1
|
Zhou S, Zhu W, Guo H, Nie Y, Sun J, Liu P, Zeng Y. Microbes for lung cancer detection: feasibility and limitations. Front Oncol 2024; 14:1361879. [PMID: 38779090 PMCID: PMC11109454 DOI: 10.3389/fonc.2024.1361879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
As the second most common cancer in the world, the development of lung cancer is closely related to factors such as heredity, environmental exposure, and lung microenvironment, etc. Early screening and diagnosis of lung cancer can be helpful for the treatment of patients. Currently, CT screening and histopathologic biopsy are widely used in the clinical detection of lung cancer, but they have many disadvantages such as false positives and invasive operations. Microbes are another genome of the human body, which has recently been shown to be closely related to chronic inflammatory, metabolic processes in the host. At the same time, they are important players in cancer development, progression, treatment, and prognosis. The use of microbes for cancer therapy has been extensively studied, however, the diagnostic role of microbes is still unclear. This review aims to summarize recent research on using microbes for lung cancer detection and present the current shortcomings of microbes in collection and detection. Finally, it also looks ahead to the clinical benefits that may accrue to patients in the future about screening and early detection.
Collapse
Affiliation(s)
- Sirui Zhou
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijian Zhu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hehua Guo
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalan Nie
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiazheng Sun
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Liu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yulan Zeng
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Gao L, Dhilipkannah P, Holden VK, Deepak J, Sachdeva A, Todd NW, Stass SA, Jiang F. Differential Non-Coding RNA Profiles for Lung Cancer Early Detection in African and White Americans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.27.24304977. [PMID: 38585975 PMCID: PMC10996737 DOI: 10.1101/2024.03.27.24304977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Introduction Lung cancer leads in cancer-related deaths. Disparities are observed in lung cancer rates, with African Americans (AAs) experiencing disproportionately higher incidence and mortality compared to other ethnic groups. Non-coding RNAs (ncRNAs) play crucial roles in lung tumorigenesis. Our objective was to identify ncRNA biomarkers associated with the racial disparity in lung cancer. Methods Using droplet digital PCR, we examined 93 lung-cancer-associated ncRNAs in the plasma and sputum samples from AA and White American (WA) participants, which included 118 patients and 92 cancer-free smokers. Subsequently, we validated our results with a separate cohort comprising 56 cases and 72 controls. Results In the AA population, plasma showed differential expression of ten ncRNAs, while sputum revealed four ncRNAs when comparing lung cancer patients to the control group. In the WA population, the plasma displayed eleven ncRNAs, and the sputum had five ncRNAs showing differential expression between the lung cancer patients and the control group. For AAs, we identified a three-ncRNA panel (plasma miRs-147b, 324-3p, 422a) diagnosing lung cancer in AAs with 86% sensitivity and 89% specificity. For WAs, a four-ncRNA panel was developed, comprising sputum miR-34a-5p and plasma miRs-103-3p, 126-3p, 205-5p, achieving 88% sensitivity and 87% specificity. These panels remained effective across different stages and histological types of lung tumors and were validated in the independent cohort. Conclusions The ethnicity-related ncRNA signatures have promise as biomarkers to address the racial disparity in lung cancer.
Collapse
|
3
|
Wen SWC, Borg M, Timm S, Hansen TF, Hilberg O, Andersen RF. Methylated Cell-Free Tumor DNA in Sputum as a Tool for Diagnosing Lung Cancer-A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16:506. [PMID: 38339257 PMCID: PMC10854681 DOI: 10.3390/cancers16030506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Early diagnosis is pivotal for the prognosis. There is a notable overlap between lung cancer and chronic bronchitis, and the potential use of methylated tumor DNA in sputum as a biomarker for lung cancer detection is appealing. This systematic review and meta-analysis followed the PRISMA 2020 statement. A comprehensive search was conducted in Embase, Medline, Web of Science, and the Cochrane Library, using these search strings: Lung cancer, sputum, and methylated tumor DNA. A total of 15 studies met the eligibility criteria. Studies predominantly utilized a case-control design, with sensitivity ranging from 10 to 93% and specificity from 8 to 100%. A meta-analysis of all genes across studies resulted in a summary sensitivity of 54.3% (95% CI 49.4-59.2%) and specificity of 79.7% (95% CI 75.0-83.7%). Notably, two less explored genes (TAC1, SOX17) demonstrated sensitivity levels surpassing 85%. The study's findings highlight substantial variations in the sensitivity and specificity of methylated tumor DNA in sputum for lung cancer detection. Challenges in reproducibility could stem from differences in tumor site, sample acquisition, extraction methods, and methylation measurement techniques. This meta-analysis provides a foundation for prioritizing high-performing genes, calling for a standardization and refinement of methodologies before potential application in clinical trials.
Collapse
Affiliation(s)
- Sara Witting Christensen Wen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Morten Borg
- Department of Medicine, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
| | - Signe Timm
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Torben Frøstrup Hansen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Ole Hilberg
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
- Department of Medicine, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
| | - Rikke Fredslund Andersen
- Department of Biochemistry and Immunology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| |
Collapse
|
4
|
Mlika M, Zorgati MM, Abdennadher M, Bouassida I, Mezni F, Mrabet A. The diagnostic performance of micro-RNA and metabolites in lung cancer: A meta-analysis. Asian Cardiovasc Thorac Ann 2024; 32:45-65. [PMID: 38009802 DOI: 10.1177/02184923231215538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
BACKGROUND The diagnosis of lung cancer is based on the microscopic exam of tissue or liquid. During the recent decade, many biomarkers have been pointed to have a potential diagnostic role. These biomarkers may be assessed in blood, pleural effusion or sputum and they could avoid biopsies or other risky procedures. The authors aimed to assess the diagnostic performances of biomarkers focusing on micro-RNA and metabolites. METHODS This meta-analysis was conducted under the PRISMA guidelines during a nine-year-period (2013-2022). the Meta-Disc software 5.4 (free version) was used. Q test and I2 statistics were carried out to explore the heterogeneity among studies. Meta-regression was performed in case of significant heterogeneity. Publication bias was assessed using the funnel plot test and the Egger's test (free version JASP). RESULTS According to our inclusion criteria, 165 studies from 79 articles were included. The pooled SEN, SPE and dOR accounted, respectively, for 0.76, 0.79 and 13.927. The AUC was estimated to 0.859 suggesting a good diagnostic accuracy. The heterogeneity in the pooled SEN and SPE was statistically significant. The meta-regression analysis focusing on the technique used, the sample, the number of biomarkers, the biomarker subtype, the tumor stage and the ethnicity revealed the biomarker number (p = 0.009) and the tumor stage (p = 0.0241) as potential sources of heterogeneity. CONCLUSION Even if this meta-analysis highlighted the potential diagnostic utility of biomarkers, more prospective studies should be performed, especially to assess the biomarkers' diagnostic potential in early-stage lung cancers.
Collapse
Affiliation(s)
- Mona Mlika
- Department of Pathology, Center of Traumatology and Major Burns, Ben Arous, Tunis, Tunisia
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
| | | | - Mehdi Abdennadher
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
- Department of Thoracic Surgery, Abderrahman Mami Hospital, Tunis, Tunisia
| | - Imen Bouassida
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
- Department of Thoracic Surgery, Abderrahman Mami Hospital, Tunis, Tunisia
| | - Faouzi Mezni
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
| | - Ali Mrabet
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
- Ministry of Health, Tunis, Tunisia
| |
Collapse
|
5
|
Sputum analysis by flow cytometry; an effective platform to analyze the lung environment. PLoS One 2022; 17:e0272069. [PMID: 35976857 PMCID: PMC9385012 DOI: 10.1371/journal.pone.0272069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022] Open
Abstract
Low dose computed tomography (LDCT) is the standard of care for lung cancer screening in the United States (US). LDCT has a sensitivity of 93.8% but its specificity of 73.4% leads to potentially harmful follow-up procedures in patients without lung cancer. Thus, there is a need for additional assays with high accuracy that can be used as an adjunct to LDCT to diagnose lung cancer. Sputum is a biological fluid that can be obtained non-invasively and can be dissociated to release its cellular contents, providing a snapshot of the lung environment. We obtained sputum from current and former smokers with a 30+ pack-year smoking history and who were either confirmed to have lung cancer or at high risk of developing the disease. Dissociated sputum cells were counted, viability determined, and labeled with a panel of markers to separate leukocytes from non-leukocytes. After excluding debris and dead cells, including squamous epithelial cells, we identified reproducible population signatures and confirmed the samples’ lung origin. In addition to leukocyte and epithelial-specific fluorescent antibodies, we used the highly fluorescent meso-tetra(4-carboxyphenyl) porphyrin (TCPP), known to preferentially stain cancer (associated) cells. We looked for differences in cell characteristics, population size and fluorescence intensity that could be useful in distinguishing cancer samples from high-risk samples. We present our data demonstrating the feasibility of a flow cytometry platform to analyze sputum in a high-throughput and standardized matter for the diagnosis of lung cancer.
Collapse
|
6
|
Arenas-De Larriva MDS, Fernández-Vega A, Jurado-Gamez B, Ortea I. diaPASEF Proteomics and Feature Selection for the Description of Sputum Proteome Profiles in a Cohort of Different Subtypes of Lung Cancer Patients and Controls. Int J Mol Sci 2022; 23:8737. [PMID: 35955870 PMCID: PMC9369298 DOI: 10.3390/ijms23158737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
The high mortality, the presence of an initial asymptomatic stage and the fact that diagnosis in early stages reduces mortality justify the implementation of screening programs in the populations at risk of lung cancer. It is imperative to develop less aggressive methods that can complement existing diagnosis technologies. In this study, we aimed to identify lung cancer protein biomarkers and pathways affected in sputum samples, using the recently developed diaPASEF mass spectrometry (MS) acquisition mode. The sputum proteome of lung cancer cases and controls was analyzed through nano-HPLC-MS using the diaPASEF mode. For functional analysis, the results from differential expression analysis were further analyzed in the STRING platform, and feature selection was performed using sparse partial least squares discriminant analysis (sPLS-DA). Our results showed an activation of inflammation, with an alteration of pathways and processes related to acute-phase, complement, and immune responses. The resulting sPLS-DA model separated between case and control groups with high levels of sensitivity and specificity. In conclusion, we showed how new-generation proteomics can be used to detect potential biomarkers in sputum samples, and ultimately to discriminate patients from controls and even to help to differentiate between different cancer subtypes.
Collapse
Affiliation(s)
- María del Sol Arenas-De Larriva
- Pneumology Department, Reina Sofia University Hospital, Maimonides Biomedical Research Institute of Cordoba, University of Cordoba, 14004 Cordoba, Spain
| | | | - Bernabe Jurado-Gamez
- Pneumology Department, Reina Sofia University Hospital, Maimonides Biomedical Research Institute of Cordoba, University of Cordoba, 14004 Cordoba, Spain
| | - Ignacio Ortea
- Institute for Biomedical Research and Innovation of Cadiz (INiBICA), 11009 Cadiz, Spain
- Proteomics Unit, CINN, CSIC, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
7
|
Yi M, Liao Z, Deng L, Xu L, Tan Y, Liu K, Chen Z, Zhang Y. High diagnostic value of miRNAs for NSCLC: quantitative analysis for both single and combined miRNAs in lung cancer. Ann Med 2021; 53:2178-2193. [PMID: 34913774 PMCID: PMC8740622 DOI: 10.1080/07853890.2021.2000634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are good candidates as biomarkers for Lung cancer (LC). The aim of this article is to figure out the diagnostic value of both single and combined miRNAs in LC. METHODS Normative meta-analysis was conducted based on PRISMA. We assessed the diagnostic value by calculating the combined sensitivity (Sen), specificity (Spe), positive likelihood ratio (PLR), negative likelihood ratio (NLR) and diagnostic odds ratio (DOR) and the area under the curve (AUC) of single and combined miRNAs for LC and specific subgroups. RESULTS A total of 80 qualified studies with a total of 8971 patients and 10758 controls were included. In non-small cell lung carcinoma (NSCLC), we involved 20 single-miRNAs and found their Sen, Spe and AUC ranged from 0.52-0.81, 0.66-0.88, and 0.68-0.90, respectively, specially, miR-19 with the maximum Sen, miR-20 and miR-10 with the highest Spe as well as miR-17 with the maximum AUC. Additionally, we detected miR-21 with the maximum Sen of 0.74 [95%CI: 0.62-0.83], miR-146 with the maximum Spe and AUC of 0.93 [95%CI: 0.79-0.98] and 0.89 [95%CI: 0.86-0.92] for early-stage NSCLC. We also identified the diagnostic power of available panel (miR-210, miR-31 and miR-21) for NSCLC with satisfying Sen, Spe and AUC of 0.82 [95%CI: 0.78-0.84], 0.87 [95%CI: 0.84-0.89] and 0.91 [95%CI: 0.88-0.93], and furtherly constructed 2 models for better diagnosis. CONCLUSIONS We identified several single miRNAs and combined groups with high diagnostic power for NSCLC through pooled quantitative analysis, which shows that specific miRNAs are good biomarker candidates for NSCLC and further researches needed.
Collapse
Affiliation(s)
- Minhan Yi
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- School of Life Sciences, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zexi Liao
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Langmei Deng
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Xu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yun Tan
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Liu
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ziliang Chen
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Fernandes O, D'Silva C, Mascarenhas DG, Rebello SR. Comparison of Lung Flute and threshold positive expiratory pressure devices for airway clearance in patients with chronic obstructive pulmonary disease: a randomised clinical trial. INTERNATIONAL JOURNAL OF THERAPY AND REHABILITATION 2021. [DOI: 10.12968/ijtr.2020.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background/Aims Mucus hypersecretion and altered lung functions leads to adverse clinical outcomes in chronic obstructive pulmonary disease. The aim of this study was to compare the effects of the Lung Flute and threshold positive expiratory pressure devices on sputum quantity and pulmonary functions in chronic obstructive pulmonary disease patients. Methods A total of 50 patients with chronic obstructive pulmonary disease were randomly divided into two groups. Group 1 used the Lung Flute device and group 2 used a threshold positive expiratory pressure device. Sputum quantity was measured post-intervention on a daily basis. Forced expiratory volume in the first second, forced vital capacity, and peak expiratory flow rate were evaluated on day 1 and day 6. Results The mean sputum quantity in group 1 was 11.40 ml and it was 11.04 ml in group 2. Between-group comparison demonstrated a significant improvement in forced expiratory volume in the first second for group 1 compared to group 2 (P<0.005). Conclusions The Lung Flute was found to be slightly more effective than the threshold positive expiratory pressure device for airway clearance and also had a positive effect on pulmonary functions in patients with chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Orein Fernandes
- Department of Physiotherapy, Father Muller College of Allied Health Sciences Mangalore, Mangalore, India
| | - Cherishma D'Silva
- Department of Physiotherapy, Father Muller College of Allied Health Sciences Mangalore, Mangalore, India
| | - Don Gregory Mascarenhas
- Department of Physiotherapy, Father Muller College of Allied Health Sciences Mangalore, Mangalore, India
| | - Sydney Roshan Rebello
- Department of Physiotherapy, Father Muller College of Allied Health Sciences Mangalore, Mangalore, India
| |
Collapse
|
9
|
Li N, Dhilipkannah P, Jiang F. High-Throughput Detection of Multiple miRNAs and Methylated DNA by Droplet Digital PCR. J Pers Med 2021; 11:jpm11050359. [PMID: 33946992 PMCID: PMC8146424 DOI: 10.3390/jpm11050359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 01/04/2023] Open
Abstract
Altered miRNA expression and DNA methylation have highly active and diverse roles in carcinogenesis. Simultaneous detection of the molecular aberrations may have a synergistic effect on the diagnosis of malignancies. Herein, we develop a high-throughput assay for detecting multiple miRNAs and DNA methylation using droplet digital PCR (ddPCR) coupled with a 96-microwell plate. The microplate-based ddPCR could absolutely and reproducibly quantify 15 miRNAs and 14 DNA methylation sites with a high sensitivity (one copy/µL and 0.1%, respectively). Analyzing sputum and plasma of 40 lung cancer patients and 36 cancer-free smokers by this approach identified an integrated biomarker panel consisting of two sputum miRNAs (miRs-31-5p and 210-3p), one sputum DNA methylation (RASSF1A), and two plasma miRNAs (miR-21-5p and 126) for the diagnosis of lung cancer with higher sensitivity and specificity compared with a single type of biomarker. The diagnostic value of the integrated biomarker panel for the early detection of lung cancer was confirmed in a different cohort of 36 lung cancer patients and 39 cancer-free smokers. The high-throughput assay for quantification of multiple molecular aberrations across sputum and plasma could improve the early detection of lung cancer.
Collapse
|
10
|
Microbiota Biomarkers for Lung Cancer. Diagnostics (Basel) 2021; 11:diagnostics11030407. [PMID: 33673596 PMCID: PMC7997424 DOI: 10.3390/diagnostics11030407] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the number one cancer killer and its early detection can reduce mortality. Accumulating evidences suggest an etiopathogenic role of microorganisms in lung tumorigenesis. Certain bacteria are found to be associated with NSCLC. Herein we evaluated the potential use of microbiome as biomarkers for the early detection of NSCLC. We used droplet digital PCR to analyze 25 NSCLC-associated bacterial genera in 31 lung tumor and the paired noncancerous lung tissues and sputum of 17 NSCLC patients and ten cancer-free smokers. Of the bacterial genera, four had altered abundances in lung tumor tissues, while five were aberrantly abundant in sputum of NSCLC patients compared with their normal counterparts (all p < 0.05). Acidovorax and Veillonella were further developed as a panel of sputum biomarkers that could diagnose lung squamous cell carcinoma (SCC) with 80% sensitivity and 89% specificity. The use of Capnocytophaga as a sputum biomarker identified lung adenocarcinoma (AC) with 72% sensitivity and 85% specificity. The use of Acidovorax as a sputum biomarker had 63% sensitivity and 96% specificity for distinguishing between SCC and AC, the two major types of NSCLC. The sputum biomarkers were further validated for the diagnostic values in a different cohort of 69 NSCLC cases and 79 cancer-free controls. Sputum microbiome might provide noninvasive biomarkers for the early detection and classification of NSCLC.
Collapse
|
11
|
Autoantibodies against tumor-associated antigens in sputum as biomarkers for lung cancer. Transl Oncol 2020; 14:100991. [PMID: 33333369 PMCID: PMC7736713 DOI: 10.1016/j.tranon.2020.100991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022] Open
Abstract
Tumor antigens (TAs) can initiate host immune responses and produce TA-associated autoantibody (TAAbs), potential cancer biomarkers. Sputum is directly generated from the upper and lower airways, and thus can be used as a surrogate sample for the diagnosis of lung cancer based on molecular analysis. To develop sputum TAAb biomarkers for the early detection of lung cancer, the leading cause of cancer death, we probed a protein microarray containing more than 9,000 antigens with sputum supernatants of a discovery set of 30 lung cancer patients and 30 cancer-free smokers. Twenty-eight TAs with higher reactivity in sputum of lung cancer cases vs. controls were identified. The diagnostic significance of TAAbs against the TAs was determined by enzyme-linked immunosorbent assays (ELISAs) in sputum of the discovery set and additional 166 lung cancer patients and 213 cancer-free smokers (validation set). Three sputum TAAbs against DDX6, ENO1, and 14-3-3ζ were developed as a biomarker panel with 81% sensitivity and 83% specificity for diagnosis of lung cancer, regardless of stages, locations, and histological types of lung tumors. This study provides the first evidence that sputum TAAbs could be used as biomarkers for the early detection of lung cancer.
Collapse
|
12
|
Saadat M, Manshadi MKD, Mohammadi M, Zare MJ, Zarei M, Kamali R, Sanati-Nezhad A. Magnetic particle targeting for diagnosis and therapy of lung cancers. J Control Release 2020; 328:776-791. [PMID: 32920079 PMCID: PMC7484624 DOI: 10.1016/j.jconrel.2020.09.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Over the past decade, the growing interest in targeted lung cancer therapy has guided researchers toward the cutting edge of controlled drug delivery, particularly magnetic particle targeting. Targeting of tissues by magnetic particles has tackled several limitations of traditional drug delivery methods for both cancer detection (e.g., using magnetic resonance imaging) and therapy. Delivery of magnetic particles offers the key advantage of high efficiency in the local deposition of drugs in the target tissue with the least harmful effect on other healthy tissues. This review first overviews clinical aspects of lung morphology and pathogenesis as well as clinical features of lung cancer. It is followed by reviewing the advances in using magnetic particles for diagnosis and therapy of lung cancers: (i) a combination of magnetic particle targeting with MRI imaging for diagnosis and screening of lung cancers, (ii) magnetic drug targeting (MDT) through either intravenous injection and pulmonary delivery for lung cancer therapy, and (iii) computational simulations that models new and effective approaches for magnetic particle drug delivery to the lung, all supporting improved lung cancer treatment. The review further discusses future opportunities to improve the clinical performance of MDT for diagnosis and treatment of lung cancer and highlights clinical therapy application of the MDT as a new horizon to cure with minimal side effects a wide variety of lung diseases and possibly other acute respiratory syndromes (COVID-19, MERS, and SARS).
Collapse
Affiliation(s)
- Mahsa Saadat
- Department of Chemical Engineering, College of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad K D Manshadi
- Department of Chemical Engineering, College of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran; Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Mehdi Mohammadi
- Department of Chemical Engineering, College of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran; Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Center for Bioengineering Research and Education, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Department of Biological Science, University of Calgary, Alberta T2N 1N4, Canada
| | | | - Mohammad Zarei
- Mitochondrial and Epigenomic Medicine, and Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Reza Kamali
- Department of Mechanical Engineering, Shiraz University, 71345 Shiraz, Iran
| | - Amir Sanati-Nezhad
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Center for Bioengineering Research and Education, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
13
|
Lu H, Zhang H, Wei Y, Chen H. Ambient mass spectrometry for the molecular diagnosis of lung cancer. Analyst 2020; 145:313-320. [PMID: 31872201 DOI: 10.1039/c9an01365b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lung cancer is one of the most common malignancies and the leading cause of cancer-related death worldwide. Among the technologies suitable for the rapid and accurate molecular diagnosis of lung cancer, ambient mass spectrometry (AMS) has gained increasing interest as it allows the direct profiling of molecular information from various biological samples (e.g., tissue, serum, urine and sputum) in real-time and with minimal or no sample pretreatment. This minireview summarizes the applications of AMS in lung cancer studies (including tissue molecular identification, the discovery of potential biomarkers, and surgical margin assessment), and discusses the challenges and perspectives of AMS in the clinical precision molecular diagnosis of lung cancer.
Collapse
Affiliation(s)
- Haiyan Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | | | | | | |
Collapse
|
14
|
Lin Y, Holden V, Dhilipkannah P, Deepak J, Todd NW, Jiang F. A Non-Coding RNA Landscape of Bronchial Epitheliums of Lung Cancer Patients. Biomedicines 2020; 8:E88. [PMID: 32294932 PMCID: PMC7235744 DOI: 10.3390/biomedicines8040088] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 12/16/2022] Open
Abstract
We propose to systematically identify a non-coding RNA (ncRNA) profile of exfoliated bronchial epitheliums of sputum from lung cancer patients. Bronchial epithelial cells enriched from sputum of 32 lung cancer patients and 33 cancer-free smokers were analyzed by next-generation sequencing to comprehensively characterize the ncRNA profiles. In addition, 108 miRNAs, 88 small nucleolar RNAs, 13 piwi-interacting RNAs, 6 transfer RNAs, 4 ribosomal RNAs, 19 small nuclear RNAs, and 25 long-noncoding (lnc) RNAs displayed a significantly different level in bronchial epitheliums of sputum of lung cancer patients versus cancer-free smokers (all <0.001). PCR analysis confirmed their different expression levels in the sputum specimens. A high expression of SNHG9, an lncRNA, was validated in 78 lung tumor tissues, and the expression was inversely associated with overall survival of lung cancer patients (p = 0.002). Knockdown of SNHG9 in cancer cells reduced the cell growth, proliferation, and invasion in vitro and tumorigenesis in vivo. The multiple differentially expressed ncRNAs in bronchial epitheliums may contribute to the development and progression of lung cancer and provide potential biomarkers and therapeutic targets for the disease.
Collapse
Affiliation(s)
- Yanli Lin
- Departments of Pathology, University of Maryland School of Medicine, 10 S. Pine St. Baltimore, MD 21201, USA; (Y.L.); (P.D.)
| | - Van Holden
- Department of Medicine, University of Maryland School of Medicine, 22 S. Greene St. Baltimore, MD 21201, USA; (V.H.); (J.D.); (N.W.T.)
| | - Pushpawallie Dhilipkannah
- Departments of Pathology, University of Maryland School of Medicine, 10 S. Pine St. Baltimore, MD 21201, USA; (Y.L.); (P.D.)
| | - Janaki Deepak
- Department of Medicine, University of Maryland School of Medicine, 22 S. Greene St. Baltimore, MD 21201, USA; (V.H.); (J.D.); (N.W.T.)
| | - Nevins W. Todd
- Department of Medicine, University of Maryland School of Medicine, 22 S. Greene St. Baltimore, MD 21201, USA; (V.H.); (J.D.); (N.W.T.)
| | - Feng Jiang
- Department of Medicine, University of Maryland School of Medicine, 22 S. Greene St. Baltimore, MD 21201, USA; (V.H.); (J.D.); (N.W.T.)
| |
Collapse
|
15
|
Expiratory Airflow Limitations on Lung Flute Effectiveness in Secretion Clearance: An Observational Cross-sectional Pilot Study. Cardiopulm Phys Ther J 2020. [DOI: 10.1097/cpt.0000000000000140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Gupta C, Su J, Zhan M, Stass SA, Jiang F. Sputum long non-coding RNA biomarkers for diagnosis of lung cancer. Cancer Biomark 2020; 26:219-227. [PMID: 31450489 DOI: 10.3233/cbm-190161] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Analysis of molecular changes in sputum may help diagnose lung cancer. Long non-coding RNAs (lncRNAs) play vital roles in various biological processes, and their dysregulations contribute to the development and progression of lung tumorigenesis. Herein, we determine whether aberrant lncRNAs could be used as potential sputum biomarkers for lung cancer. METHODS Using reverse transcription PCR, we measure expressions of lung cancer-associated lncRNAs in sputum of a discovery cohort of 67 lung cancer patients and 65 cancer-free smokers with benign diseases and a validation cohort of 59 lung cancer patients and 60 cancer-free smokers with benign diseases. RESULTS In the discovery cohort, four of the lncRNAs displayed a significantly different level in sputum of lung cancer patients vs.cancer-free smokers with benign diseases (all P< 0.001). From the four lncRNAs, three lncRNAs (SNHG1, H19, and HOTAIR) are identified as a biomarker panel, producing 82.09% sensitivity and 89.23% specificity for diagnosis of lung cancer. Furthermore, the biomarker panel has a higher sensitivity (82.09% vs. 52.24%, P= 0.02) and a similar specificity compared with sputum cytology (89.23% vs. 90.77%, P= 0.45). In addition, the lncRNA biomarker panel had a higher sensitivity (87.50% vs. 70.07%, p= 0.03) for diagnosis of squamous cell carcinoma compared with adenocarcinoma of the lung, while maintaining the same specificity (89.23%). The potential of the sputum lncRNA biomarkers for lung cancer detection is confirmed in the validation cohort. CONCLUSION We have for the first time shown that the analysis of lncRNAs in sputum might be a noninvasive approach for diagnosis of lung cancer.
Collapse
Affiliation(s)
- Chhavi Gupta
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jian Su
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Min Zhan
- Departments of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sanford A Stass
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Zheng YY, Fei Y, Wang Z, Chen Y, Qiu C, Li FR. Tissue microRNAs in non-small cell lung cancer detected with a new kind of liquid bead array detection system. J Transl Med 2020; 18:108. [PMID: 32122370 PMCID: PMC7053089 DOI: 10.1186/s12967-020-02280-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Background Commonly used miRNA detection methods cannot be applied for high-throughput analyses. However, this study was aimed to performed a liquid bead array detection system (LBAS) to detect tissue 6 miRNAs in non-small cell lung cancer (NSCLC). Methods In this study, evaluation of LBAS was performed to observe the precision, specificity, limitation and stability. Then, a total of 52 primary NSCLC patients who received resection operation without preoperative radiotherapy and chemotherapy between June 2013 and March 2014 were selected, and then the total RNA of the tissues were extracted. We prepared six NSCLC-related miRNAs for LBAS. After optimization and evaluation, LBAS was verified by detecting the relative expression levels of 6 microRNAs in the pathological tissues and corresponding normal tissues of 52 NSCLC patients. Results The results of evaluation of LBAS showed that the Mean Fluorescence Intensity (MFI) of the reaction only added with chimeric probes and beads showed no significant change after 180 days (P > 0.05). And the intra-assay Coefficient of Variation (CV) was between 1.57 and 3.5%, while the inter-assay CV was between 4.24 and 11.27%, indicating this system was ideal for diagnostic reagents. In addition, only the beads corresponding to the additional miRNAs showed high MFIs from 8426 to 18,769, whereas the fluorescence values of the other beads were under background levels (MFIs = 20 to 55) in each reaction, indicating no cross reactivity among the miRNAs. The limit of detection of miR-21, miR-210, miR-125b, miR-155, miR-375, and miR-31 were 5.27, 1.39, 1.85, 2.01, 1.34, and 2.73 amol/μL, respectively, showing that the lowest detection limit of miRNA by this system was under pM level. Then, the relative expression levels of miR-21, miR-210, miR-125b, miR-155, miR-375, and miR-31 by using this system were significantly correlated with NSCLC (P < 0.05). And the results of AUC method indicated that specific of the LBAS system was 94.2%. Conclusions Our findings suggest that LBAS was simple, high-throughput, and freely combined with absolute quantification. Thus, this system could be applied for tumor miRNAs detection.
Collapse
Affiliation(s)
- Yuan-Yuan Zheng
- Department of Pathophysiology, The Basic Medical School, Jinan University, Guangzhou, China.,Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, No. 1017 Dongmen North Road, Shenzhen, 518020, China
| | - Yun Fei
- Department of Clinical Diagnosis Laboratory, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Zheng Wang
- Department of Surgery, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Yue Chen
- Department of Clinical Diagnosis Laboratory, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Cheng Qiu
- Institute of Respiratory Diseases, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Fu-Rong Li
- Translational Medicine Collaborative Innovation Center, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, No. 1017 Dongmen North Road, Shenzhen, 518020, China. .,Institute of Respiratory Diseases, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China.
| |
Collapse
|
18
|
Identification of miR-210 and combination biomarkers as useful agents in early screening non-small cell lung cancer. Gene 2020; 729:144225. [DOI: 10.1016/j.gene.2019.144225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/07/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022]
|
19
|
Nishikawa T, Fujii T, Tatsumi S, Sugimoto A, Sekita-Hatakeyama Y, Shimada K, Yamazaki M, Hatakeyama K, Ohbayashi C. Molecular Analysis of Liquid-Based Cytological Specimen Using Virtually Positive Sputum with Adenocarcinoma Cells. Diagnostics (Basel) 2020; 10:diagnostics10020084. [PMID: 32033355 PMCID: PMC7168204 DOI: 10.3390/diagnostics10020084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Liquid-based cytology (LBC) analysis of sputum is a useful diagnostic and prognostic tool for detecting lung cancer. DNA and RNA derived from lung cancer cells can be used for this diagnosis. However, the quality of cytological material is not always adequate for molecular analysis due to the effect of formalin in the commercially available fixation kits. In this study, we examined DNA and RNA extraction methods for LBC analysis with formalin fixation, using lung carcinoma cell lines and sputum. The human non-small cell lung cancer cell lines were fixed with LBC fixation reagents, such as CytoRich red preservative. Quantification of thyroid transcription factor-1 (TTF-1) and actin mRNA, epidermal growth factor receptor (EGFR) DNA in HCC827, H1975, and H1299 cells, and mutation analysis of EGFR in HCC827 and H1975 cells were performed by quantitative PCR (qPCR) and fluorescence resonance energy transfer (FRET)-based preferential homoduplex formation assay (F-PHFA) method, respectively. mRNA and DNA extracted from cell lines using RNA and/or DNA extraction kits for formalin-fixed paraffin-embedded (FFPE) fixed with various LBC solutions were efficiently detected by qPCR. The detection limit of EGFR mutations was at a rate of 5% mutated positive cells in LBC. The detection limit of the EGFR exon 19 deletion in HCC827 was detected in more than 1.5% of the positive cells in sputum. In contrast, the detection limit of the T790M/L858R mutation in H1975 was detected in more than 13% of the positive cells. We also detected EGFR mutations using next generation sequencing (NGS). The detection limit of NGS for EGFR mutation was lower than that of the F-PHFA method. Furthermore, more than 0.1% of positive cells could be cytomorphologically detected. Our results demonstrate that LBC systems are powerful tools for cytopathological and genetic analyses. However, careful attention should be paid to the incidence of false negative results in the genetic analysis of EGFR mutations detected by LBC.
Collapse
Affiliation(s)
- Takeshi Nishikawa
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.N.); (S.T.); (A.S.); (Y.S.-H.); (K.H.); (C.O.)
| | - Tomomi Fujii
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.N.); (S.T.); (A.S.); (Y.S.-H.); (K.H.); (C.O.)
- Correspondence: ; Tel.: +81-744-22-3051 (ext. 4307); Fax: +81-744-23-5687
| | - Shigenobu Tatsumi
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.N.); (S.T.); (A.S.); (Y.S.-H.); (K.H.); (C.O.)
| | - Aya Sugimoto
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.N.); (S.T.); (A.S.); (Y.S.-H.); (K.H.); (C.O.)
| | - Yoko Sekita-Hatakeyama
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.N.); (S.T.); (A.S.); (Y.S.-H.); (K.H.); (C.O.)
| | - Keiji Shimada
- Department of Diagnostic Pathology, Nara City Hospital, Nara 630-8305, Japan;
| | - Masaharu Yamazaki
- Department of Central Clinical Laboratory, Nara Medical University Hospital, Nara 634-8521, Japan;
| | - Kinta Hatakeyama
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.N.); (S.T.); (A.S.); (Y.S.-H.); (K.H.); (C.O.)
| | - Chiho Ohbayashi
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; (T.N.); (S.T.); (A.S.); (Y.S.-H.); (K.H.); (C.O.)
| |
Collapse
|
20
|
Liao J, Shen J, Leng Q, Qin M, Zhan M, Jiang F. MicroRNA-based biomarkers for diagnosis of non-small cell lung cancer (NSCLC). Thorac Cancer 2020; 11:762-768. [PMID: 31994346 PMCID: PMC7049510 DOI: 10.1111/1759-7714.13337] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 11/27/2022] Open
Abstract
Background The development of biomarkers for the early detection of non‐small cell lung cancer (NSCLC) is clinically important. We have developed miRNA biomarkers in sputum and plasma, respectively, for NSCLC. Herein, we evaluate whether integrated analysis of the miRNAs across the different types of specimens could improve the early detection of NSCLC. Methods Using reverse transcription PCR, we determined expressions of two miRNAs (miRs‐31‐5p and 210‐3p) in sputum and three miRNAs (miRs‐21‐5p, 210‐3p, and 486‐5p) in plasma of a training cohort of 76 NSCLC patients and 72 cancer‐free smokers. The results were validated in a testing cohort of 56 NSCLC patients and 55 cancer‐free smokers. Results The panels of two sputum miRNAs and three plasma miRNAs had 65.8–75.0% sensitivities and 83.3–87.5% specificities for diagnosis of NSCLC in the training cohort. The individual sputum or plasma miRNA panel had a higher sensitivity for squamous cell carcinoma or adenocarcinoma of the lung, respectively. From the miRNAs, we optimized an integrated panel of biomarkers consisting of two sputum miRNAs (miRs‐31‐5p and 210‐3p) and one plasma miRNA (miR‐21‐5p) that had higher sensitivity (85.5%) and specificity (91.7%) for diagnosis of NSCLC compared with the individual panels alone. Furthermore, the performance of the integrated panel of biomarkers was independent of histology and stage of NSCLC, and patients' age, sex, and ethnicity. The performance of the integrated panel of biomarkers was confirmed in the testing cohort. Conclusions Integrating biomarkers across different body fluids would synergistically improve the early detection of NSCLC. Key points Lung cancer is a heterogeneous disease and develops from complex aberrations. Integrating sputum and plasma miRNAs has higher accuracy than when they are used alone
Collapse
Affiliation(s)
- Jipei Liao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jun Shen
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Qixin Leng
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Meng Qin
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Min Zhan
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Ismail N, Elhawary A, Esawy M, Shabana M. Efficacy and safety of a new acoustic device, the lung flute, for sputum induction and lung physiotherapy. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2020. [DOI: 10.4103/ejcdt.ejcdt_44_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Zhang X, Wang Q, Zhang S. MicroRNAs in sputum specimen as noninvasive biomarkers for the diagnosis of nonsmall cell lung cancer: An updated meta-analysis. Medicine (Baltimore) 2019; 98:e14337. [PMID: 30732158 PMCID: PMC6380860 DOI: 10.1097/md.0000000000014337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Nonsmall cell lung cancer (NSCLC) is a serious leading cause of death worldwide. Recently, multiple researches have identified that microRNA (miRNA) in sputum could be a useful tool for NSCLC diagnosis. The objective of this study was to assess whether aberrant miRNA expression could be regarded as a useful biomarker in sputum specimen for the diagnosis of NSCLC. METHODS Eligible studies were searched in PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Wanfang, and VIP databases up to June 2018. We calculated the pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) to investigate the diagnostic value of miRNA in sputum for NSCLC. MetaDisc1.4 and STATA12.0 were used to analyze the retrieved data. RESULTS Finally, a total of 14 articles were included in this meta-analysis involving 1009 NSCLC patients and 1006 controls. The results were as followed: the pooled sensitivity, specificity, PLR, NLR, DOR, were 0.75 (95%CI:0.72-0.78), 0.88 (95%CI:0.86-0.90), 5.70 (95%CI:4.82-6.75), 0.30 (95%CI:0.26-0.34), 22.43 (95%CI:17.48-28.79), respectively. The AUC of overall summary receiver operator characteristic curve (SROC) was 0.8917. CONCLUSION Our comprehensive analysis indicated that miRNAs in sputum specimen may be noninvasive diagnostic biomarkers for NSCLC. However, much more studies should be conducted before clinical application.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University
| | - Qian Wang
- Department of Medical Laboratory, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan Province, China
| | - Shijie Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University
| |
Collapse
|
23
|
Feng S, He A, Wang D, Kang B. Diagnostic significance of miR-210 as a potential tumor biomarker of human cancer detection: an updated pooled analysis of 30 articles. Onco Targets Ther 2019; 12:479-493. [PMID: 30666127 PMCID: PMC6331190 DOI: 10.2147/ott.s184564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A large number of studies have explored the diagnostic value of miR-210 as a potential diagnostic cancer biomarker to detect various cancers in patients. However, the results of its diagnostic accuracy and reliability in individual studies are still inconsistent. Therefore, we conducted this updated pooled analysis to derive a more reliable conclusion of the overall accuracy of miR-210 in cancer detection and diagnosis. A comprehensive literature search was performed using the PubMed, Cochrane Library, Web of Science, China National Knowledge Infrastructure, and Wanfang databases. The quality of all eligible studies was scored according to Quality Assessment of Diagnostic Accuracy Studies-2 guidelines. The bivariate mixed model was applied to pooled sensitivity, specificity, likelihood ratios, and diagnostic ORs. The summary receiver operator characteristic (SROC) curve and the hierarchical SROC models were used to check overall diagnostic performance. Thirty articles with 2,304 patients and 1,673 controls were included in this study. The pooled parameters calculated from all studies are as follows: sensitivity -0.74 (95% CI: 0.68-0.79), specificity -0.79 (95% CI: 0.74-0.83), positive likelihood ratio -3.57 (95% CI: 2.85-4.47), negative likelihood ratio -0.32 (95% CI: 0.26-0.40), diagnostic OR -10.98 (95% CI: 7.55-15.98), SROC -0.84 (95% CI: 0.80-0.87). All of these results revealed that miR-210 had relatively moderate accuracy in distinguishing patients with various cancers from all other individuals. However, well-designed prospective studies with large sample sizes using different groups of the population are urgently warranted to confirm our findings.
Collapse
Affiliation(s)
- Song Feng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Peking University Shenzhen, Shenzhen 518038, Guangdong, China, ;
| | - Anbang He
- Department of Urology, Peking University First Hospital, The Institute of Urology, Peking University National Urological Cancer Centre, Beijing 100034, China
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Peking University Shenzhen, Shenzhen 518038, Guangdong, China, ;
| | - Bin Kang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Peking University Shenzhen, Shenzhen 518038, Guangdong, China, ;
| |
Collapse
|
24
|
Leng Q, Tsou JH, Zhan M, Jiang F. Fucosylation genes as circulating biomarkers for lung cancer. J Cancer Res Clin Oncol 2018; 144:2109-2115. [PMID: 30101373 DOI: 10.1007/s00432-018-2735-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Fucosyltransferases (FUTs) catalyze fucosylation, which plays a central role in biological processes. Aberrant fucosylation is associated with malignant transformation. Here we investigated whether transcriptional levels of genes coding the FUTs in plasma could provide cell-free circulating biomarkers for lung cancer. METHODS mRNA expression of all 13 Futs (Fut1-11, Pofut1, and Pofut2) was evaluated by PCR assay in 48 lung tumor tissues and the 48 matched noncancerous lung tissues, and plasma of 64 lung cancer patients and 32 cancer-free individuals to develop plasma Fut biomarkers. The developed plasma Fut biomarkers were validated in an independent cohort of 40 lung cancer patients and 20 controls for their diagnostic performance. RESULTS Four of the 13 Futs showed a different transcriptional level in 48 lung tumor tissues compared with the 48 matched nonconscious tissues (all < 0.05). Two (Fut8, and Pofut1) of the four Futs had a higher plasma level in 64 lung cancer patients compared with 32 control subjects, and consistent with that in lung tissue specimens. Combined analysis of the two Futs produced 81% sensitivity and 86% specificity for diagnosis of lung cancer, and was independent of stage and histology of lung tumors. The diagnostic performance of the two plasma biomarkers was successfully validated in the different cohort of 40 lung cancer patients and 20 control individuals. CONCLUSION The fucosylation genes may provide new circulating biomarkers for the early detection of lung cancer.
Collapse
Affiliation(s)
- Qixin Leng
- Department of Pathology, The University of Maryland School of Medicine, 10 South Pine Street, MSTF 7th Floor, Baltimore, MD, 21201-1192, USA
| | - Jen-Hui Tsou
- Department of Pathology, The University of Maryland School of Medicine, 10 South Pine Street, MSTF 7th Floor, Baltimore, MD, 21201-1192, USA
| | - Min Zhan
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, 660 W. Redwood St., Baltimore, MD, 21201, USA
| | - Feng Jiang
- Department of Pathology, The University of Maryland School of Medicine, 10 South Pine Street, MSTF 7th Floor, Baltimore, MD, 21201-1192, USA.
| |
Collapse
|
25
|
Clinically Correlated MicroRNAs in the Diagnosis of Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5930951. [PMID: 30050938 PMCID: PMC6046186 DOI: 10.1155/2018/5930951] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/30/2018] [Accepted: 06/07/2018] [Indexed: 12/28/2022]
Abstract
(1) Background. Non-small cell lung cancer (NSCLC) has a high mortality rate. MiRNAs have been found to be diagnostic biomarkers for NSCLC. However, controversial results exist. We conducted this meta-analysis to evaluate the diagnostic value of miRNAs for NSCLC. (2) Methods. Databases and reference lists were searched. Pooled sensitivity (SEN), specificity (SPE), and area under the curve (AUC) were applied to examine the general diagnostic efficacy, and subgroup analysis was also performed. (3) Results. Pooled SEN, SPE, and AUC were 85%, 88%, and 0.93, respectively, for 71 studies. Multiple miRNAs (AUC: 0.96) obtained higher diagnostic value than single miRNA (AUC: 0.86), and the same result was found for Caucasian population (AUC: 0.97) when compared with Asian (AUC: 0.91) and Caucasian/African population (AUC: 0.92). MiRNA had higher diagnostic efficacy when participants contained both smokers and nonsmokers (AUC is 0.95 for imbalanced group and 0.91 for balanced group) than when containing only smokers (AUC: 0.90). Meanwhile, AUC was 0.91 for both miR-21 and miR-210. (4) Conclusions. Multiple miRNAs such as miR-21 and miR-210 could be used as diagnostic tools for NSCLC, especially for the Caucasian and nonsmoking NSCLC.
Collapse
|
26
|
Su Y, Fang HB, Jiang F. An epigenetic classifier for early stage lung cancer. Clin Epigenetics 2018; 10:68. [PMID: 29796119 PMCID: PMC5964676 DOI: 10.1186/s13148-018-0502-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/14/2018] [Indexed: 12/19/2022] Open
Abstract
Background Methylated genes detected in sputum are promise biomarkers for lung cancer. Yet the current PCR technologies for quantification of DNA methylation and diagnostic value of the sputum biomarkers are not sufficient to be used for lung cancer early detection. The emerging droplet digital PCR (ddPCR) is a straightforward means for precise, direct, and absolute quantification of nucleic acids. Here, we investigate whether ddPCR can sensitively and robustly quantify DNA methylation in sputum for more precise diagnosis of lung cancer. Results First, the analytic performance of methylation-specific ddPCR (ddMSP) and quantitative methylation-specific PCR (qMSP) is determined in methylated and unmethylated DNA samples. Second, 29 genes, previously proposed as potential sputum biomarkers for lung cancer, are analyzed by using ddMSP in a training set of 127 lung cancer patients and 159 controls. ddMSP has higher sensitivity, precision, and reproducibility for quantification of methylation compared with qMSP (all p < 0.05). A classifier comprising four sputum methylation biomarkers for lung cancer is developed by using ddMSP, producing 86.6% sensitivity and 90.6% specificity, independent of stage and histology of lung cancer (all p > 0.05). The classifier has higher accuracy compared with sputum cytology (88.8 vs. 70.6%, p < 0.01). The diagnostic performance is confirmed in a testing set of 89 cases and 107 controls. Conclusions ddMSP is a robust tool for reliable quantification of DNA methylation in sputum, and the epigenetic classifier could help diagnose lung cancer at the early stage.
Collapse
Affiliation(s)
- Yun Su
- 1Department of Surgery, Jiangsu Province Hospital of Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023 China
| | - Hong Bin Fang
- 2Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, 4000 Reservoir Road, N.W, Washington D.C., 20057 USA
| | - Feng Jiang
- 3Department of Pathology, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
27
|
Leng Q, Lin Y, Zhan M, Jiang F. An integromic signature for lung cancer early detection. Oncotarget 2018; 9:24684-24692. [PMID: 29872497 PMCID: PMC5973873 DOI: 10.18632/oncotarget.25227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 04/07/2018] [Indexed: 01/06/2023] Open
Abstract
We previously developed three microRNAs (miRs-21, 210, and 486-5p), two long noncoding RNAs (lncRNAs) (SNHG1 and RMRP), and two fucosyltransferase (FUT) genes (FUT8 and POFUT1) as potential plasma biomarkers for lung cancer. However, the diagnostic performance of the individual panels is not sufficient to be used in the clinics. Given the heterogeneity of lung tumors developed from multifactorial molecular aberrations, we determine whether integrating the different classes of molecular biomarkers can improve diagnosis of lung cancer. By using droplet digital PCR, we analyze expression of the seven genes in plasma of a development cohort of 64 lung cancer patients and 33 cancer-free individuals. The panels of three miRNAs (miRs-21, 210, and 486-5p), two lncRNAs (SNHG1 and RMRP), and two FUTs (FUT8 and POFUT1) have a sensitivity of 81-86% and a specificity of 84-87% for diagnosis of lung cancer. From the seven genes, an integromic plasma signature comprising miR-210, SNHG1, and FUT8 is developed that produces higher sensitivity (95.45%) and specificity (96.97%) compared with the individual biomarker panels (all p<0.05). The diagnostic value of the signature was confirmed in a validation cohort of 40 lung cancer patients and 29 controls, independent of stage and histological type of lung tumor, and patients' age, sex, and smoking status (all p>0.05). The integration of the different categories of biomarkers might improve diagnosis of lung cancer.
Collapse
Affiliation(s)
- Qixin Leng
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yanli Lin
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Min Zhan
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
28
|
Yang H, Wang H, Zhang C, Tong Z. The accuracy of microRNA-210 in diagnosing lung cancer: a systematic review and meta-analysis. Oncotarget 2018; 7:63283-63293. [PMID: 27557519 PMCID: PMC5325363 DOI: 10.18632/oncotarget.11446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/13/2016] [Indexed: 12/03/2022] Open
Abstract
Studies examining the diagnostic value of microRNA-210 for lung cancer have yielded inconsistent results. Here, we performed a meta-analysis to assess the diagnostic accuracy of microRNA-210 for lung cancer. Nine eligible studies involving 993 patients (554 lung cancer patients and 439 non-cancer patients) were independently identified, and the quality of these studies was assessed according to Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) guidelines. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 0.66 (95% CI, 0.57 to 0.75), 0.82 (95% CI, 0.72 to 0.89), 3.64 (95% CI, 2.54 to 5.21), 0.41 (95% CI, 0.34 to 0.51) and 8.78 (95% CI, 6.10 to 12.66), respectively. The area under the summary receiver operator characteristic curve was 0.80 (95% CI, 0.76 to 0.83). These results indicated that microRNA-210 had moderate diagnostic value for lung cancer. Additional prospective studies are needed to confirm the diagnostic value of microRNA-210.
Collapse
Affiliation(s)
- Huqin Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Huijuan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Chao Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| |
Collapse
|
29
|
Su J, Leng Q, Lin Y, Ma J, Jiang F, Lee CJ, Fang H, Jiang F. Integrating Circulating Immunological and Sputum Biomarkers for the Early Detection of Lung Cancer. BIOMARKERS IN CANCER 2018; 10:1179299X18759297. [PMID: 29467585 PMCID: PMC5815414 DOI: 10.1177/1179299x18759297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/23/2018] [Indexed: 01/02/2023]
Abstract
We have demonstrated that assessments of microRNA (miRNA) expressions in circulating peripheral blood mononucleated cell (PBMC) and sputum specimens, respectively, may help diagnose lung cancer. To assess the individual and combined analysis of the miRNAs across the different body fluids for lung cancer early detection, we analyse a panel of 3 sputum miRNAs (miRs-21, 31, and 210) and a panel of 2 PBMC miRNAs (miRs-19b-3p and 29b-3p) in a discovery cohort of 68 patients with lung cancer and 66 cancer-free smokers. We find that integrating 2 sputum miRNAs (miRs-31 and 210) and 1 PBMC miRNA (miR-19b-3p) has higher sensitivity (86.8%) and specificity (92.4%) compared with the individual panels. The synergistic value of the integrated panel of 3 biomarkers is confirmed in a validation cohort, independent of stage and histological type of lung cancer, and patients' age, sex, and ethnicity. Integrating circulating immunological and sputum biomarkers could improve the early detection of lung cancer.
Collapse
Affiliation(s)
- Jian Su
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Qixin Leng
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yanli Lin
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jie Ma
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Fangran Jiang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cheng-Ju Lee
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - HongBin Fang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Lin Y, Leng Q, Jiang Z, Guarnera MA, Zhou Y, Chen X, Wang H, Zhou W, Cai L, Fang H, Li J, Jin H, Wang L, Yi S, Lu W, Evers D, Fowle CB, Su Y, Jiang F. A classifier integrating plasma biomarkers and radiological characteristics for distinguishing malignant from benign pulmonary nodules. Int J Cancer 2017; 141:1240-1248. [PMID: 28580707 PMCID: PMC5526452 DOI: 10.1002/ijc.30822] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/09/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022]
Abstract
Lung cancer is primarily caused by cigarette smoking and the leading cancer killer in the USA and across the world. Early detection of lung cancer by low-dose CT (LDCT) can reduce the mortality. However, LDCT dramatically increases the number of indeterminate pulmonary nodules (PNs), leading to overdiagnosis. Having a definitive preoperative diagnosis of malignant PNs is clinically important. Using microarray and droplet digital PCR to directly profile plasma miRNA expressions of 135 patients with PNs, we identified 11 plasma miRNAs that displayed a significant difference between patients with malignant versus benign PNs. Using multivariate logistic regression analysis of the molecular results and clinical/radiological characteristics, we developed an integrated classifier comprising two miRNA biomarkers and one radiological characteristic for distinguishing malignant from benign PNs. The classifier had 89.9% sensitivity and 90.9% specificity, being significantly higher compared with the biomarkers or clinical/radiological characteristics alone (all p < 0.05). The classifier was validated in two independent sets of patients. We have for the first time shown that the integration of plasma biomarkers and radiological characteristics could more accurately identify lung cancer among indeterminate PNs. Future use of the classifier could spare individuals with benign growths from the harmful diagnostic procedures, while allowing effective treatments to be immediately initiated for lung cancer, thereby reduces the mortality and cost. Nevertheless, further prospective validation of this classifier is warranted.
Collapse
Affiliation(s)
- Yanli Lin
- Department of Pathology, University of Maryland School of Medicine, Baltimore. MD. USA
| | - Qixin Leng
- Department of Pathology, University of Maryland School of Medicine, Baltimore. MD. USA
| | - Zhengran Jiang
- Department of Pathology, University of Maryland School of Medicine, Baltimore. MD. USA
- The F. Edward Hébert School of Medicine at the Uniformed Services University of the Health Sciences, Bethesda, MD. USA
| | - Maria A. Guarnera
- Department of Pathology, University of Maryland School of Medicine, Baltimore. MD. USA
| | - Yun Zhou
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore. MD. USA
| | - Xueqi Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing. China
| | - Heping Wang
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, Washington D.C. USA
| | - Wenxian Zhou
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, Washington D.C. USA
| | - Ling Cai
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, Washington D.C. USA
| | - HongBin Fang
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, Washington D.C. USA
| | - Jie Li
- Department of thoracic surgery, the general hospital of PLA, Beijing. China
| | - Hairong Jin
- Department of thoracic surgery, the general hospital of PLA, Beijing. China
| | - Linghui Wang
- Department of thoracic surgery, the general hospital of PLA, Beijing. China
| | - Shaoqiong Yi
- Department of thoracic surgery, the general hospital of PLA, Beijing. China
| | - Wei Lu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, NY. USA
| | - David Evers
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD. USA
| | - Carol B Fowle
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD. USA
| | - Yun Su
- Department of Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Nanjing University of TCM. Nanjing. China
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, Baltimore. MD. USA
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD. USA
| |
Collapse
|
31
|
Sakashita K, Fujita A, Takamori M, Nagai T, Matsumoto T, Saito T, Nakagawa T, Ogawa K, Shigeto E, Nakatsumi Y, Goto H, Mitarai S. Efficiency of the Lung Flute for sputum induction in patients with presumed pulmonary tuberculosis. CLINICAL RESPIRATORY JOURNAL 2017; 12:1503-1509. [PMID: 28846200 DOI: 10.1111/crj.12697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 06/01/2017] [Accepted: 08/14/2017] [Indexed: 11/28/2022]
Abstract
INTRODUCTION High quality sputum helps increase the sensitivity of the diagnosis of pulmonary tuberculosis. OBJECTIVES To evaluate the efficiency of the acoustic device (Lung Flute; LF) in sputum induction compared with the conventional method, hypertonic saline inhalation (HSI). METHODS In this crossover study, patients with presumed pulmonary tuberculosis submitted 3 consecutive sputa: the first sputum without induction and the second and third ones using LF and HSI. We compared the efficiency of the 2 induction methods. RESULTS Sixty-four participants were eligible. Thirty-five (54.6%) patients had negative smears on the first sputum without induction. Among those patients, 25.7% and 22.9% patients were smear-positive after using LF and HSI, respectively (P = .001). The positive conversion rate was not significantly different between the methods. The first samples without induction yielded 65.7% positive cultures, whereas 71.4% and 77.1% of the samples from LF and HSI were positive, respectively (P = .284). Similar results were observed in the nucleic acid amplification test [no induction (60.0%), LF (72.0%) and HSI (60.0%); P = .341]. In 29 smear-positive patients on the first sputum without induction, we observed no significant increase in smear grade, culture yield and nucleic acid amplification test positivity with either method. LF tended to induce fewer adverse events; desaturation (3.1% vs 11.1%; P = .082) and throat pain (1.5% vs 9.5%; P = .057). LF showed significantly fewer total adverse events (15.8% vs 34.9%; P = .023). CONCLUSIONS Our study showed LF had similar sputum induction efficiency to HSI with relatively fewer complications.
Collapse
Affiliation(s)
- Kentaro Sakashita
- Department of Respiratory Medicine, Tokyo Metropolitan Tama Medical Centre, 2-8-29 Musashidai, Fuchu, Tokyo, Japan.,Department of Basic Mycobacteriology, Graduate School of Biomedical Science, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki, Japan
| | - Akira Fujita
- Department of Respiratory Medicine, Tokyo Metropolitan Tama Medical Centre, 2-8-29 Musashidai, Fuchu, Tokyo, Japan
| | - Mikio Takamori
- Department of Respiratory Medicine, Tokyo Metropolitan Tama Medical Centre, 2-8-29 Musashidai, Fuchu, Tokyo, Japan
| | - Takayuki Nagai
- Division of Infectious Disease, Osaka Prefectural Medical Centre for Respiratory and Allergic Diseases, 3-7-1 Habikino, Habikino city, Osaka, Japan
| | - Tomoshige Matsumoto
- Division of Infectious Disease, Osaka Prefectural Medical Centre for Respiratory and Allergic Diseases, 3-7-1 Habikino, Habikino city, Osaka, Japan
| | - Takefumi Saito
- Department of Respiratory Medicine, National Hospital Organization Ibaraki Higashi National Hospital, Terunuma 825, Tokai-mura, Naka-gun, Ibaraki, Japan
| | - Taku Nakagawa
- Department of Respiratory Medicine, National Hospital Organization, Higashinagoya National Hospital, 5-101 Umemorizaka, Meito-ku, Nagoya, Aichi, Japan
| | - Kenji Ogawa
- Department of Respiratory Medicine, National Hospital Organization, Higashinagoya National Hospital, 5-101 Umemorizaka, Meito-ku, Nagoya, Aichi, Japan
| | - Eriko Shigeto
- Department of Respiratory Diseases, National Hospital Organization, Higashihiroshima Medical Centre, 513 Jike, Saijo-cho, Higashihiroshima, Hiroshima, Japan
| | - Yasuto Nakatsumi
- Department of Respiratory Medicine, Kanazawa Municipal Hospital, 3-7-3 Heiwa-machi, Kanazawa, Ishikawa, Japan
| | - Hajime Goto
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo, Japan
| | - Satoshi Mitarai
- Department of Basic Mycobacteriology, Graduate School of Biomedical Science, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-shi, Nagasaki, Japan.,Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo, Japan
| |
Collapse
|
32
|
Nicolini A, Mascardi V, Grecchi B, Ferrari-Bravo M, Banfi P, Barlascini C. Comparison of effectiveness of temporary positive expiratory pressure versus oscillatory positive expiratory pressure in severe COPD patients. CLINICAL RESPIRATORY JOURNAL 2017; 12:1274-1282. [PMID: 28665556 DOI: 10.1111/crj.12661] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/28/2017] [Accepted: 06/12/2017] [Indexed: 11/30/2022]
Abstract
INTRODUCTION In chronic obstructive pulmonary disease (COPD) patients few modalities of airway clearance have demonstrated effectiveness in reducing hypersecretion and bronchial obstruction. Positive expiratory pressure (PEP) is one of these. OBJECTIVE Our goal was to compare the effectiveness of 2 devices Temporary PEP (T-PEP) and Oscillatory PEP (O-PEP) which use PEP applied at a low expiratory pressure of 1 cm H2 O which creates oscillations that decrease bronchial obstruction in reducing COPD exacerbations and improving respiratory and health status assessment parameters. Each has different mechanism of action. METHODS A 26 week randomized controlled study evaluated their efficacy in reducing exacerbations and improving health status assessment tests as well as respiratory function parameters in severe to very severe COPD patients. One hundred-twenty patients were enrolled: 40 patients received T-PEP therapy; 40 underwent treatment with O-PEP; 40 constituted the control group. The primary outcome was the reduction of exacerbations after 1, 3 and 6 months; secondary outcomes were improvement of lung function and health status assessment tests [Modified Medical Research Council (MMRC) scale, Breathlessness, Cough, and Sputum Scale (BCSS) scale, and COPD Assessment Test (CAT) score]. RESULTS Only T-PEP statistically reduced the exacerbations after 1 and 3 months compared to the control group. Both the 2 devices improved dyspnea scale (MMRC), lung function parameters, and health status assessment (CAT) tests compared to the control group. Both interventions were well-tolerated by our patients. CONCLUSIONS O-PEP and T-PEP are useful for COPD treatment but only T-PEP reduces exacerbations. Adding tools for airway clearance to medical therapy can help the management of COPD.
Collapse
Affiliation(s)
| | | | - Bruna Grecchi
- Physical Medicine and Rehabilitation, ASL 4 Chiavarese, Italy
| | | | | | | |
Collapse
|
33
|
Leng S, Wu G, Klinge DM, Thomas CL, Casas E, Picchi MA, Stidley CA, Lee SJ, Aisner S, Siegfried JM, Ramalingam S, Khuri FR, Karp DD, Belinsky SA. Gene methylation biomarkers in sputum as a classifier for lung cancer risk. Oncotarget 2017; 8:63978-63985. [PMID: 28969046 PMCID: PMC5609978 DOI: 10.18632/oncotarget.19255] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/05/2017] [Indexed: 01/01/2023] Open
Abstract
CT screening for lung cancer reduces mortality, but will cost Medicare ∼2 billion dollars due in part to high false positive rates. Molecular biomarkers could augment current risk stratification used to select smokers for screening. Gene methylation in sputum reflects lung field cancerization that remains in lung cancer patients post-resection. This population was used in conjunction with cancer-free smokers to evaluate classification accuracy of a validated eight-gene methylation panel in sputum for cancer risk. Sputum from resected lung cancer patients (n=487) and smokers from Lovelace (n=1380) and PLuSS (n=718) cohorts was studied for methylation of an 8-gene panel. Area under a receiver operating characteristic curve was calculated to assess the prediction performance in logistic regressions with different sets of variables. The prevalence for methylation of all genes was significantly increased in the ECOG-ACRIN patients compared to cancer-free smokers as evident by elevated odds ratios that ranged from 1.6 to 8.9. The gene methylation panel showed lung cancer prediction accuracy of 82–86% and with addition of clinical variables improved to 87–90%. With sensitivity at 95%, specificity increased from 25% to 54% comparing clinical variables alone to their inclusion with methylation. The addition of methylation biomarkers to clinical variables would reduce false positive screens by ruling out one-third of smokers eligible for CT screening and could increase cancer detection rates through expanding risk assessment criteria.
Collapse
Affiliation(s)
- Shuguang Leng
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Guodong Wu
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Donna M Klinge
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Cynthia L Thomas
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Elia Casas
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Maria A Picchi
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Christine A Stidley
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Sandra J Lee
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Seena Aisner
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Jill M Siegfried
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Suresh Ramalingam
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | | | - Steven A Belinsky
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| |
Collapse
|
34
|
Li H, Jiang Z, Leng Q, Bai F, Wang J, Ding X, Li Y, Zhang X, Fang H, Yfantis HG, Xing L, Jiang F. A prediction model for distinguishing lung squamous cell carcinoma from adenocarcinoma. Oncotarget 2017; 8:50704-50714. [PMID: 28881596 PMCID: PMC5584193 DOI: 10.18632/oncotarget.17038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/04/2017] [Indexed: 12/19/2022] Open
Abstract
Accurate classification of squamous cell carcinoma (SCC) from adenocarcinoma (AC) of non–small cell lung cancer (NSCLC) can lead to personalized treatments of lung cancer. We aimed to develop a miRNA-based prediction model for differentiating SCC from AC in surgical resected tissues and bronchoalveolar lavage (BAL) samples. Expression levels of seven histological subtype-associated miRNAs were determined in 128 snap-frozen surgical lung tumor specimens by using reverse transcription-polymerase chain reaction (RT-PCR) to develop an optimal panel of miRNAs for acutely distinguishing SCC from AC. The biomarkers were validated in an independent cohort of 112 FFPE lung tumor tissues, and a cohort of 127 BAL specimens by using droplet digital PCR for differentiating SCC from AC. A prediction model with two miRNAs (miRs-205-5p and 944) was developed that had 0.988 area under the curve (AUC) with 96.55% sensitivity and 96.43% specificity for differentiating SCC from AC in frozen tissues, and 0.997 AUC with 96.43% sensitivity and 96.43% specificity in FFPE specimens. The diagnostic performance of the prediction model was reproducibly validated in BAL specimens for distinguishing SCC from AC with a higher accuracy compared with cytology (95.69 vs. 68.10%; P < 0.05). The prediction model might have a clinical value for accurately discriminating SCC from AC in both surgical lung tumor tissues and liquid cytological specimens.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhengran Jiang
- Department of Pathology, the University of Maryland School of Medicine, Baltimore, Maryland, USA.,The F. Edward Hébert School of Medicine at the Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Qixin Leng
- Department of Pathology, the University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Fan Bai
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Juan Wang
- Department of Pathology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaosong Ding
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuehong Li
- Department of Pathology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xianghong Zhang
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Pathology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - HongBin Fang
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, Washington, D.C., USA
| | - Harris G Yfantis
- Pathology and Laboratory Medicine, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Lingxiao Xing
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Feng Jiang
- Department of Pathology, the University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Sheervalilou R, Khamaneh AM, Sharifi A, Nazemiyeh M, Taghizadieh A, Ansarin K, Zarghami N. Using miR-10b, miR-1 and miR-30a expression profiles of bronchoalveolar lavage and sputum for early detection of non-small cell lung cancer. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
36
|
Su J, Liao J, Gao L, Shen J, Guarnera MA, Zhan M, Fang H, Stass SA, Jiang F. Analysis of small nucleolar RNAs in sputum for lung cancer diagnosis. Oncotarget 2017; 7:5131-42. [PMID: 26246471 PMCID: PMC4868676 DOI: 10.18632/oncotarget.4219] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/09/2015] [Indexed: 12/15/2022] Open
Abstract
Molecular analysis of sputum presents a noninvasive approach for diagnosis of lung cancer. We have shown that dysregulation of small nucleolar RNAs (snoRNAs) plays a vital role in lung tumorigenesis. We have also identified six snoRNAs whose changes are associated with lung cancer. Here we investigated if analysis of the snoRNAs in sputum could provide a potential tool for diagnosis of lung cancer. Using qRT-PCR, we determined expressions of the six snoRNAs in sputum of a training set of 59 lung cancer patients and 61 cancer-free smokers to develop a biomarker panel, which was validated in a testing set of 67 lung cancer patients and 69 cancer-free smokers for the diagnostic performance. The snoRNAs were robustly measurable in sputum. In the training set, a panel of two snoRNA biomarkers (snoRD66 and snoRD78) was developed, producing 74.58% sensitivity and 83.61% specificity for identifying lung cancer. The snoRNA biomarkers had a significantly higher sensitivity (74.58%) compared with sputum cytology (45.76%) (P < 0.05). The changes of the snoRNAs were not associated with stage and histology of lung cancer (All P >0.05). The performance of the biomarker panel was confirmed in the testing cohort. We report for the first time that sputum snoRNA biomarkers might be useful to improve diagnosis of lung cancer.
Collapse
Affiliation(s)
- Jian Su
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeipi Liao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lu Gao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jun Shen
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria A Guarnera
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Min Zhan
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - HongBin Fang
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sanford A Stass
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
37
|
Su Y, Fang H, Jiang F. Integrating DNA methylation and microRNA biomarkers in sputum for lung cancer detection. Clin Epigenetics 2016; 8:109. [PMID: 27777637 PMCID: PMC5070138 DOI: 10.1186/s13148-016-0275-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/05/2016] [Indexed: 02/02/2023] Open
Abstract
Background Abnormal microRNA (miRNA) expressions and promoter methylation of genes detected in sputum may provide biomarkers for non-small lung cancer (NSCLC). Here, we evaluate the individual and combined analysis of the two classes of sputum molecular biomarkers for NSCLC detection. Results We analyze expression of 3 miRNAs (miR-21, miR-31, and miR-210) and methylation of 3 genes (RASSF1A, PRDM14, and 3OST2), which were previously identified as potential biomarkers for NSCLC, in sputum of a set of 117 stage I NSCLC patients and 174 cancer-free smokers. The results are validated in a different set of 144 stage I NSCLC patients and 171 controls. The panel of 3 miRNA biomarkers has 81.5 % sensitivity and 85.9 % specificity; the panel of 3 methylation biomarkers displays 82.9 % sensitivity and 76.4 % specificity for NSCLC detection. Integrated analysis of 2 miRNAs (miR-31 and miR-210) and 2 genes (RASSF1A and 3OST2) yields higher sensitivity (87.3 %) and specificity (90.3 %) compared with the individual panels of the biomarkers (P < 0.05). Combined analysis of all the 3 miRNAs and 3 genes does not have performance superior to that of the panel of 2 miRNAs and 2 genes (P > 0.05). The performance of combined use of the two classes of biomarkers was confirmed in the validation set. Conclusions The integration of two different classes of biomarkers synergistically improves both the sensitivity and the specificity for the early detection of NSCLC. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0275-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Su
- Department of Surgery, Jiangsu Province Hospital of Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023 China
| | - HongBin Fang
- Department of Epidemiology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
38
|
The functional and predictive roles of miR-210 in cryptorchidism. Sci Rep 2016; 6:32265. [PMID: 27562222 PMCID: PMC5000482 DOI: 10.1038/srep32265] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/04/2016] [Indexed: 12/29/2022] Open
Abstract
Idiopathic diseases of the reproductive system are important factors leading to male infertility. Many studies have shown that microRNAs (miRNAs) regulate the expression of multiple genes that play a significant role in spermatogenesis and development. We previously showed that microRNA-210 (miR-210) is one of the markedly upregulated microRNAs in the testes of sterile males with maturation arrest (MA). However, the role of miR-210 in spermatogenesis remains unknown. In this study, we found that miR-210 is highly expressed not only in patients with MA but also in patients with cryptorchidism. In addition, miR-210 inhibits the expression of Nuclear Receptor Subfamily 1, Group D, Member 2 (NR1D2) both in vitro and in vivo, particularly in cryptorchidic tissues. To facilitate further research, we established a mouse model of cryptorchidism and were surprised to discover that the miR-210 expression pattern was in accordance with that of patients with cryptorchidism. Thus, we propose that miR-210 may serve as a biomarker of cryptorchidism in clinical tests.
Collapse
|
39
|
Su Y, Guarnera MA, Fang H, Jiang F. Small non-coding RNA biomarkers in sputum for lung cancer diagnosis. Mol Cancer 2016; 15:36. [PMID: 27176474 PMCID: PMC4866414 DOI: 10.1186/s12943-016-0520-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/04/2016] [Indexed: 11/13/2022] Open
Abstract
The early detection of lung cancer can reduce the mortality. However, there is no effective means in clinical settings for noninvasively detecting lung cancer. We previously developed 3 sputum miRNA biomarkers and 2 sputum small nucleolar RNA (snoRNA) biomarkers that can potentially be used for noninvasively diagnosing lung cancer. Here we evaluate the individual and combined applications of the two types of biomarkers in different sets of lung cancer patients and controls. Combined analysis of the miRNAs and snoRNAs has a synergistic effect with 89 % sensitivity and 89 % specificity, and may provide a useful tool for lung cancer early detection.
Collapse
Affiliation(s)
- Yun Su
- Department of Surgery, Jiangsu Province Hospital, Nanjing University of Chinese Medicine, 155 Hanzhong Rd., Nanjing, 210029, China
| | - Maria A Guarnera
- Department of Pathology, The University of Maryland School of Medicine, 10 South Pine Street, MSTF 7th floor, Baltimore, MD, 21201-1192, USA
| | - HongBin Fang
- Department of Epidemiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Feng Jiang
- Department of Pathology, The University of Maryland School of Medicine, 10 South Pine Street, MSTF 7th floor, Baltimore, MD, 21201-1192, USA.
| |
Collapse
|
40
|
Gyoba J, Shan S, Roa W, Bédard ELR. Diagnosing Lung Cancers through Examination of Micro-RNA Biomarkers in Blood, Plasma, Serum and Sputum: A Review and Summary of Current Literature. Int J Mol Sci 2016; 17:494. [PMID: 27043555 PMCID: PMC4848950 DOI: 10.3390/ijms17040494] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/22/2016] [Accepted: 03/28/2016] [Indexed: 01/15/2023] Open
Abstract
Lung cancer is the leading cause of cancer related morbidity and mortality worldwide. Currently, the vast majority of lung cancers are diagnosed at a late stage, when patients become symptomatic leading to dismal, less than 15% five-year survival rates. Evidence has demonstrated that screening computed tomography scans can be used to detect lung cancer, but these scans have high false positive rates. Therefore, there is a continued need for the development of minimally-invasive methods to screen the high risk population and diagnose lung cancer at an earlier, curable stage. One such promising area is the use micro-RNAs. These are short, non-coding RNA molecules that have been shown in previous research to be dysregulated in cancers. This review will focus on the potential use of miRNA levels in various biological fluids (whole blood, plasma, serum, and sputum) and demonstrate their potential utility as screening and diagnostic biomarkers for lung cancer. Current research will be analyzed and compared, and future directions in establishing the use of miRNAs for detecting lung cancer will be discussed.
Collapse
Affiliation(s)
- Jennifer Gyoba
- Division of Thoracic Surgery, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | - Shubham Shan
- Division of Thoracic Surgery, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | - Wilson Roa
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | - Eric L R Bédard
- Division of Thoracic Surgery, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
41
|
Sheervalilou R, Ansarin K, Fekri Aval S, Shirvaliloo S, Pilehvar-Soltanahmadi Y, Mohammadian M, Zarghami N. An update on sputum MicroRNAs in lung cancer diagnosis. Diagn Cytopathol 2016; 44:442-9. [PMID: 26865409 DOI: 10.1002/dc.23444] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/13/2016] [Indexed: 01/18/2023]
Abstract
Lung cancer is one of the leading cause of cancer mortality in the world. It is well known that genetic damages could result in lung tumor genesis. Despite years of research, the survival rate of the patients has not been markedly improved. According to lack of high sensitivity and specificity in diagnostic tests, just about 15-20% of lung cancer cases are discovered prior to progression of the disease. In last decade, sputum biomarkers have been developed for early detection/diagnosis of lung cancer. MicroRNAs are a class of small endogenous noncoding RNAs, which act as post-transcriptional regulators. Some specific miRNAs can have multifunctions in lung development and their aberrant expression could induce lung tumor genesis. The differences in miRNAs between the normal and cancerous lung lead to emerging of a novel type of biomarkers, which can be helpful in screening of high risk individuals, diagnosis of lung cancer as well as its therapy.
Collapse
Affiliation(s)
- Roghayeh Sheervalilou
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sedigheh Fekri Aval
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sakine Shirvaliloo
- Department of Medical Physics, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yones Pilehvar-Soltanahmadi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozhdeh Mohammadian
- Amol Faculty of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nosratollah Zarghami
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Xing L, Su J, Guarnera MA, Zhang H, Cai L, Zhou R, Stass SA, Jiang F. Sputum microRNA biomarkers for identifying lung cancer in indeterminate solitary pulmonary nodules. Clin Cancer Res 2015; 21:484-9. [PMID: 25593345 DOI: 10.1158/1078-0432.ccr-14-1873] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE The early detection of lung cancer in heavy smokers by low-dose CT (LDCT) can reduce the mortality. However, LDCT screening increases the number of indeterminate solitary pulmonary nodules (SPN) in asymptomatic individuals, leading to overdiagnosis. Making a definitive preoperative diagnosis of malignant SPNs has been a clinical challenge. We have demonstrated that sputum miRNAs could provide potential biomarkers for lung cancer. Here, we aimed to develop sputum miRNA biomarkers for diagnosis of malignant SPNs. EXPERIMENTAL DESIGN Using quantitative RT-PCR, we evaluated expressions of 13 sputum miRNAs, previously identified sputum miRNA signatures of lung cancer, in a training set of 122 patients with either malignant (n = 60) or benign SPNs (n = 62) to define a panel of biomarkers. We then validated the biomarker panel in an internal testing set of 136 patients with either malignant (n = 67) or benign SPNs (n = 69), and an external testing cohort of 155 patients with either malignant (n = 76) or benign SPNs (n = 79). RESULTS In the training set, a panel of three miRNA biomarkers (miRs21, 31, and 210) was developed, producing 82.93% sensitivity and 87.84% specificity for identifying malignant SPNs. The sensitivity and specificity of the biomarkers in the two independent testing cohorts were 82.09% and 88.41%, 80.52% and 86.08%, respectively, confirming the diagnostic value. CONCLUSIONS Sputum miRNA biomarkers may improve LDCT screening for lung cancer in heavy smokers by preoperatively diagnosing malignant SPNs. Nevertheless, a prospective study in a large population to validate the biomarkers is needed.
Collapse
Affiliation(s)
- Lingxiao Xing
- Department of Pathology, Hebei Medical University, Shijiazhuang, China.
| | - Jian Su
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Maria A Guarnera
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Howard Zhang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ling Cai
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Sanford A Stass
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
43
|
Potential Role of MicroRNA-210 as Biomarker in Human Cancers Detection: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:303987. [PMID: 26446394 PMCID: PMC4584045 DOI: 10.1155/2015/303987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 11/13/2014] [Indexed: 01/06/2023]
Abstract
We conducted this meta-analysis aimed to evaluate diagnostic accuracy of miR-210 in human cancers. A total of 673 cancer patients and 606 cancer-free individuals from 13 studies were contained in this meta-analysis. The overall diagnostic results in our study showed that the pooled sensitivity was 0.70, specificity was 0.76, and the AUC was 0.80. In addition, the PLR and NLR were 2.9 and 0.39, with DOR of 8. After the outliner exclusion detected by sensitivity analysis, these parameters had minimal change, which confirmed the stability of our work. The results in our studies showed that the miR-210 assay yielded relatively moderate accuracy in cancer patients and cancer-free individual differentiation. More basic researches are needed to highlight its role as supplement in clinical treatment.
Collapse
|
44
|
Su J, Anjuman N, Guarnera MA, Zhang H, Stass SA, Jiang F. Analysis of Lung Flute-collected Sputum for Lung Cancer Diagnosis. Biomark Insights 2015; 10:55-61. [PMID: 26309391 PMCID: PMC4526230 DOI: 10.4137/bmi.s26883] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/24/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022] Open
Abstract
Molecular analysis of sputum can help diagnose lung cancer. We have demonstrated that Lung Flute can be used to collect sputum from individuals who cannot spontaneously expectorate sputum. The objective of this study is to further evaluate the performance of the Lung Flute by comparing the characteristics of parallel samples collected with and without the Lung Flute and the usefulness for diagnosis of lung cancer. Fifty-six early-stage lung cancer patients (40 current smokers and 16 former smokers) and 73 cancer-free individuals (52 current smokers and 21 former smokers) were instructed to spontaneously cough and use Lung Flute for sputum sampling. Sputum cytology and polymerase chain reaction analysis of three miRNAs (miRs-21, 31, and 210) were performed in the specimens. All 92 current smokers and 11 (28.7%) of 37 former smokers spontaneously expectorated sputum and also produced sputum when using the Lung Flute. Twenty-seven former smokers (70.3%) who could not spontaneously expectorate sputum, however, were able to produce sputum when using the Lung Flute. The specimens were of low respiratory origin without contamination from other sources, eg, saliva. There was no difference of sputum volume and cell populations, diagnostic efficiency of cytology, and analysis of the miRNAs in the specimens collected by the two approaches. Analysis of the sputum miRNAs produced 83.93% sensitivity and 87.67% specificity for identifying lung cancer. Therefore, sputum collected by the Lung Flute has comparable features as spontaneously expectorated sputum. Using the Lung Flute enables former smokers who cannot spontaneously expectorate to provide adequate sputum to improve sputum collection for lung cancer diagnosis.
Collapse
Affiliation(s)
- Jian Su
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nigar Anjuman
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria A Guarnera
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Howard Zhang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sanford A Stass
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
45
|
Hubers AJ, Heideman DAM, Burgers SA, Herder GJM, Sterk PJ, Rhodius RJ, Smit HJ, Krouwels F, Welling A, Witte BI, Duin S, Koning R, Comans EFI, Steenbergen RDM, Postmus PE, Meijer GA, Snijders PJF, Smit EF, Thunnissen E. DNA hypermethylation analysis in sputum for the diagnosis of lung cancer: training validation set approach. Br J Cancer 2015; 112:1105-13. [PMID: 25719833 PMCID: PMC4366885 DOI: 10.1038/bjc.2014.636] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/06/2014] [Accepted: 12/01/2014] [Indexed: 01/22/2023] Open
Abstract
Background: Lung cancer has the highest mortality of all cancers. The aim of this study was to examine DNA hypermethylation in sputum and validate its diagnostic accuracy for lung cancer. Methods: DNA hypermethylation of RASSF1A, APC, cytoglobin, 3OST2, PRDM14, FAM19A4 and PHACTR3 was analysed in sputum samples from symptomatic lung cancer patients and controls (learning set: 73 cases, 86 controls; validation set: 159 cases, 154 controls) by quantitative methylation-specific PCR. Three statistical models were used: (i) cutoff based on Youden's J index, (ii) cutoff based on fixed specificity per marker of 96% and (iii) risk classification of post-test probabilities. Results: In the learning set, approach (i) showed that RASSF1A was best able to distinguish cases from controls (sensitivity 42.5%, specificity 96.5%). RASSF1A, 3OST2 and PRDM14 combined demonstrated a sensitivity of 82.2% with a specificity of 66.3%. Approach (ii) yielded a combination rule of RASSF1A, 3OST2 and PHACTR3 (sensitivity 67.1%, specificity 89.5%). The risk model (approach iii) distributed the cases over all risk categories. All methods displayed similar and consistent results in the validation set. Conclusions: Our findings underscore the impact of DNA methylation markers in symptomatic lung cancer diagnosis. RASSF1A is validated as diagnostic marker in lung cancer.
Collapse
Affiliation(s)
- A J Hubers
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - D A M Heideman
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - S A Burgers
- Department of Thoracic Oncology, NKI-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - G J M Herder
- Department of Pulmonary Diseases, Sint Antonius Hospital, Nieuwegein, The Netherlands
| | - P J Sterk
- Department of Pulmonary Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - R J Rhodius
- Department of Pulmonary Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - H J Smit
- Department of Pulmonary Diseases, Sint Lucas Andreas Hospital, Amsterdam, The Netherlands
| | - F Krouwels
- Department of Pulmonary Diseases, Spaarne Hospital, Hoofddorp, The Netherlands
| | - A Welling
- Department of Pulmonary Diseases, Medisch Centrum Alkmaar, Alkmaar, The Netherlands
| | - B I Witte
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - S Duin
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - R Koning
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - E F I Comans
- Department of Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - R D M Steenbergen
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - P E Postmus
- Department of Pulmonary Diseases, VU University Medical Center, Amsterdam, The Netherlands
| | - G A Meijer
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - P J F Snijders
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| | - E F Smit
- Department of Pulmonary Diseases, VU University Medical Center, Amsterdam, The Netherlands
| | - E Thunnissen
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
46
|
Sethi S, Yin J, Anderson PK. Lung flute improves symptoms and health status in COPD with chronic bronchitis: A 26 week randomized controlled trial. Clin Transl Med 2014; 3:29. [PMID: 25625006 PMCID: PMC4299801 DOI: 10.1186/s40169-014-0029-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/15/2014] [Indexed: 11/10/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is characterized by mucus hypersecretion that contributes to disease related morbidity and is associated with increased mortality. The Lung Flute® is a new respiratory device that produces a low frequency acoustic wave with moderately vigorous exhalation to increase mucus clearance. We hypothesized that the Lung Flute, used on a twice daily basis will provide clinical benefit to patients with COPD with chronic bronchitis. Methods We performed a 26 week randomized, non-intervention controlled, single center, open label trial in 69 patients with COPD and Chronic Bronchitis. The primary endpoint was change in respiratory symptoms measured with the Chronic COPD Questionnaire (CCQ). Secondary endpoints included health status, assessed by the St. George Respiratory questionnaire (SGRQ), BODE (Body-Mass Index, Airflow Obstruction, Dyspnea, and Exercise Capacity) index score and exacerbation frequency. Results While the control patients did not demonstrate any significant changes in the primary endpoint (CCQ change at 26 weeks of +0.01, p = 0.8), a trend (p = 0.08) to decrease (improvement) in the CCQ (-0.23 at 26 weeks) was seen with the Lung Flute. Furthermore, a significant improvement in the symptom domain of the CCQ was seen only with the lung flute (-0.42, p = 0.004). Health status (SGRQ) improvement, was also only seen with the Lung Flute (-3.23, p = 0.03). The BODE score increased in the control group (3.31 at baseline, 4.14 at 26 weeks), however it remained stable in the Lung Flute arm (3.16 at baseline and 26 weeks), with the changes from baseline being significantly different between the 2 arms (p = 0.01). There was a trend for less exacerbations in the Lung Flute group (p = 0.07). Adverse effects were minor, with only 1 patient discontinuing treatment because of lack of efficacy. Serious adverse effects seen were all determined to be unrelated to the device use. Conclusions The Lung Flute is a safe and effective treatment in COPD with chronic bronchitis, providing a wide array of benefits. ClinicalTrials.gov Identifier NCT01186822
Collapse
Affiliation(s)
- Sanjay Sethi
- VA WNY Health Care System, 3495 Bailey Avenue, Buffalo 14215, NY, USA ; University at Buffalo, Suny, Buffalo, NY, USA
| | | | | |
Collapse
|
47
|
Liao QB, Guo JQ, Zheng XY, Zhou ZF, Li H, Lai XY, Ye JF. Test performance of sputum microRNAs for lung cancer: a meta-analysis. Genet Test Mol Biomarkers 2014; 18:562-7. [PMID: 24892736 DOI: 10.1089/gtmb.2014.0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide. Early detection and precise diagnosis are critical for the patients with lung cancer. Increasing evidence has suggested that microRNAs (miRNAs) play important roles in the diagnosis of lung cancer. To evaluate the overall diagnostic performance of sputum miRNAs for the detection of lung cancer, a meta-analysis was performed. METHODS A systematic search for published literature evaluating the diagnostic accuracy of sputum miRNAs in lung cancer was performed to determine pooled sensitivity and specificity. A summary receiver operating characteristic curve was constructed to assess the overall test performance. Subgroup analysis was utilized to explore potential sources of heterogeneity in the included studies. RESULTS Eight studies with a total of 514 patients and 491 controls were included in this meta-analysis. Sputum miRNAs had a pooled sensitivity of 0.70 (95% confidence interval [95% CI]: 0.66-0.70) and a pooled specificity of 0.89 (95% CI: 0.86-0.91) for the detection of lung cancer, with an area under the summary receiver operating characteristics curve of 0.83. Significant interstudy heterogeneity for specificity was observed, with miRNA profiles being a possible source. CONCLUSION Sputum miRNAs are potentially useful noninvasive markers for diagnosis of lung cancer. The diagnostic specificity of sputum miRNAs may be influenced by the miRNA profiles. It would be important for further work to evaluate the generalizability of our results by methodologically rigorous studies on a well-defined patient population.
Collapse
Affiliation(s)
- Qi-Bin Liao
- 1 Experimental Teaching Center of Preventive Medicine, School of Public Health and Tropical Medicine, Southern Medical University , Guangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
48
|
Yu L, Shen J, Mannoor K, Guarnera M, Jiang F. Identification of ENO1 as a potential sputum biomarker for early-stage lung cancer by shotgun proteomics. Clin Lung Cancer 2014; 15:372-378.e1. [PMID: 24984566 DOI: 10.1016/j.cllc.2014.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/13/2014] [Accepted: 05/19/2014] [Indexed: 01/29/2023]
Abstract
BACKGROUND Lung cancer is the leading cancer killer. Early detection will reduce the related deaths. The objective of this study was to identify potential biomarkers for early-stage lung cancer in sputum supernatant. MATERIALS AND METHODS Using shotgun proteomics, we detected changes in protein profiles that were associated with lung cancer by analyzing sputum supernatants from 6 patients with early-stage lung cancer and 5 cancer-free controls. Using western blotting, we validated the proteomic results in 22 lung cancer cases and 22 controls. Using enzyme-linked immunosorbent assay (ELISA), we evaluated the diagnostic performance of the biomarker candidates in an independent set of 35 cases and 36 controls. RESULTS Proteomics identified 8 biomarker candidates for lung cancer. Western blotting validation of the candidates showed that enolase 1 (ENO1) displayed a higher expression level in patients with cancer than in cancer-free individuals (P = .015). ELISA revealed that the assessment of ENO1 expression in sputum supernatant had 58.33% sensitivity and 80.00% specificity in distinguishing patients with stage I lung cancer from cancer-free individuals. CONCLUSION The analysis of protein biomarkers in sputum may provide a potential approach for the early detection of lung cancer. Future validation of all the candidates defined by shotgun proteomics in a large cohort study may help develop additional biomarkers that can be added to ENO1 to provide more diagnostic efficacy for lung cancer.
Collapse
Affiliation(s)
- Lei Yu
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Jun Shen
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Kaiissar Mannoor
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Maria Guarnera
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - Feng Jiang
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
49
|
Li N, Ma J, Guarnera MA, Fang H, Cai L, Jiang F. Digital PCR quantification of miRNAs in sputum for diagnosis of lung cancer. J Cancer Res Clin Oncol 2014; 140:145-150. [PMID: 24281335 PMCID: PMC3898839 DOI: 10.1007/s00432-013-1555-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/16/2013] [Indexed: 01/24/2023]
Abstract
PURPOSE MicroRNAs (miRNAs) play important roles in the initiation and progression of lung cancer. Measuring miRNA expression levels in sputum could provide a potential approach for the diagnosis of lung cancer. The emerging digital PCR is a straightforward technique for precise, direct, and absolute quantification of nucleic acids. The objective of the study was to investigate whether digital PCR could be used to quantify miRNAs in sputum for lung cancer diagnosis. METHODS We first determined and compared dynamic ranges of digital PCR and conventional quantitative reverse transcriptase PCR (qRT-PCR) for miRNA quantification using RNA isolated from sputum of five healthy individuals. We then used digital PCR to quantify copy number of two lung cancer-associated miRNAs (miR-31 and miR-210) in 35 lung cancer patients and 40 cancer-free controls. RESULTS Copy number of the miRNAs measured by digital PCR displayed a linear response to input cDNA amount in a twofold dilution series over seven orders of magnitude. miRNA quantification determined by digital PCR assay was in good agreement with that obtained from qRT-PCR analysis in sputum. Furthermore, combined quantification of miR-31 and miR-210 copy number by using digital PCR in sputum of the cases and controls provided 65.71 % sensitivity and 85.00 % specificity for lung cancer diagnosis. CONCLUSION As digital PCR becomes more established, it would be a robust tool for quantitative assessment of miRNA copy number in sputum for lung cancer diagnosis.
Collapse
Affiliation(s)
- Ning Li
- Department of Pathology, The University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, 10 South Pine Street, MSTF 7th Floor, Baltimore, MD 21201-1192, USA
| | - Jie Ma
- Department of Pathology, The University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, 10 South Pine Street, MSTF 7th Floor, Baltimore, MD 21201-1192, USA
| | - Maria A Guarnera
- Department of Pathology, The University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, 10 South Pine Street, MSTF 7th Floor, Baltimore, MD 21201-1192, USA
| | - HongBin Fang
- Division of Biostatistics, The University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ling Cai
- Division of Biostatistics, The University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Feng Jiang
- Department of Pathology, The University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, 10 South Pine Street, MSTF 7th Floor, Baltimore, MD 21201-1192, USA
| |
Collapse
|