine the effect of miR-17-5p on paclitaxel-induced apoptosis in ovarian cancer cells. The migration and invasion of ovarian cancer cells were analyzed by BD matrigel assays. Western blot was performed to evaluate the expression of apoptotic proteins and epithelial-mesenchymal transition markers in ovarian cancer cells. Results The survival rate of ovarian cancer cells was increased after overexpression of miR-17-5p. The apoptosis decreased in miR-17-5p overexpressed ovarian cancer cells. Altered miR-17-5p expression affected migration and invasion of ovarian cancer cells. The overexpression of miR-17-5p altered the expression of EMT markers. miR-17-5p activates AKT by downregulation of PTEN in ovarian cancer cells. Conclusion Our results indicate that miR-17-5p might serve as potential molecular therapeutic target.
Collapse
Affiliation(s)
- Ying Fang
- Department of Gynecology, The First Hospital of Jilin University, Changchun, Jilin People's Republic of China ; Department of Gynecology, No. 208 Hospital of Chinese People's Liberation Army, Changchun, Jilin People's Republic of China
| | - Changyan Xu
- Department of Medical Administration, The First Hospital of Jilin University, Changchun, Jilin People's Republic of China
| | - Yan Fu
- Department of Gynecology, The First Hospital of Jilin University, Changchun, Jilin People's Republic of China
| |
Collapse
|
7
|
Su Y, Wang X, Li J, Xu J, Xu L. The clinicopathological significance and drug target potential of FHIT in breast cancer, a meta-analysis and literature review. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5439-45. [PMID: 26491255 PMCID: PMC4598219 DOI: 10.2147/dddt.s89861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
FHIT is a bona fide tumor-suppressor gene and its loss contributes to tumorigenesis of epithelial cancers including breast cancer (BC). However, the association and clinicopathological significance between FHIT promoter hypermethylation and BC remains unclear. The purpose of this study is to conduct a meta-analysis and literature review to investigate the clinicopathological significance of FHIT methylation in BC. A detailed literature search was performed in PubMed, EMBASE, Web of Science, and Google Scholar databases. The data were extracted and assessed by two reviewers independently. Odds ratios with 95% corresponding confidence intervals were calculated. A total of seven relevant articles were available for meta-analysis, which included 985 patients. The frequency of FHIT hypermethylation was significantly increased in invasive ductal carcinoma compared to benign breast disease, the pooled odds ratio was 8.43, P<0.00001. The rate of FHIT hypermethylation was not significantly different between stage I/II and stage III/IV, odds ratio was 2.98, P=0.06. In addition, FHIT hypermethylation was not significantly associated with ER and PR status. FHIT hypermethylation was not significantly correlated with premenopausal and postmenopausal patients with invasive ductal carcinoma. In summary, our meta-analysis indicated that the frequency of FHIT hypermethylation was significantly increased in BC compared to benign breast disease. The rate of FHIT hypermethylation in advanced stages of BC was higher than in earlier stages; however, the difference was not statistically significant. Our data suggested that FHIT methylation could be a diagnostic biomarker of BC carcinogenesis. FHIT is a potential drug target for development of demethylation treatment for patients with BC.
Collapse
Affiliation(s)
- Yunshu Su
- Department of Cardiothoracic Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaoli Wang
- Department of Cardiothoracic Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China ; Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jun Li
- Department of Cardiothoracic Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Junming Xu
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Lijun Xu
- Department of Cardiothoracic Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
8
|
Li X, Mei Q, Nie J, Fu X, Han W. Decitabine: a promising epi-immunotherapeutic agent in solid tumors. Expert Rev Clin Immunol 2015; 11:363-75. [DOI: 10.1586/1744666x.2015.1002397] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|