1
|
Sarfi M, Elahdadi Salmani M, Lashkarbolouki T, Goudarzi I. Modulation of noradrenergic signalling reverses stress-induced changes in the hippocampus: Involvement of orexinergic systems. Brain Res 2025; 1851:149491. [PMID: 39909296 DOI: 10.1016/j.brainres.2025.149491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/07/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
Stress can be beneficial for adapting to dangerous situations in the short term but can be damaging in the long term, especially in the hippocampus. The noradrenergic and orexinergic systems play important roles in stress response. This study investigated the effect of noradrenergic activation on changes induced by chronic stress in the hippocampus and the involvement of orexinergic modulation in this process. This study examined five groups of 40 male Wistar rats (4 + 4 animals/ group): control, chronic stress, acute stress, control with noradrenergic activation, and chronic stress with noradrenergic activation. Hippocampal tissue and blood plasma were the primary specimens analyzed. The researchers measured plasma corticosterone (CORT) using a fluorometric method, examined the expression of prepro-orexin (prepro-OX), orexin receptor-1 (OXr1), and glucocorticoid receptor (GR) through RT-PCR, and quantified neuronal populations using Nissl staining. Acute and chronic stress increased plasma CORT levels and gene expression of prepro-OX, OXr1, and GR, while decreasing neuronal numbers, with chronic stress having a more pronounced effect. Yohimbine-treated and/or stressed rats exhibited elevated plasma CORT levels. Chronic stress substantially upregulated GR and increased prepro-OX and OXr1 expressions whereas yohimbine recovered those profiles in chronically stressed animals. Conversely, chronic stress reduced hippocampal neuronal populations, and chronic stress combined with yohimbine partially compensated for the neuronal numbers compared to chronic stress alone. These results suggest that noradrenergic signalling can reverse chronic stress-induced impairments in prepro-OX, OXr1 and GR expressions, and neuronal populations.
Collapse
|
2
|
Knox D, Parikh V. Basal forebrain cholinergic systems as circuits through which traumatic stress disrupts emotional memory regulation. Neurosci Biobehav Rev 2024; 159:105569. [PMID: 38309497 PMCID: PMC10948307 DOI: 10.1016/j.neubiorev.2024.105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Contextual and spatial systems facilitate changes in emotional memory regulation brought on by traumatic stress. Cholinergic basal forebrain (chBF) neurons provide input to contextual/spatial systems and although chBF neurons are important for emotional memory, it is unknown how they contribute to the traumatic stress effects on emotional memory. Clusters of chBF neurons that project to the prefrontal cortex (PFC) modulate fear conditioned suppression and passive avoidance, while clusters of chBF neurons that project to the hippocampus (Hipp) and PFC (i.e. cholinergic medial septum and diagonal bands of Broca (chMS/DBB neurons) are critical for fear extinction. Interestingly, neither Hipp nor PFC projecting chMS/DBB neurons are critical for fear extinction. The retrosplenial cortex (RSC) is a contextual/spatial memory system that receives input from chMS/DBB neurons, but whether this chMS/DBB-RSC circuit facilitates traumatic stress effects on emotional memory remain unexplored. Traumatic stress leads to neuroinflammation and the buildup of reactive oxygen species. These two molecular processes may converge to disrupt chBF circuits enhancing the impact of traumatic stress on emotional memory.
Collapse
Affiliation(s)
- Dayan Knox
- Department of Psychological and Brain Sciences, Behavioral Neuroscience Program, University of Delaware, Newark, DE, USA.
| | - Vinay Parikh
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA, USA
| |
Collapse
|
3
|
The role of estrogen receptor manipulation during traumatic stress on changes in emotional memory induced by traumatic stress. Psychopharmacology (Berl) 2023; 240:1049-1061. [PMID: 36879072 DOI: 10.1007/s00213-023-06342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023]
Abstract
RATIONALE Traumatic stress leads to persistent fear, which is a core feature of post-traumatic stress disorder (PTSD). Women are more likely than men to develop PTSD after trauma exposure, which suggests women are differentially sensitive to traumatic stress. However, it is unclear how this differential sensitivity manifests. Cyclical changes in vascular estrogen release could be a contributing factor where levels of vascular estrogens (and activation of estrogen receptors) at the time of traumatic stress alter the impact of traumatic stress. METHODS To examine this, we manipulated estrogen receptors at the time of stress and observed the effect this had on fear and extinction memory (within the single prolonged stress (SPS) paradigm) in female rats. In all experiments, freezing and darting were used to measure fear and extinction memory. RESULTS In Experiment 1, SPS enhanced freezing during extinction testing, and this effect was blocked by nuclear estrogen receptor antagonism prior to SPS. In Experiment 2, SPS decreased conditioned freezing during the acquisition and testing of extinction. Administration of 17β-estradiol altered freezing in control and SPS animals during the acquisition of extinction, but this treatment had no effect on freezing during the testing of extinction memory. In all experiments, darting was only observed to footshock onset during fear conditioning. CONCLUSION The results suggest multiple behaviors (or different behavioral paradigms) are needed to characterize the nature of traumatic stress effects on emotional memory in female rats and that nuclear estrogen receptor antagonism prior to SPS blocks SPS effects on emotional memory in female rats.
Collapse
|
4
|
Canto-de-Souza L, Demetrovich PG, Plas S, Souza RR, Epperson J, Wahlstrom KL, Nunes-de-Souza RL, LaLumiere RT, Planeta CS, McIntyre CK. Daily Optogenetic Stimulation of the Left Infralimbic Cortex Reverses Extinction Impairments in Male Rats Exposed to Single Prolonged Stress. Front Behav Neurosci 2022; 15:780326. [PMID: 34987362 PMCID: PMC8721142 DOI: 10.3389/fnbeh.2021.780326] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is associated with decreased activity in the prefrontal cortex. PTSD-like pathophysiology and behaviors have been observed in rodents exposed to a single prolonged stress (SPS) procedure. When animals are left alone for 7 days after SPS treatment, they show increased anxiety-like behavior and impaired extinction of conditioned fear, and reduced activity in the prefrontal cortex. Here, we tested the hypothesis that daily optogenetic stimulation of the infralimbic region (IL) of the medial prefrontal cortex (mPFC) during the 7 days after SPS would reverse SPS effects on anxiety and fear extinction. Male Sprague-Dawley rats underwent SPS and then received daily optogenetic stimulation (20 Hz, 2 s trains, every 10 s for 15 min/day) of glutamatergic neurons of the left or right IL for seven days. After this incubation period, rats were tested in the elevated plus-maze (EPM). Twenty-four hours after the EPM test, rats underwent auditory fear conditioning (AFC), extinction training and a retention test. SPS increased anxiety-like behavior in the EPM task and produced a profound impairment in extinction of AFC. Optogenetic stimulation of the left IL, but not right, during the 7-day incubation period reversed the extinction impairment. Optogenetic stimulation did not reverse the increased anxiety-like behavior, suggesting that the extinction effects are not due to a treatment-induced reduction in anxiety. Results indicate that increased activity of the left IL after traumatic experiences can prevent development of extinction impairments. These findings suggest that non-invasive brain stimulation may be a useful tool for preventing maladaptive responses to trauma.
Collapse
Affiliation(s)
- Lucas Canto-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, Brazil.,Institute of Neuroscience and Behavior, Ribeirão Preto, Brazil.,School of Behavior and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Peyton G Demetrovich
- School of Behavior and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Samantha Plas
- School of Behavior and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Rimenez R Souza
- School of Behavior and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States.,Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Joseph Epperson
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| | - Krista L Wahlstrom
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - Ricardo Luiz Nunes-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, Brazil.,Institute of Neuroscience and Behavior, Ribeirão Preto, Brazil.,Joint Graduate Program in Physiological Sciences, Universidade Federal de São Carlos - UFSCar/UNESP, São Carlos, Brazil
| | - Ryan T LaLumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| | - Cleopatra Silva Planeta
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, Brazil.,Joint Graduate Program in Physiological Sciences, Universidade Federal de São Carlos - UFSCar/UNESP, São Carlos, Brazil
| | - Christa K McIntyre
- School of Behavior and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States.,Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
5
|
Calibration and recalibration of stress response systems across development: Implications for mental and physical health. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2022; 63:35-69. [DOI: 10.1016/bs.acdb.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Cotrone TS, Hocog CB, Ramsey JT, Sanchez MA, Sullivan HM, Scrimgeour AG. Phenotypic characterization of frontal cortex microglia in a rat model of post-traumatic stress disorder. Brain Behav 2021; 11:e02011. [PMID: 33434400 PMCID: PMC7994680 DOI: 10.1002/brb3.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Post-traumatic stress disorder (PTSD) is an anxiety disorder induced by psychologically traumatic events. Using a rat model, this study aimed to determine whether psychological trauma alters relative expression between pro-inflammatory and anti-inflammatory markers in microglia. To meet this goal, expression of genes encoding i-NOS, arginase, TNF-α, interleukin-10, CD74, and Mannose Receptor C was analyzed on multiple days following trauma exposure. METHODS Single-prolonged stress (SPS) was used to model PTSD in male Sprague-Dawley rats. Twenty-four rats (12 Controls and 12 SPS-exposed) were sacrificed on Days 1, 3, and 7 post-SPS. Twenty-four (12 Controls and 12 SPS-exposed) additional rats were exposed to classical fear conditioning on Day 7, and fear extinction on Days 8, 9, 10, 15, 16, and 17. Freezing behavior was measured to assess fear resolution. Microglial isolates were collected from the frontal cortex, and RNA was extracted. Changes in relative expression of target genes were quantified via RT-PCR. RESULTS SPS rats showed significant decreases in IL-10 and TNF-α expression and increases in the i-NOS:Arginase and TNF-α:IL-10 ratios compared to Controls on Day 1, but not on Day 3 or Day 7 for any of the dependent variables. Day 17 SPS rats showed a significant decrease in IL-10 expression and an increase in the TNF-α:IL-10 ratio, further characterized by a significant inverse relationship between IL-10 expression and fear persistence. CONCLUSION Psychological trauma impacts the immunological phenotype of microglia of the frontal cortex. Consequently, future studies should further evaluate the mechanistic role of microglia in PTSD pathology.
Collapse
Affiliation(s)
- Thomas S Cotrone
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Charina B Hocog
- Veterinary Support and Oversight Branch, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Joseph T Ramsey
- Veterinary Support and Oversight Branch, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Marcus A Sanchez
- Veterinary Support and Oversight Branch, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Heather M Sullivan
- Veterinary Support and Oversight Branch, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Angus G Scrimgeour
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
7
|
Yuan Y, Zhen L, Li Z, Xu W, Leng H, Xu W, Zheng V, Luria V, Pan J, Tao Y, Zhang H, Cao S, Xu Y. trans-Resveratrol ameliorates anxiety-like behaviors and neuropathic pain in mouse model of post-traumatic stress disorder. J Psychopharmacol 2020; 34:726-736. [PMID: 32308103 DOI: 10.1177/0269881120914221] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND trans-Resveratrol has been extensively investigated for its anti-inflammatory, antioxidant, and anti-psychiatric properties. However, whether it could rescue posttraumatic stress disorder-like stress-induced pain abnormality is unknown. AIM The present study examined the effects of trans-resveratrol on anxiety-like behavior and neuropathic pain induced by single-prolonged stress, which is a classical animal model for mimicking posttraumatic stress disorder. METHODS The single-prolonged stress-induced anxiety-like behavior and pain response were detected by the novelty suppressed feeding, marble burying, locomotor activity, von Frey, and acetone-induced cold allodynia tests in mice. The serum corticosterone levels and glucocorticoid receptor, protein kinase A, phosphorylated cAMP response element binding protein, and brain-derived neurotrophic factor expression were detected by enzyme-linked immunosorbent assay and immunoblot analyses. RESULTS trans-Resveratrol reversed single-prolonged stress-induced increased latency to feed and the number of marbles buried in the novelty suppressed feeding and marble burying tests, but did not significantly influence locomotion distance in the locomotor activity test. trans-Resveratrol also reversed single-prolonged stress-induced cold and mechanical allodynia. Moreover, single-prolonged stress induced abnormality in the limbic hypothalamus-pituitary-adrenal axis was reversed by trans-resveratrol, as evidenced by the fact that trans-resveratrol reversed the differential expression of glucocorticoid receptor in the anxiety- and pain-related regions. In addition, trans-resveratrol increased protein kinase A, phosphorylated cAMP response element binding protein, and brain-derived neurotrophic factor levels, which were decreased in mice subjected to single-prolonged stress. CONCLUSIONS These results provide compelling evidence that trans-resveratrol protects neurons against posttraumatic stress disorder-like stress insults through regulation of limbic hypothalamus-pituitary-adrenal axis function and activation of downstream neuroprotective molecules such as protein kinase A, phosphorylated cAMP response element binding protein, and brain-derived neurotrophic factor expression.
Collapse
Affiliation(s)
- Yirong Yuan
- Department of Neurosurgery, The People's Hospital of Yichun City, Yichun, China
| | - Linlin Zhen
- Department of Breast and Thyroid Surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Zhi Li
- Department of Breast and Thyroid Surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China.,Department of Pharmaceutical Sciences, The State University of New York, Buffalo, USA
| | - Wenhua Xu
- Department of Orthopedics, The People's Hospital of Yichun City, Yichun, China
| | - Huilin Leng
- Department of Neurology, The People's Hospital of Yichun City, Yichun, China
| | - Wen Xu
- Brain Institute, Wenzhou Medical University, Wenzhou, China
| | - Victor Zheng
- Department of Pharmaceutical Sciences, The State University of New York, Buffalo, USA
| | - Victor Luria
- Department of System Biology, Harvard University Medical School, Boston, USA
| | - Jianchun Pan
- Brain Institute, Wenzhou Medical University, Wenzhou, China
| | - Yuanxiang Tao
- Department of Anesthesiology, The State University of New Jersey, Newark, USA
| | - Hanting Zhang
- Department of Behavioral Medicine and Psychiatry and Physiology, Pharmacology and Neuroscience, West Virginia University Health Sciences Center, Morgantown, USA
| | - Shengsheng Cao
- Department of Orthopedics, The People's Hospital of Yichun City, Yichun, China.,These authors jointly directed this work
| | - Ying Xu
- Department of Pharmaceutical Sciences, The State University of New York, Buffalo, USA.,These authors jointly directed this work
| |
Collapse
|
8
|
Amiri S, Jafari-Sabet M, Keyhanfar F, Falak R, Shabani M, Rezayof A. Hippocampal and prefrontal cortical NMDA receptors mediate the interactive effects of olanzapine and lithium in memory retention in rats: the involvement of CAMKII-CREB signaling pathways. Psychopharmacology (Berl) 2020; 237:1383-1396. [PMID: 31984447 DOI: 10.1007/s00213-020-05465-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/16/2020] [Indexed: 12/20/2022]
Abstract
RATIONALE Treatment of bipolar disorder (BPD) with lithium and olanzapine concurrent administration is a major medicine issue with the elusive neurobiological mechanisms underlying the cognitive function. OBJECTIVE To clarify the precise mechanisms involved, the possible role of the hippocampus (HPC) and prefrontal cortical (PFC) NMDA receptors and CAMKII-CREB signaling pathway in the interactive effects of lithium and olanzapine in memory consolidation was evaluated. The dorsal hippocampal CA1 regions of adult male Wistar rats were bilaterally cannulated and a step-through inhibitory avoidance apparatus was used to assess memory consolidation. The changes in p-CAMKII/CAMKII and p-CREB/CREB ratio in the HPC and the PFC were measured by Western blot analysis. RESULTS Post-training administration of lithium (20, 30, and 40 mg/kg, i.p.) dose-dependently decreased memory consolidation whereas post-training administration olanzapine (2 and 5 mg/kg, i.p.) increased memory consolidation. Post-training administration of certain doses of olanzapine (1, 2, and 5 mg/kg, i.p.) dose-dependently improved lithium-induced memory impairment. Post-training administration of ineffective doses of the NMDA (10-5 and 10-4 μg/rat, intra-CA1) plus an ineffective dose of olanzapine (1 mg/kg, i.p.) dose-dependently improved the lithium-induced memory impairment. Post-training microinjection of ineffective doses of the NMDA (10-5 and 10-4 μg/rat, intra-CA1) dose-dependently potentiated the memory improvement induced by olanzapine (1 mg/kg, i.p.) on lithium-induced memory impairment which was associated with the enhancement of the levels of p-CAMKII and p-CREB in the HPC and the PFC. Post-training microinjection of ineffective doses of the noncompetitive NMDA receptor antagonist, MK-801 (0.0625 and 0.0125 μg/rat, intra-CA1), dose-dependently decreased the memory improvement induced by olanzapine (5 mg/kg, i.p.) on lithium-induced memory impairment which was related to the reduced levels of HPC and PFC CAMKII-CREB. CONCLUSION The results strongly revealed that there is a functional interaction among lithium and olanzapine through the HPC and the PFC NMDA receptor mechanism in memory consolidation which is mediated with the CAMKII-CREB signaling pathway.
Collapse
Affiliation(s)
- Shiva Amiri
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Fariborz Keyhanfar
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shabani
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Yang R, Sun H, Wu Y, Lu G, Wang Y, Li Q, Zhou J, Sun H, Sun L. Long-Lasting Sex-Specific Effects Based On Emotion- and Cognition-Related Behavioral Assessment of Adult Rats After Post-Traumatic Stress Disorder From Different Lengths of Maternal Separation. Front Psychiatry 2019; 10:289. [PMID: 31231246 PMCID: PMC6558979 DOI: 10.3389/fpsyt.2019.00289] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 04/12/2019] [Indexed: 11/13/2022] Open
Abstract
Adverse early life stress is a major cause of vulnerability to various mental disorders in adulthood, including post-traumatic stress disorder (PTSD). Recent studies have suggested that early life stress can help the body adapt optimally when faced with stressful trauma in adult life. An interaction may exist between early life stress (e.g., childhood trauma) and vulnerability to PTSD. This study aimed to evaluate emotion-related behaviors and verify the long-lasting effects of cognitive aspects of PTSD after exposure to severe adverse early life stress, such as long-term separation. Adverse early life stress was simulated by subjecting rats to 3 or 6 consecutive hours of maternal separation (MS) daily, from postnatal day (PND) 2 to PND 14. Single-prolonged stress (SPS) was simulated on PND 80 to imitate other adulthood stresses of PTSD with gender divisions (M-MS3h-PTSD, F-MS3h-PTSD, M-MS6h-PTSD, F-MS6h-PTSD, M-PTSD, and F-PTSD). After the MS and PTSD sessions, behavioral tests were conducted to assess the effectiveness of these treatments, which included an open field test (OFT), elevated plus maze test (EPMT), water maze test (WMT), and forced swimming test (FST) to detect anxiety-like behavior (OFT and EPMT), memory behavior (WMT), and depressive behavior (FST). The M-MS3h-PTSD group had fewer time entries into the open arms of EPMT than the F-MS3h-PTSD group, and the M-MS6h-PTSD group demonstrated fewer up-right postures in the OFT than the F-MS6h-PTSD group. The M-MS3h-PTSD group exhibited more exploratory behavior than the M-MS6h-PTSD and M-PTSD groups in the OFT. Less exploratory behavior was observed in the F-MS3h-PTSD group than in the F-MS6h-PTSD group, which demonstrated significantly increased freezing times in the FST compared to the F-PTSD group. The WMT revealed significant differences in learning and memory performance between the M-MS3h-PTSD group and other treatment groups, which were not found in the female rats. These findings demonstrate that an early stressful experience, such as MS, may be involved in helping the body adapt optimally when faced with additional trauma in adulthood, although mild early life stress might benefit learning and memory among males.
Collapse
Affiliation(s)
- Rucui Yang
- Department of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Haoran Sun
- Department of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yani Wu
- Department of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Guohua Lu
- Department of Psychology, Weifang Medical University, Weifang, China
| | - Yanyu Wang
- Department of Psychology, Weifang Medical University, Weifang, China
| | - Qi Li
- Department of Psychiatry and Centre for Reproduction Growth and Development, University of Hong Kong, Hong Kong, Hong Kong
| | - Jin Zhou
- College of Pharmacy, Weifang Medical University, Weifang, China
| | - Hongwei Sun
- Department of Psychology, Weifang Medical University, Weifang, China
| | - Lin Sun
- Department of Psychology, Weifang Medical University, Weifang, China
| |
Collapse
|
10
|
Lee B, Shim I, Lee H, Hahm DH. Tetramethylpyrazine reverses anxiety-like behaviors in a rat model of post-traumatic stress disorder. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:525-538. [PMID: 30181699 PMCID: PMC6115350 DOI: 10.4196/kjpp.2018.22.5.525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a trauma-induced psychiatric disorder characterized by impaired fear extermination, hyperarousal, and anxiety that may involve the release of monoamines in the fear circuit. The reported pharmacological properties of tetramethylpyrazine (TMP) include anti-cancer, anti-diabetic, anti-atherosclerotic, and neuropsychiatric activities. However, the anxiolytic-like effects of TMP and its mechanism of action in PTSD are unclear. This study measured several anxiety-related behavioral responses to examine the effects of TMP on symptoms of anxiety in rats after single prolonged stress (SPS) exposure by reversing the serotonin (5-HT) and hypothalamic-pituitary-adrenal (HPA) axis dysfunction. Rats were given TMP (10, 20, or 40 mg/kg, i.p.) for 14 days after SPS exposure. Administration of TMP significantly reduced grooming behavior, increased the time spent and number of visits to the open arm in the elevated plus maze test, and significantly increased the number of central zone crossings in the open field test. TMP administration significantly reduced the freezing response to contextual fear conditioning and significantly restored the neurochemical abnormalities and the SPS-induced decrease in 5-HT tissue levels in the prefrontal cortex and hippocampus. The increased 5-HT concentration during TMP treatment might be partially attribute to the tryptophan and 5-hydroxyindoleacetic acid mRNA level expression in the hippocampus of rats with PTSD. These findings support a role for reducing the altered serotonergic transmission in rats with PTSD. TMP simultaneously attenuated the HPA axis dysfunction. Therefore, TMP may be useful for developing an agent for treating psychiatric disorders, such those observed in patients with PTSD.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea.,Center for Converging Humanities, Kyung Hee University, Seoul 02447, Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea
| | - Dae-Hyun Hahm
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
11
|
Knox D, Stanfield BR, Staib JM, David NP, Keller SM, DePietro T. Neural circuits via which single prolonged stress exposure leads to fear extinction retention deficits. ACTA ACUST UNITED AC 2016; 23:689-698. [PMID: 27918273 PMCID: PMC5110987 DOI: 10.1101/lm.043141.116] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/10/2016] [Indexed: 01/20/2023]
Abstract
Single prolonged stress (SPS) has been used to examine mechanisms via which stress exposure leads to post-traumatic stress disorder symptoms. SPS induces fear extinction retention deficits, but neural circuits critical for mediating these deficits are unknown. To address this gap, we examined the effect of SPS on neural activity in brain regions critical for extinction retention (i.e., fear extinction circuit). These were the ventral hippocampus (vHipp), dorsal hippocampus (dHipp), basolateral amygdala (BLA), prelimbic cortex (PL), and infralimbic cortex (IL). SPS or control rats were fear conditioned then subjected to extinction training and testing. Subsets of rats were euthanized after extinction training, extinction testing, or immediate removal from the housing colony (baseline condition) to assay c-Fos levels (measure of neural activity) in respective brain region. SPS induced extinction retention deficits. During extinction training SPS disrupted enhanced IL neural activity and inhibited BLA neural activity. SPS also disrupted inhibited BLA and vHipp neural activity during extinction testing. Statistical analyses suggested that SPS disrupted functional connectivity within the dHipp during extinction training and increased functional connectivity between the BLA and vHipp during extinction testing. Our findings suggest that SPS induces extinction retention deficits by disrupting both excitatory and inhibitory changes in neural activity within the fear extinction circuit and inducing changes in functional connectivity within the Hipp and BLA.
Collapse
Affiliation(s)
- Dayan Knox
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Briana R Stanfield
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102, USA
| | - Jennifer M Staib
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Nina P David
- School of Public Policy and Administration, University of Delaware, Newark, Delaware 19716, USA
| | - Samantha M Keller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Thomas DePietro
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
12
|
Gastrodin reversed the traumatic stress-induced depressed-like symptoms in rats. J Nat Med 2016; 70:749-59. [PMID: 27417451 DOI: 10.1007/s11418-016-1010-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
Exposure to severe stress can lead to the development of neuropsychiatric disorders such as depression and post-traumatic stress disorder (PTSD) in at-risk individuals. Gastrodin (GAS), a primary constituent of an Oriental herbal medicine, has been shown to effectively treat various mood disorders. Thus, the present study aimed to determine whether GAS would ameliorate stress-associated depression-like behaviors in a rat model of single prolonged stress (SPS)-induced PTSD. Following the SPS procedure, rats received intraperitoneal administration of GAS (20, 50, or 100 mg/kg) once daily for 2 weeks. Subsequently, the rats performed the forced swimming test, and norepinephrine (NE) levels in the hippocampus were measured. Daily GAS (100 mg/kg) significantly reversed depression-like behaviors and restored SPS-induced increases in hippocampal NE concentrations as well as tyrosine hydroxylase expression in the locus coeruleus. Furthermore, the administration of GAS attenuated SPS-induced decreases in the hypothalamic expression of neuropeptide Y and the hippocampal mRNA expression of brain-derived neurotrophic factor. These findings indicate that GAS possesses antidepressant effects in the PTSD and may be an effective herbal preparation for the treatment of PTSD.
Collapse
|
13
|
Wincewicz D, Juchniewicz A, Waszkiewicz N, Braszko JJ. Angiotensin II type 1 receptor blockade by telmisartan prevents stress-induced impairment of memory via HPA axis deactivation and up-regulation of brain-derived neurotrophic factor gene expression. Pharmacol Biochem Behav 2016; 148:108-18. [PMID: 27375198 DOI: 10.1016/j.pbb.2016.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/10/2016] [Accepted: 06/29/2016] [Indexed: 01/19/2023]
Abstract
Physical and psychological aspects of chronic stress continue to be a persistent clinical problem for which new pharmacological treatment strategies are aggressively sought. By the results of our previous work it has been demonstrated that telmisartan (TLM), an angiotensin type 1 receptor (AT1) blocker (ARB) and partial agonist of peroxisome proliferator-activated receptor gamma (PPARγ), alleviates stress-induced cognitive decline. Understanding of mechanistic background of this phenomenon is hampered by both dual binding sites of TLM and limited data on the consequences of central AT1 blockade and PPARγ activation. Therefore, a critical need exists for progress in the characterization of this target for pro-cognitive drug discovery. An unusual ability of novel ARBs to exert various PPARγ binding activities is commonly being viewed as predominant over angiotensin blockade in terms of neuroprotection. Here we aimed to verify this hypothesis using an animal model of chronic psychological stress (Wistar rats restrained 2.5h daily for 21days) with simultaneous oral administration of TLM (1mg/kg), GW9662 - PPARγ receptor antagonist (0.5mg/kg), or both in combination, followed by a battery of behavioral tests (open field, elevated plus maze, inhibitory avoidance - IA, object recognition - OR), quantitative determination of serum corticosterone (CORT) and evaluation of brain-derived neurotrophic factor (BDNF) gene expression in the medial prefrontal cortex (mPFC) and hippocampus (HIP). Stressed animals displayed decreased recall of the IA behavior (p<0.001), decreased OR (p<0.001), substantial CORT increase (p<0.001) and significantly downregulated expression of BDNF in the mPFC (p<0.001), which were attenuated in rats receiving TLM and TLM+GW9662. These data indicate that procognitive effect of ARBs in stressed subjects do not result from PPAR-γ activation, but AT1 blockade and subsequent hypothalamus-pituitary-adrenal axis deactivation associated with changes in primarily cortical gene expression. This study confirms the dual activities of TLM that controls hypertension and cognition through AT1 blockade.
Collapse
Affiliation(s)
- D Wincewicz
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15a, 15274 Bialystok, Poland; Department of Psychiatry, Medical University of Bialystok, Poland.
| | - A Juchniewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, Poland
| | - N Waszkiewicz
- Department of Psychiatry, Medical University of Bialystok, Poland
| | - J J Braszko
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15a, 15274 Bialystok, Poland
| |
Collapse
|
14
|
Ghasemzadeh Z, Rezayof A. Role of hippocampal and prefrontal cortical signaling pathways in dextromethorphan effect on morphine-induced memory impairment in rats. Neurobiol Learn Mem 2016; 128:23-32. [DOI: 10.1016/j.nlm.2015.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/22/2015] [Accepted: 11/28/2015] [Indexed: 11/29/2022]
|
15
|
Perrine SA, Eagle AL, George SA, Mulo K, Kohler RJ, Gerard J, Harutyunyan A, Hool SM, Susick LL, Schneider BL, Ghoddoussi F, Galloway MP, Liberzon I, Conti AC. Severe, multimodal stress exposure induces PTSD-like characteristics in a mouse model of single prolonged stress. Behav Brain Res 2016; 303:228-37. [PMID: 26821287 DOI: 10.1016/j.bbr.2016.01.056] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 12/26/2022]
Abstract
Appropriate animal models of posttraumatic stress disorder (PTSD) are needed because human studies remain limited in their ability to probe the underlying neurobiology of PTSD. Although the single prolonged stress (SPS) model is an established rat model of PTSD, the development of a similarly-validated mouse model emphasizes the benefits and cross-species utility of rodent PTSD models and offers unique methodological advantages to that of the rat. Therefore, the aims of this study were to develop and describe a SPS model for mice and to provide data that support current mechanisms relevant to PTSD. The mouse single prolonged stress (mSPS) paradigm, involves exposing C57Bl/6 mice to a series of severe, multimodal stressors, including 2h restraint, 10 min group forced swim, exposure to soiled rat bedding scent, and exposure to ether until unconsciousness. Following a 7-day undisturbed period, mice were tested for cue-induced fear behavior, effects of paroxetine on cue-induced fear behavior, extinction retention of a previously extinguished fear memory, dexamethasone suppression of corticosterone (CORT) response, dorsal hippocampal glucocorticoid receptor protein and mRNA expression, and prefrontal cortex glutamate levels. Exposure to mSPS enhanced cue-induced fear, which was attenuated by oral paroxetine treatment. mSPS also disrupted extinction retention, enhanced suppression of stress-induced CORT response, increased mRNA expression of dorsal hippocampal glucocorticoid receptors and decreased prefrontal cortex glutamate levels. These data suggest that the mSPS model is a translationally-relevant model for future PTSD research with strong face, construct, and predictive validity. In summary, mSPS models characteristics relevant to PTSD and this severe, multimodal stress modifies fear learning in mice that coincides with changes in the hypothalamo-pituitary-adrenal (HPA) axis, brain glucocorticoid systems, and glutamatergic signaling in the prefrontal cortex.
Collapse
Affiliation(s)
- Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Andrew L Eagle
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sophie A George
- Department of Psychiatry, Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kostika Mulo
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robert J Kohler
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Justin Gerard
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Arman Harutyunyan
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Steven M Hool
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA,; Wayne State University School of Medicine, Detroit, MI, USA
| | - Laura L Susick
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA,; Wayne State University School of Medicine, Detroit, MI, USA
| | - Brandy L Schneider
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA,; Wayne State University School of Medicine, Detroit, MI, USA
| | - Farhad Ghoddoussi
- Department of Anesthesiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Matthew P Galloway
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA; Department of Anesthesiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Israel Liberzon
- Department of Psychiatry, Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA,; Department of Psychiatry, VA Medical Center, Ann Arbor, MI, USA
| | - Alana C Conti
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA,; Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
16
|
do Prado CH, Narahari T, Holland FH, Lee HN, Murthy SK, Brenhouse HC. Effects of early adolescent environmental enrichment on cognitive dysfunction, prefrontal cortex development, and inflammatory cytokines after early life stress. Dev Psychobiol 2015; 58:482-91. [PMID: 26688108 DOI: 10.1002/dev.21390] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/02/2015] [Indexed: 01/11/2023]
Abstract
Early postnatal stress such as maternal separation causes cognitive dysfunction later in life, including working memory deficits that are largely mediated by the prefrontal cortex. Maternal separation in male rats also yields a loss of parvalbumin-containing prefrontal cortex interneurons in adolescence, which may occur via inflammatory or oxidative stress mechanisms. Environmental enrichment can prevent several effects of maternal separation; however, effects of enrichment on prefrontal cortex development are not well understood. Here, we report that enrichment prevented cognitive dysfunction in maternally separated males and females, and prevented elevated circulating pro-inflammatory cytokines that was evident in maternally separated males, but not females. However, enrichment did not prevent parvalbumin loss or adolescent measures of oxidative stress. Significant correlations indicated that adolescents with higher oxidative damage and less prefrontal cortex parvalbumin in adolescence committed more errors on the win-shift task; therefore, maternal separation may affect cognitive dysfunction via aberrant interneuron development. © 2015 Wiley Periodicals, Inc. Dev Psychobiol 58: 482-491, 2016.
Collapse
Affiliation(s)
- Carine H do Prado
- Department of Psychology, Northeastern University, Boston, MA.,Developmental Cognitive Neuroscience Research Group (GNCD), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tanya Narahari
- Department of Chemical Engineering, Northeastern University, Boston, MA
| | | | - Ha-Neul Lee
- Department of Psychology, Northeastern University, Boston, MA
| | - Shashi K Murthy
- Department of Chemical Engineering, Northeastern University, Boston, MA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA
| | | |
Collapse
|
17
|
Lee B, Sur B, Cho SG, Yeom M, Shim I, Lee H, Hahm DH. Ginsenoside Rb1 rescues anxiety-like responses in a rat model of post-traumatic stress disorder. J Nat Med 2015; 70:133-44. [PMID: 26611866 DOI: 10.1007/s11418-015-0943-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 10/01/2015] [Indexed: 01/11/2023]
Abstract
Single prolonged stress (SPS), a rat model of post-traumatic stress disorder (PTSD), induces alterations in the hypothalamic-pituitary-adrenal axis. Korean red ginseng, whose major active component is ginsenoside Rb1 (GRb1), is one of the widely used traditional anxiolytics. However, the efficacy of GRb1 in alleviating PTSD-associated anxiety-like abnormalities has not been investigated. The present study used several behavioral tests to examine the effects of GRb1 on symptoms of anxiety in rats after SPS exposure and on the central noradrenergic system. Male Sprague-Dawley rats received GRb1 (10 or 30 mg/kg, i.p., once daily) during 14 days of SPS. Daily GRb1 (30 mg/kg) administration significantly increased the number and duration of open-arm visits in the elevated plus maze (EPM) test, reduced the anxiety index, increased the risk assessment, reduced grooming behaviors in the EPM test, and increased the total number of line crossings of an open field after SPS. The higher dose of GRb1 also blocked SPS-induced decreases in hypothalamic neuropeptide Y expression, increases in locus coeruleus tyrosine hydroxylase expression, and decreases in hippocampal mRNA expression of brain-derived neurotrophic factor. These findings suggest that GRb1 has anxiolytic-like effects on both behavioral and biochemical symptoms similar to those observed in patients with PTSD.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea.
| | - Bongjun Sur
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Seong-Guk Cho
- The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | - Mijung Yeom
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Insop Shim
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea.,The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-701, Republic of Korea. .,The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea.
| |
Collapse
|
18
|
Bolten M. Transgenerational Transmission of Stress Pathology. ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY 2015. [DOI: 10.1027/2151-2604/a000219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract. The impact of the environment early in life on long-term outcomes is well known. Stressful experiences during pre- and postnatal development can modulate the genetic programming of specific brain circuits underlying emotional and cognitive aspects of behavioral adaptation to stressful experiences later in life. Furthermore, there is documented evidence for gene-environment interactions in the context of early-life stress. Identical gene variants can be associated with different phenotypes depending on environmental factors. DNA methylation, an enzymatically-catalyzed modification of the DNA, is the mechanism through which phenotypes are regulated. The dynamics and plasticity of epigenetic mechanisms can have short-term, long-term, or transgenerational consequences. In epigenetic research, rodent models have targeted several behavioral and emotional phenotypes. These models have contributed significantly to our understanding of the environmental regulation of the developmental brain in early life. This review will highlight studies with rats and mice on epigenetic processes in fetal programming of stress-related mental disorders.
Collapse
Affiliation(s)
- Margarete Bolten
- Child and Adolescent Psychiatric Clinic, University of Basel, Switzerland
| |
Collapse
|
19
|
Luchetti A, Oddi D, Lampis V, Centofante E, Felsani A, Battaglia M, D'Amato FR. Early handling and repeated cross-fostering have opposite effect on mouse emotionality. Front Behav Neurosci 2015; 9:93. [PMID: 25954170 PMCID: PMC4404916 DOI: 10.3389/fnbeh.2015.00093] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/31/2015] [Indexed: 11/26/2022] Open
Abstract
Early life events have a crucial role in programming the individual phenotype and exposure to traumatic experiences during infancy can increase later risk for a variety of neuropsychiatric conditions, including mood and anxiety disorders. Animal models of postnatal stress have been developed in rodents to explore molecular mechanisms responsible for the observed short and long lasting neurobiological effects of such manipulations. The main aim of this study was to compare the behavioral and hormonal phenotype of young and adult animals exposed to different postnatal treatments. Outbred mice were exposed to (i) the classical Handling protocol (H: 15 min-day of separation from the mother from day 1 to 14 of life) or to (ii) a Repeated Cross-Fostering protocol (RCF: adoption of litters from day 1 to 4 of life by different dams). Handled mice received more maternal care in infancy and showed the already described reduced emotionality at adulthood. Repeated cross fostered animals did not differ for maternal care received, but showed enhanced sensitivity to separation from the mother in infancy and altered respiratory response to 6% CO2 in breathing air in comparison with controls. Abnormal respiratory responses to hypercapnia are commonly found among humans with panic disorders (PD), and point to RCF-induced instability of the early environment as a valid developmental model for PD. The comparisons between short- and long-term effects of postnatal handling vs. RCF indicate that different types of early adversities are associated with different behavioral profiles, and evoke psychopathologies that can be distinguished according to the neurobiological systems disrupted by early-life manipulations.
Collapse
Affiliation(s)
- Alessandra Luchetti
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia Rome, Italy
| | - Diego Oddi
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia Rome, Italy
| | - Valentina Lampis
- Academic Centre for the Study of Behavioral Plasticity, Vita-Salute San Raffaele University Milan, Italy
| | - Eleonora Centofante
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia Rome, Italy
| | - Armando Felsani
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia Rome, Italy ; Genomnia Lainate, Italy
| | - Marco Battaglia
- Academic Centre for the Study of Behavioral Plasticity, Vita-Salute San Raffaele University Milan, Italy ; Institut Universitaire en Santé Mentale de Québec, Laval University Quebec, QC, Canada
| | - Francesca R D'Amato
- Institute of Cell Biology and Neurobiology, National Research Council/Fondazione Santa Lucia Rome, Italy ; Institut Universitaire en Santé Mentale de Québec, Laval University Quebec, QC, Canada
| |
Collapse
|
20
|
Liaudat AC, Rodríguez N, Chen S, Romanini MC, Vivas A, Rolando A, Gauna H, Mayer N. Adrenal response of male rats exposed to prenatal stress and early postnatal stimulation. Biotech Histochem 2015; 90:432-8. [PMID: 25867787 DOI: 10.3109/10520295.2015.1019926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stress in pregnant rats caused by chronic immobilization alters the pattern of secretion of corticosterone and modifies the hypothalamic-pituitary-adrenal axis (HPA) of the fetus. Early postnatal handling, however, may reverse the effects of increased secretion of corticosterone. We investigated the effects of prenatal stress and postnatal handling on the activity of the HPA axis of male offspring of stressed female rats. Male 90-day-old rats from four groups were investigated: prenatally stressed animals without postnatal handling, prenatally stressed animals with postnatal handling, unstressed control animals with postnatal handling, and unstressed control animals without postnatal handling. After sacrifice, the adrenal glands were weighed to determine the adrenal-somatic index. Apoptosis was evaluated by TUNEL assay and active caspase-3 expression. We found that the adrenal gland cortex:medulla ratio increased in animals with prenatal stress and that eventually the stress caused apoptosis. Handling newborns to simulate maternal activity ameliorated some of the negative effects of prenatal stress.
Collapse
Affiliation(s)
- A C Liaudat
- Department of Molecular Biology, School of Exact, Physical-Chemical and Natural Sciences, National University of Río Cuarto , Río Cuarto , Argentina
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Alvarez P, Levine JD, Green PG. Neonatal handling (resilience) attenuates water-avoidance stress induced enhancement of chronic mechanical hyperalgesia in the rat. Neurosci Lett 2015; 591:207-211. [PMID: 25637700 DOI: 10.1016/j.neulet.2015.01.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 01/23/2015] [Accepted: 01/25/2015] [Indexed: 12/12/2022]
Abstract
Chronic stress is well known to exacerbate pain. We tested the hypothesis that neonatal handling, which induces resilience to the negative impact of stress by increasing the quality and quantity of maternal care, attenuates the mechanical hyperalgesia produced by water-avoidance stress in the adult rat. Neonatal male rats underwent the handling protocol on postnatal days 2-9, weaned at 21 days and tested for muscle mechanical nociceptive threshold at postnatal days 50-75. Decrease in mechanical nociceptive threshold in skeletal muscle in adult rats, produced by exposure to water-avoidance stress, was significantly attenuated by neonatal handling. Neonatal handling also attenuated the mechanical hyperalgesia produced by intramuscular administration of the pronociceptive inflammatory mediator, prostaglandin E2 in rats exposed as adults to water-avoidance stress. Neonatal handling, which induces a smaller corticosterone response in adult rats exposed to a stressor as well as changes in central nervous system neurotransmitter systems, attenuates mechanical hyperalgesia produced by water-avoidance stress and enhanced prostaglandin hyperalgesia in adult animals.
Collapse
Affiliation(s)
- Pedro Alvarez
- Departments of Oral and Maxillofacial Surgery, University of California, San Francisco, USA; Division of Neuroscience, University of California, San Francisco, USA
| | - Jon D Levine
- Departments of Oral and Maxillofacial Surgery, University of California, San Francisco, USA; Departments of Medicine, University of California, San Francisco, USA; Division of Neuroscience, University of California, San Francisco, USA.
| | - Paul G Green
- Departments of Oral and Maxillofacial Surgery, University of California, San Francisco, USA; Division of Neuroscience, University of California, San Francisco, USA
| |
Collapse
|
22
|
George SA, Rodriguez-Santiago M, Riley J, Rodriguez E, Liberzon I. The effect of chronic phenytoin administration on single prolonged stress induced extinction retention deficits and glucocorticoid upregulation in the rat medial prefrontal cortex. Psychopharmacology (Berl) 2015; 232:47-56. [PMID: 24879497 DOI: 10.1007/s00213-014-3635-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 05/07/2014] [Indexed: 11/29/2022]
Abstract
RATIONALE Post-traumatic stress disorder (PTSD) is a chronic, debilitating disorder. Only two pharmacological agents are approved for PTSD treatment, and they often do not address the full range of symptoms nor are they equally effective in all cases. Animal models of PTSD are critical for understanding the neurobiology involved and for identification of novel therapeutic targets. Using the rodent PTSD model, single prolonged stress (SPS), we have implicated aberrant excitatory neural transmission and glucocorticoid receptor (GR) upregulation in the medial prefrontal cortex (mPFC) and hippocampus (HPC) in fear memory abnormalities associated with PTSD. OBJECTIVE The objective of this study is to examine the potential protective effect of antiepileptic phenytoin (PHE) administration on SPS-induced extinction retention deficits and GR expression. METHODS Forty-eight SPS-treated male Sprague Dawley rats or controls were administered PHE (40, 20 mg/kg, vehicle) for 7 days following SPS stressors; then, fear conditioning, extinction, and extinction retention were tested. RESULTS Fear conditioning and extinction were unaffected by SPS or PHE, but SPS impaired extinction retention, and both doses of PHE rescued this impairment. Similarly, SPS increased GR expression in the mPFC and dorsal HPC, and PHE prevented SPS-induced GR upregulation in the mPFC. CONCLUSIONS These data demonstrate that PHE administration can prevent the development of extinction retention deficits and upregulation of GR. PHE exerts inhibitory effects on voltage-gated sodium channels and decreases excitatory neural transmission via glutamate antagonism. If glutamate hyperactivity in the days following SPS contributes to SPS-induced deficits, then these data may suggest that the glutamatergic system constitutes a target for secondary prevention.
Collapse
Affiliation(s)
- Sophie A George
- Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI, 48109, USA,
| | | | | | | | | |
Collapse
|
23
|
Lee B, Sur B, Yeom M, Shim I, Lee H, Hahm DH. L-tetrahydropalmatine ameliorates development of anxiety and depression-related symptoms induced by single prolonged stress in rats. Biomol Ther (Seoul) 2014; 22:213-22. [PMID: 25009702 PMCID: PMC4060081 DOI: 10.4062/biomolther.2014.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/14/2014] [Accepted: 05/07/2014] [Indexed: 11/07/2022] Open
Abstract
Abnormal adaptation of the stress-response system following traumatic stress can lead to alterations in the hypothalamic-pituitary-adrenal (HPA) axis that may contribute to the development of post-traumatic stress disorder (PTSD). The present study used several behavioral tests to investigate the anxiolytic-like and antidepressant activity of L-tetrahydropalmatine (L-THP) in an experimental rat model of anxiety and depression induced by single prolonged stress (SPS), an animal model of PTSD. Male rats were treated intraperitoneally (i.p.) with vehicle or varied doses of THP 30 min prior to SPS for 8 consecutive days. Daily THP (50 mg/kg) administration significantly increased the number and duration of open arm visits in the elevated plus maze (EPM) test, reduced the anxiety index, increased the risk assessment, and increased the number of head dips over the borders of the open arms after SPS. THP was also associated with increased time spent at the center of the open field, reduced grooming behaviors in the EPM test, and reduced time spent immobile in the forced swimming test (FST). It also blocked the decrease in neuropeptide Y (NPY) and the increase in corticotrophin-releasing factor (CRF) expression in the hypothalamus. This is the first study to determine that THP exerts pronounced anxiolytic-like and antidepressant effects on the development of the behavioral and biochemical symptoms associated with PTSD, indicating its prophylactic potential. Thus, THP reversed several behavioral impairments triggered by the traumatic stress of SPS and is a potential non-invasive therapeutic intervention for PTSD.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Bongjun Sur
- The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Mijung Yeom
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Insop Shim
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea ; The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea ; The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea ; The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| |
Collapse
|