1
|
Lin F, Yan L, Yuan X, Yang X, Yang X, Yang Y, Ma L, Wei L, Li D. Implications of Raftlin in different diseases: from molecular biology to diagnostic value. Biomark Med 2025; 19:91-99. [PMID: 39840913 PMCID: PMC11792867 DOI: 10.1080/17520363.2025.2453411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/10/2025] [Indexed: 01/23/2025] Open
Abstract
Raftlin (raft-linking) protein is an essential component of the lipid raft structure and plays a crucial role in B and T cell signaling pathways. It facilitates B cell receptor (BCR) signaling by promoting calcium mobilization and tyrosine phosphorylation in the cells while colocalizing with BCR on the cell membrane. Interestingly, Raftlin is internalized in lipopolysaccharide-stimulated T cells by colocalization with Toll-like receptor 4 (TLR4), wherein it exerts a similar role as in B cells. The protein also effectuates poly(I:C) internalization into TLR3-positive endosomes in dendritic and epithelial cells through clathrin binding, thereby affecting interferon-β production. In addition, Raftlin controls the vascular endothelial cells and participates in cell growth and proliferation. Recent studies have indicated Raftlin to be a novel biomarker for the diagnosis due to its upregulated expression in malignant diseases. In this integrated study, we present the biological functions of Raftlin and its expression to provide a theoretical basis for the prevention, diagnosis, and treatment of various diseases.
Collapse
Affiliation(s)
- Fugui Lin
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Li Yan
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xiumei Yuan
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xingwen Yang
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Xiaoyan Yang
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Yang Yang
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Li Ma
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Lianhua Wei
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Dehong Li
- Department of Clinical Laboratory, Gansu Provincial Clinical Research Center for Laboratory Medicine, Lanzhou, China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
2
|
Zhang C, Simón M, Harder JM, Lim H, Montgomery C, Wang Q, John SW. TLR4 deficiency does not alter glaucomatous progression in a mouse model of chronic glaucoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597951. [PMID: 38895321 PMCID: PMC11185798 DOI: 10.1101/2024.06.07.597951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Toll-like receptor 4 (TLR4) is a pattern-recognition transmembrane receptor that induces neuroinflammatory processes in response to injury. Tlr4 is highly expressed in ocular tissues and is known to modulate inflammatory processes in both anterior and posterior segment tissues. TLR4 activation can lead to mitochondrial dysfunction and metabolic deficits in inflammatory disorders. Due to its effects on inflammation and metabolism, TLR4 is a candidate to participate in glaucoma pathogenesis. It has been suggested as a therapeutic target based on studies using acute models, such as experimentally raising IOP to ischemia-inducing levels. Nevertheless, its role in chronic glaucoma needs further evaluation. In the current study, we investigated the role of TLR4 in an inherited mouse model of chronic glaucoma, DBA/2J. To do this, we analyzed the effect of Tlr4 knockout (Tlr4 -/-) on glaucoma-associated phenotypes in DBA/2J mice. Our studies found no significant differences in intraocular pressure, iris disease, or glaucomatous progression in Tlr4 -/- compared to Tlr4 +/+ DBA/2J mice. These data do not identify a role for TLR4 in this chronic glaucoma, but further research is warranted to understand its role in other glaucoma models and different genetic contexts.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
| | - Marina Simón
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
| | | | - Haeyn Lim
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
| | - Christa Montgomery
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
| | - Qing Wang
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
| | - Simon W.M. John
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
- The Jackson Laboratory, Bar Harbor, ME
| |
Collapse
|
3
|
Sharma S, Bhatia V. Nanoscale Drug Delivery Systems for Glaucoma: Experimental and In Silico Advances. Curr Top Med Chem 2021; 21:115-125. [PMID: 32962618 DOI: 10.2174/1568026620666200922114210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/25/2022]
Abstract
In this review, nanoscale-based drug delivery systems, particularly in relevance to the antiglaucoma drugs, have been discussed. In addition to that, the latest computational/in silico advances in this field are examined in brief. Using nanoscale materials for drug delivery is an ideal option to target tumours, and the drug can be released in areas of the body where traditional drugs may fail to act. Nanoparticles, polymeric nanomaterials, single-wall carbon nanotubes (SWCNTs), quantum dots (QDs), liposomes and graphene are the most important nanomaterials used for drug delivery. Ocular drug delivery is one of the most common and difficult tasks faced by pharmaceutical scientists because of many challenges like circumventing the blood-retinal barrier, corneal epithelium and the blood-aqueous barrier. Authors found compelling empirical evidence of scientists relying on in-silico approaches to develop novel drugs and drug delivery systems for treating glaucoma. This review in nanoscale drug delivery systems will help us understand the existing queries and evidence gaps and will pave the way for the effective design of novel ocular drug delivery systems.
Collapse
Affiliation(s)
- Smriti Sharma
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| | - Vinayak Bhatia
- ICARE Eye Hospital and Postgraduate Institute, Noida, UP, India
| |
Collapse
|
4
|
Influence of Trace Elements on Neurodegenerative Diseases of The Eye-The Glaucoma Model. Int J Mol Sci 2021; 22:ijms22094323. [PMID: 33919241 PMCID: PMC8122456 DOI: 10.3390/ijms22094323] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is a heterogeneous group of chronic neurodegenerative disorders characterized by a relatively selective, progressive damage to the retinal ganglion cells (RGCs) and their axons, which leads to axon loss and visual field alterations. To date, many studies have shown the role of various elements, mainly metals, in maintaining the balance of prooxidative and antioxidative processes, regulation of fluid and ion flow through cell membranes of the ocular tissues. Based on the earlier and current research results, their relationship with the development and progression of glaucoma seems obvious and is increasingly appreciated. In this review, we aimed to summarize the current evidence on the role of trace elements in the pathogenesis and prevention of glaucomatous diseases. Special attention is also paid to the genetic background associated with glaucoma-related abnormalities of physiological processes that regulate or involve the ions of elements considered as trace elements necessary for the functioning of the cells.
Collapse
|
5
|
Holappa M, Vapaatalo H, Vaajanen A. Local ocular renin-angiotensin-aldosterone system: any connection with intraocular pressure? A comprehensive review. Ann Med 2020; 52:191-206. [PMID: 32308046 PMCID: PMC7877937 DOI: 10.1080/07853890.2020.1758341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/15/2020] [Indexed: 12/28/2022] Open
Abstract
The renin-angiotensin system (RAS) is one of the oldest and most extensively studied human peptide cascades, well-known for its role in regulating blood pressure. When aldosterone is included, RAAS is involved also in fluid and electrolyte homeostasis. There are two main axes of RAAS: (1) Angiotensin (1-7), angiotensin converting enzyme 2 and Mas receptor (ACE2-Ang(1-7)-MasR), (2) Angiotensin II, angiotensin converting enzyme 1 and angiotensin II type 1 receptor (ACE1-AngII-AT1R). In its entirety, RAAS comprises dozens of angiotensin peptides, peptidases and seven receptors. The first mentioned axis is known to counterbalance the deleterious effects of the latter axis. In addition to the systemic RAAS, tissue-specific regulatory systems have been described in various organs, evidence that RAAS is both an endocrine and an autocrine system. These local regulatory systems, such as the one present in the vascular endothelium, are responsible for long-term regional changes. A local RAAS and its components have been detected in many structures of the human eye. This review focuses on the local ocular RAAS in the anterior part of the eye, its possible role in aqueous humour dynamics and intraocular pressure as well as RAAS as a potential target for anti-glaucomatous drugs.KEY MESSAGESComponents of renin-angiotensin-aldosterone system have been detected in different structures of the human eye, introducing the concept of a local intraocular renin-angiotensin-aldosterone system (RAAS).Evidence is accumulating that the local ocular RAAS is involved in aqueous humour dynamics, regulation of intraocular pressure, neuroprotection and ocular pathology making components of RAAS attractive candidates when developing new effective ways to treat glaucoma.
Collapse
Affiliation(s)
- Mervi Holappa
- Medical Faculty, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Heikki Vapaatalo
- Medical Faculty, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Anu Vaajanen
- Department of Ophthalmology, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
6
|
Wu Z, Huang C, Xu C, Xie L, Liang JJ, Liu L, Pang CP, Ng TK, Zhang M. Caveolin-1 regulates human trabecular meshwork cell adhesion, endocytosis, and autophagy. J Cell Biochem 2019; 120:13382-13391. [PMID: 30916825 DOI: 10.1002/jcb.28613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/15/2019] [Accepted: 01/25/2019] [Indexed: 02/05/2023]
Abstract
Impaired trabecular meshwork (TM) outflow is implicated in the pathogenesis of primary open-angle glaucoma (POAG). We previously identified the association of a caveolin-1 (CAV1) variant with POAG by genome-wide association study. Here we report a study of CAV1 knockout (KO) effect on human TM cell properties. We generated human CAV1-KO TM cells by CRISPR/Cas9 technology, and we found that the CAV1-KO TM cells less adhered to the surface coating than the wildtype TM cells by 69.34% ( P < 0.05), but showed no difference in apoptosis. Higher endocytosis ability of dextran and transferrin was also observed in the CAV1-KO TM cells (4.37 and 1.89-fold respectively, P < 0.001), compared to the wildtype TM cells. Moreover, the CAV1-KO TM cells had higher expression of extracellular matrix-degrading enzyme genes ( ADMTS13 and MMP14) as well as autophagy-related genes ( ATG7 and BECN1) and protein (LC3B-II) than the wildtype TM cells. In summary, results from this study showed that the CAV1-KO TM cells have reduced adhesion with higher extracellular matrix-degrading enzyme expression, but increased endocytosis and autophagy activities, indicating that CAV1 could be involved in the regulation of adhesion, endocytosis, and autophagy in human TM cells.
Collapse
Affiliation(s)
- Zhenggen Wu
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Chukai Huang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Ciyan Xu
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Lijing Xie
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Lifang Liu
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Chi Pui Pang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| |
Collapse
|
7
|
Shang J, Ding Q, Yuan S, Liu JX, Li F, Zhang H. Network Analyses of Integrated Differentially Expressed Genes in Papillary Thyroid Carcinoma to Identify Characteristic Genes. Genes (Basel) 2019; 10:E45. [PMID: 30646607 PMCID: PMC6356810 DOI: 10.3390/genes10010045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/26/2018] [Accepted: 01/09/2019] [Indexed: 12/18/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Identifying characteristic genes of PTC are of great importance to reveal its potential genetic mechanisms. In this paper, we proposed a framework, as well as a measure named Normalized Centrality Measure (NCM), to identify characteristic genes of PTC. The framework consisted of four steps. First, both up-regulated genes and down-regulated genes, collectively called differentially expressed genes (DEGs), were screened and integrated together from four datasets, that is, GSE3467, GSE3678, GSE33630, and GSE58545; second, an interaction network of DEGs was constructed, where each node represented a gene and each edge represented an interaction between linking nodes; third, both traditional measures and the NCM measure were used to analyze the topological properties of each node in the network. Compared with traditional measures, more genes related to PTC were identified by the NCM measure; fourth, by mining the high-density subgraphs of this network and performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, several meaningful results were captured, most of which were demonstrated to be associated with PTC. The experimental results proved that this network framework and the NCM measure are useful for identifying more characteristic genes of PTC.
Collapse
Affiliation(s)
- Junliang Shang
- School of Statistics, Qufu Normal University, Qufu 273165, China.
- School of Information Science and Engineering, Qufu Normal University, Rizhao 276800, China.
| | - Qian Ding
- School of Information Science and Engineering, Qufu Normal University, Rizhao 276800, China.
| | - Shasha Yuan
- School of Information Science and Engineering, Qufu Normal University, Rizhao 276800, China.
| | - Jin-Xing Liu
- School of Information Science and Engineering, Qufu Normal University, Rizhao 276800, China.
| | - Feng Li
- School of Computer Science and Technology, Xidian University, Xi'an 710071, China.
| | - Honghai Zhang
- College of Life Science, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
8
|
Trivli A, Koliarakis I, Terzidou C, Goulielmos GN, Siganos CS, Spandidos DA, Dalianis G, Detorakis ET. Normal-tension glaucoma: Pathogenesis and genetics. Exp Ther Med 2018; 17:563-574. [PMID: 30651837 PMCID: PMC6307418 DOI: 10.3892/etm.2018.7011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/21/2018] [Indexed: 12/27/2022] Open
Abstract
Normal-tension glaucoma (NTG) is a multifactorial optic neuropathy which, similar to open-angle glaucomas, is characterized by progressive retinal ganglion cell death and glaucomatous visual field loss. The major distinction of NTG from open-angle glaucomas is that the intraocular pressure (IOP) does not exceed the normal range. Missing the major risk factor and target of therapy, the elevated IOP, NTG poses a clinical challenge. Several insightful reviews have been published on the pathophysiology of NTG describing the possible underlying mechanisms. The current literature available also suggests that a significant percentage of patients with NTG (as high as 21%) have a family history of glaucoma, indicating a genetic predisposition to the disease. These facts strengthen the indication that NTG remains an enigmatic process. The aim of this review was to summarize the vascular, mechanical and genetic components considered to be responsible for NTG development and to discuss the mechanisms through which they are involved in the pathogenesis of NTG.
Collapse
Affiliation(s)
- Alexandra Trivli
- Department of Ophthalmology, Konstantopouleio-Patission General Hospital, 14233 Athens, Greece.,Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ioannis Koliarakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Chryssa Terzidou
- Department of Ophthalmology, Konstantopouleio-Patission General Hospital, 14233 Athens, Greece
| | - George N Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Charalambos S Siganos
- Department of Ophthalmology, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Georgios Dalianis
- Department of Ophthalmology, Konstantopouleio-Patission General Hospital, 14233 Athens, Greece
| | | |
Collapse
|
9
|
Ashok A, Karmakar S, Chandel R, Ravikumar R, Dalal S, Kong Q, Singh N. Prion protein modulates iron transport in the anterior segment: Implications for ocular iron homeostasis and prion transmission. Exp Eye Res 2018; 175:1-13. [PMID: 29859760 PMCID: PMC6167182 DOI: 10.1016/j.exer.2018.05.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/17/2018] [Accepted: 05/30/2018] [Indexed: 12/14/2022]
Abstract
Iron is an essential biometal in the aqueous humor, the principal source of nutrients for the avascular cornea and the lens. Here, we explored whether the ciliary body (CB), the source of aqueous humor, transports iron, and if the prion protein (PrPC) facilitates this process as in the outer retina. Using a combination of human, bovine, and mouse eyes as models, we report the expression of iron export proteins ferroportin and ceruloplasmin, and major iron uptake and storage proteins transferrin, transferrin receptor, and ferritin in the ciliary epithelium, indicating active exchange of iron at this site. Ferroportin and transferrin receptor are also expressed in the corneal endothelium. However, the relative expression of iron export and uptake proteins suggests export from the ciliary epithelium and import by corneal endothelium. In addition, abundant expression of PrPC, a ferrireductase that facilitates iron transport, is noted in pigmented and non-pigmented epithelium of the CB, posterior pigmented epithelium of the iris, corneal endothelium and epithelium, and lens epithelium. Notably, majority of PrPC in the ciliary epithelium is cleaved at the β-site as in retinal pigment epithelial cells, suggesting a role in iron transport. Most of the PrPC in the cornea, however, is full-length, and susceptible to aggregation by intracerebrally inoculated PrP-scrapie, an infectious conformation of PrPC responsible for human and animal prion disorders. Soluble PrPC is present in the aqueous and vitreous humor, a provocative observation with significant implications. Together, these observations suggest independent cycling of iron in the anterior segment, and a prominent role of PrPC in this process. Aggregation of PrPC in the cornea of PrP-scrapie-infected animals raises the alarming possibility of transmission of animal prions through corneal abrasions.
Collapse
Affiliation(s)
- Ajay Ashok
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Shilpita Karmakar
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rajeev Chandel
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ranjana Ravikumar
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Stuti Dalal
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Qingzhong Kong
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Neena Singh
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Wang HW, Sun P, Chen Y, Jiang LP, Wu HP, Zhang W, Gao F. Research progress on human genes involved in the pathogenesis of glaucoma (Review). Mol Med Rep 2018; 18:656-674. [PMID: 29845210 PMCID: PMC6059695 DOI: 10.3892/mmr.2018.9071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/12/2018] [Indexed: 12/20/2022] Open
Abstract
Glaucoma is the leading cause of irreversible blindness globally. It is known that the incidence of glaucoma is closely associated with inheritance. A large number of studies have suggested that genetic factors are involved in the occurrence and development of glaucoma, and even affect the drug sensitivity and prognosis of glaucoma. In the present review, 22 loci of glaucoma are presented, including the relevant genes (myocilin, interleukin 20 receptor subunit B, optineurin, ankyrin repeat- and SOCS box-containing protein 10, WD repeat-containing protein 36, EGF-containing fibulin-like extracellular matrix protein 1, neurotrophin 4, TANK-binding kinase 1, cytochrome P450 subfamily I polypeptide 1, latent transforming growth factor β binding protein 2 and TEK tyrosine kinase endothelial) and 74 other genes (including toll-like receptor 4, sine oculis homeobox Drosophila homolog of 1, doublecortin-like kinase 1, RE repeats-encoding gene, retinitis pigmentosa GTPase regulator-interacting protein, lysyl oxidase-like protein 1, heat-shock 70-kDa protein 1A, baculoviral IAP repeat-containing protein 6, 5,10-methylenetetrahydrofolate reductase and nitric oxide synthase 3 and nanophthalmos 1) that are more closely associated with glaucoma. The pathogenesis of these glaucoma-associated genes, glaucomatous genetics and genetic approaches, as well as glaucomatous risk factors, including increasing age, glaucoma family history, high myopia, diabetes, ocular trauma, smoking, intraocular pressure increase and/or fluctuation were also discussed.
Collapse
Affiliation(s)
- Hong-Wei Wang
- Department of Ophthalmology, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Peng Sun
- Department of Ophthalmology, Longgang District People's Hospital, Shenzhen, Guangdong 518172, P.R. China
| | - Yao Chen
- Department of Ophthalmology, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Li-Ping Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161041, P.R. China
| | - Hui-Ping Wu
- Department of The Scientific Research, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Wen Zhang
- Medical School, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Feng Gao
- Department of Hospital Administration, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| |
Collapse
|
11
|
Margolis MJ, Martinez M, Valencia J, Lee RK, Bhattacharya SK. Phospholipid secretions of organ cultured ciliary body. J Cell Biochem 2017; 119:2556-2566. [PMID: 28981155 DOI: 10.1002/jcb.26419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/03/2017] [Indexed: 12/24/2022]
Abstract
Homeostasis of intraocular pressure (IOP) is important for the maintenance of anterior eye anatomic integrity, minimizing pressure-associated damage to the optic nerve, and maintaining a pressure gradient for blood flow to the eye. IOP is regulated by equilibrium between aqueous humor (AH) production and its outflow. The ciliary body (CB) is thought to actively secrete AH. However, whether AH composition and in particular, its phospholipids are entirely due to CB secretion remains uncertain. Comparison of phospholipids released by cultured CB, phospholipids present within CB tissue, within AH, and within blood and serum are consistent with release of most phospholipids into the AH by the CB. Treatment of CB in culture with timolol, a non-specific beta-adrenergic antagonist, alters the release of phospholipids by CB into the media. However, dorzalamide, a carbonic anhydrase inhibitor that reduces production of AH, does not affect phospholipid release thereby suggesting timolol, which also decreases IOP through decreased AH outflow, affects other physiological homeostatic mechanisms regulating aqueous outflow. These outflow changes also affect the composition of secreted phospholipids. We present evidence that release of lipids by the CB has a prolonged survival effect on cultured primary TM cells and TM tissue.
Collapse
Affiliation(s)
- Michael J Margolis
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Mitchell Martinez
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeffrey Valencia
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Richard K Lee
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Sanjoy K Bhattacharya
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
12
|
Wang J, Qu D, An J, Yuan G, Liu Y. Integrated microarray analysis provided novel insights to the pathogenesis of glaucoma. Mol Med Rep 2017; 16:8735-8746. [PMID: 28990066 PMCID: PMC5779953 DOI: 10.3892/mmr.2017.7711] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/15/2017] [Indexed: 11/10/2022] Open
Abstract
Glaucoma is characterized as a visual field defect, which is the second most common cause of blindness. The present study performed an integrated analysis of microarray studies of glaucoma derived from Gene Expression Omnibus (GEO). Following the identification of the differentially expressed genes (DEGs) in glaucoma compared with normal control (NC) tissues, the functional annotation, glaucoma-specific protein-protein interaction (PPI) network and transcriptional regulatory network constructions were performed. The acute intraocular pressure (IOP) elevation rat models were established and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed for DEGs expression confirmation. Three datasets were downloaded from GEO. A total of 97 DEGs, 82 upregulated and 15 downregulated were identified in glaucoma compared with NC groups with false discovery rate <0.05. Response to virus and immune response were two significantly enriched GO terms in glaucoma. Valine, leucine and isoleucine degradation was a significantly enriched pathway of DEGs in glaucoma. According to the PPI network, HDAC1, HBN, UBR4 and PDK1 were hub proteins in glaucoma. FOXD3, HNF-4 and AP-1 were the three transcription factors (TFs) derived from top 10 TFs which covered the majority of downstream DEGs in glaucoma. Based on the RT-qPCR results, the expression levels of 3 DEGs, raftlin, lipid raft linker 1 (RFTN1), PBX homeobox 1 (PBX1), HDAC1 were significantly upregulated and the expression of GEM was significantly downregulated in acute IOP elevation rat model at the first and fifth day. These four DEGs had the same expression pattern with our integrated analysis. Therefore, the current study concluded that 6 DEGs, including HEPH, SELENBP1, RFTN1, ID1, HDAC-1 and PBX1 and three TFs, including FOXD3, HNF-4 and AP-1 may be involved with the pathogenesis of glaucoma. The findings of the current study may improve diagnosis and drug design for glaucoma.
Collapse
Affiliation(s)
- Jinhui Wang
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150001, P.R. China
| | - Daofei Qu
- Department of Ophthalmology, The First Hospital of Harbin, Harbin, Heilongjiang 150001, P.R. China
| | - Jinghong An
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150001, P.R. China
| | - Guoming Yuan
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150001, P.R. China
| | - Yufu Liu
- Department of Ophthalmology, The First Hospital of Harbin, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
13
|
Holappa M, Vapaatalo H, Vaajanen A. Many Faces of Renin-angiotensin System - Focus on Eye. Open Ophthalmol J 2017; 11:122-142. [PMID: 28761566 PMCID: PMC5510558 DOI: 10.2174/1874364101711010122] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 05/17/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022] Open
Abstract
The renin-angiotensin system (RAS), that is known for its role in the regulation of blood pressure as well as in fluid and electrolyte homeostasis, comprises dozens of angiotensin peptides and peptidases and at least six receptors. Six central components constitute the two main axes of the RAS cascade. Angiotensin (1-7), an angiotensin converting enzyme 2 and Mas receptor axis (ACE2-Ang(1-7)-MasR) counterbalances the harmful effects of the angiotensin II, angiotensin converting enzyme 1 and angiotensin II type 1 receptor axis (ACE1-AngII-AT1R) Whereas systemic RAS is an important factor in blood pressure regulation, tissue-specific regulatory system, responsible for long term regional changes, that has been found in various organs. In other words, RAS is not only endocrine but also complicated autocrine system. The human eye has its own intraocular RAS that is present e.g. in the structures involved in aqueous humor dynamics. Local RAS may thus be a target in the development of new anti-glaucomatous drugs. In this review, we first describe the systemic RAS cascade and then the local ocular RAS especially in the anterior part of the eye.
Collapse
Affiliation(s)
- Mervi Holappa
- BioMediTech, University of Tampere, Tampere, Finland
| | - Heikki Vapaatalo
- Medical Faculty, Department of Pharmacology, University of Helsinki, 00014 Helsinki, Finland
| | - Anu Vaajanen
- Department of Ophthalmology, Tampere University Hospital, Tampere, Finland.,SILK, Department of Ophthalmology, School of Medicine, University of Tampere, Tampere, Finland
| |
Collapse
|
14
|
Matušková V, Balcar VJ, Khan NA, Bonczek O, Ewerlingová L, Zeman T, Kolář P, Vysloužilová D, Vlková E, Šerý O. CD36 gene is associated with intraocular pressure elevation after intravitreal application of anti-VEGF agents in patients with age-related macular degeneration: Implications for the safety of the therapy. Ophthalmic Genet 2017; 39:4-10. [DOI: 10.1080/13816810.2017.1326508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Veronika Matušková
- Department of Ophthalmology, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Vladimir J. Balcar
- Bosch Institute and Discipline of Anatomy and Histology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Naim A. Khan
- Physiologie de la Nutrition et Toxicologie, UMR U866 INSERM/Université de Bourgogne/Agro-Sup, Dijon, France
| | - Ondřej Bonczek
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Laura Ewerlingová
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tomáš Zeman
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Kolář
- Department of Ophthalmology, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Daniela Vysloužilová
- Department of Ophthalmology, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Eva Vlková
- Department of Ophthalmology, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Omar Šerý
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| |
Collapse
|
15
|
|
16
|
Nakano Y, Shimazawa M, Ojino K, Izawa H, Takeuchi H, Inoue Y, Tsuruma K, Hara H. Toll-like receptor 4 inhibitor protects against retinal ganglion cell damage induced by optic nerve crush in mice. J Pharmacol Sci 2017; 133:176-183. [PMID: 28318829 DOI: 10.1016/j.jphs.2017.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/06/2017] [Accepted: 02/23/2017] [Indexed: 11/25/2022] Open
Abstract
Toll-like receptor 4 (TLR4) plays key roles in innate immune responses and inflammatory reactions. TAK-242 (resatorvid) is a small-molecule cyclohexene derivative that selectively inhibits TLR4 signaling pathways and suppresses inflammatory reactions. Here we investigated the protective effects of TAK-242 against optic nerve crush (ONC) which induces axonal injury like glaucoma in mice. TAK-242 was injected intravitreally immediately after ONC. The effect of TAK-242 was evaluated by measuring the number of fluorogold-labeled retinal ganglion cells (RGCs) at 10 days after ONC. Furthermore, the expression levels of phosphorylated-nuclear factor-kappa B (p-NF-κB) and phosphorylated-p38 (p-p38) were measured by Western blotting. In addition, we examined activated astrocytes by immunostaining. TAK-242 significantly abrogated the loss of RGCs associated with ONC. Moreover, the expression levels of p-NF-κB and p-p38 were significantly reduced by TAK-242 treatment. Furthermore, TAK-242 and C34, a TLR4 inhibitor, significantly reduced astrocyte activation in the ganglion cell and inner plexiform layers, compared with vehicle treatment. These findings indicate that TAK-242 inhibits not only the TLR4 signaling pathway but also astrocyte activation downstream of this pathway, suggesting that the inhibition of TLR4 signaling is a promising candidate for the treatment of glaucoma.
Collapse
Affiliation(s)
- Yukimichi Nakano
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Masamitsu Shimazawa
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| | - Kazuki Ojino
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hiroshi Izawa
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hiroto Takeuchi
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Yuki Inoue
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Kazuhiro Tsuruma
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hideaki Hara
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| |
Collapse
|
17
|
Bergen AA, Kaing S, ten Brink JB, Gorgels TG, Janssen SF. Gene expression and functional annotation of human choroid plexus epithelium failure in Alzheimer's disease. BMC Genomics 2015; 16:956. [PMID: 26573292 PMCID: PMC4647590 DOI: 10.1186/s12864-015-2159-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/27/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia. AD has a multifactorial disease etiology and is currently untreatable. Multiple genes and molecular mechanisms have been implicated in AD, including ß-amyloid deposition in the brain, neurofibrillary tangle accumulation of hyper-phosphorylated Tau, synaptic failure, oxidative stress and inflammation. Relatively little is known about the role of the blood-brain barriers, especially the blood-cerebrospinal fluid barrier (BCSFB), in AD. The BCSFB is involved in cerebrospinal fluid (CSF) production, maintenance of brain homeostasis and neurodegenerative disorders. RESULTS Using an Agilent platform with common reference design, we performed a large scale gene expression analysis and functional annotation of the Choroid Plexus Epithelium (CPE), which forms the BCSFB. We obtained 2 groups of freshly frozen Choroid Plexus (CP) of 7 human donor brains each, with and without AD: Braak stages (0-1) and (5-6). We cut CP cryo-sections and isolated RNA from cresyl-violet stained, laser dissected CPE cells. Gene expression results were analysed with T-tests (R) and the knowledge-database Ingenuity. We found statistically significantly altered gene expression data sets, biological functions, canonical pathways, molecular networks and functionalities in AD-affected CPE. We observed specific cellular changes due to increased oxidative stress, such as the unfolded protein response, E1F2 and NRF2 signalling and the protein ubiquitin pathway. Most likely, the AD-affected BCSFB barrier becomes more permeable due to downregulation of CLDN5. Finally, our data also predicted down regulation of the glutathione mediated detoxification pathway and the urea cycle in the AD CPE, which suggest that the CPE sink action may be impaired. Remarkably, the expression of a number of genes known to be involved in AD, such as APP, PSEN1, PSEN2, TTR and CLU is moderate to high and remains stable in both healthy and affected CPE. Literature labelling of our new functional molecular networks confirmed multiple previous (molecular) observations in the AD literature and revealed many new ones. CONCLUSIONS We conclude that CPE failure in AD exists. Combining our data with those of the literature, we propose the following chronological and overlapping chain of events: increased Aß burden on CPE; increased oxidative stress in CPE; despite continuous high expression of TTR: decreased capability of CPE to process amyloid; (pro-) inflammatory and growth factor signalling by CPE; intracellular ubiquitin involvement, remodelling of CPE tight junctions and, finally, cellular atrophy. Our data corroborates the hypothesis that increased BCSFB permeability, especially loss of selective CLDN5-mediated paracellular transport, altered CSF production and CPE sink action, as well as loss of CPE mediated macrophage recruitment contribute to the pathogenesis of AD.
Collapse
Affiliation(s)
- Arthur A Bergen
- Department of Clinical Genetics, Academic Medical Centre, Amsterdam, AMC, Meibergdreef 9, 1105 AZ AMC, Amsterdam, The Netherlands. .,The Netherlands Institute for Neurosciences (NIN-KNAW), Amsterdam, The Netherlands.
| | - Sovann Kaing
- The Netherlands Institute for Neurosciences (NIN-KNAW), Amsterdam, The Netherlands
| | - Jacoline B ten Brink
- Department of Clinical Genetics, Academic Medical Centre, Amsterdam, AMC, Meibergdreef 9, 1105 AZ AMC, Amsterdam, The Netherlands
| | | | - Theo G Gorgels
- The Netherlands Institute for Neurosciences (NIN-KNAW), Amsterdam, The Netherlands.,University Eye Clinic Maastricht, MUMC, Maastricht, The Netherlands
| | - Sarah F Janssen
- The Netherlands Institute for Neurosciences (NIN-KNAW), Amsterdam, The Netherlands.,Department of Ophthalmology, VUMC, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Holappa M, Vapaatalo H, Vaajanen A. Ocular renin-angiotensin system with special reference in the anterior part of the eye. World J Ophthalmol 2015; 5:110-124. [DOI: 10.5318/wjo.v5.i3.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/21/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023] Open
Abstract
The renin-angiotensin system (RAS) regulates blood pressure (BP) homeostasis, systemic fluid volume and electrolyte balance. The RAS cascade includes over twenty peptidases, close to twenty angiotensin peptides and at least six receptors. Out of these, angiotensin II, angiotensin converting enzyme 1 and angiotensin II type 1 receptor (AngII-ACE1-AT1R) together with angiotensin (1-7), angiotensin converting enzyme 2 and Mas receptor (Ang(1-7)-ACE2-MasR) are regarded as the main components of RAS. In addition to circulating RAS, local RA-system exists in various organs. Local RA-systems are regarded as tissue-specific regulatory systems accounting for local effects and long term changes in different organs. Many of the central components such as the two main axes of RAS: AngII-ACE1-AT1R and Ang(1-7)-ACE2-MasR, have been identified in the human eye. Furthermore, it has been shown that systemic antihypertensive RAS- inhibiting medications lower intraocular pressure (IOP). These findings suggest the crucial role of RAS not only in the regulation of BP but also in the regulation of IOP, and RAS potentially plays a role in the development of glaucoma and antiglaucomatous drugs.
Collapse
|
19
|
Janssen SF, Gorgels TG, Ten Brink JB, Jansonius NM, Bergen AA. Gene expression-based comparison of the human secretory neuroepithelia of the brain choroid plexus and the ocular ciliary body: potential implications for glaucoma. Fluids Barriers CNS 2014; 11:2. [PMID: 24472183 PMCID: PMC3909915 DOI: 10.1186/2045-8118-11-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/26/2014] [Indexed: 11/19/2022] Open
Abstract
Background The neuroepithelia of the choroid plexus (CP) in the brain and the ciliary body (CB) of the eye have common embryological origins and share similar micro-structure and functions. The CP epithelium (CPE) and the non-pigmented epithelium (NPE) of the CB produce the cerebrospinal fluid (CSF) and the aqueous humor (AH) respectively. Production and outflow of the CSF determine the intracranial pressure (ICP); production and outflow of the AH determine the intraocular pressure (IOP). Together, the IOP and ICP determine the translaminar pressure on the optic disc which may be involved in the pathophysiology of primary open angle glaucoma (POAG). The aim of this study was to compare the molecular machinery of the secretory neuroepithelia of the CP and CB (CPE versus NPE) and to determine their potential role in POAG. Methods We compared the transcriptomes and functional annotations of healthy human CPE and NPE. Microarray and bioinformatic studies were performed using an Agilent platform and the Ingenuity Knowledge Database (IPA). Results Based on gene expression profiles, we found many similar functions for the CPE and NPE including molecular transport, neurological disease processes, and immunological functions. With commonly-used selection criteria (fold-change > 2.5, p-value < 0.05), 14% of the genes were expressed significantly differently between CPE and NPE. When we used stricter selection criteria (fold-change > 5, p-value < 0.001), still 4.5% of the genes were expressed differently, which yielded specific functions for the CPE (ciliary movement and angiogenesis/hematopoiesis) and for the NPE (neurodevelopmental properties). Apart from a few exceptions (e.g. SLC12A2, SLC4A4, SLC4A10, KCNA5, and SCN4B), all ion transport protein coding genes involved in CSF and AH production had similar expression profiles in CPE and NPE. Three POAG disease genes were expressed significantly higher in the CPE than the NPE, namely CDH1, CDKN2B and SIX1. Conclusions The transcriptomes of the CPE and NPE were less similar than we previously anticipated. High expression of CSF/AH production genes and candidate POAG disease genes in the CPE and NPE suggest that both might be involved in POAG.
Collapse
Affiliation(s)
| | | | | | | | - Arthur Ab Bergen
- Department of Clinical and Molecular Ophthalmogenetics, the Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, Amsterdam 1105 BA, The Netherlands.
| |
Collapse
|