1
|
Zhang Y, Wang Z, Jia C, Yu W, Li X, Xia N, Nie H, Wikana LP, Chen M, Ni Y, Han S, Pu L. Blockade of Hepatocyte PCSK9 Ameliorates Hepatic Ischemia-Reperfusion Injury by Promoting Pink1-Parkin-Mediated Mitophagy. Cell Mol Gastroenterol Hepatol 2023; 17:149-169. [PMID: 37717824 PMCID: PMC10696400 DOI: 10.1016/j.jcmgh.2023.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND & AIMS Hepatic ischemia-reperfusion injury is a significant complication of partial hepatic resection and liver transplantation, impacting the prognosis of patients undergoing liver surgery. The protein proprotein convertase subtilisin/kexin type 9 (PCSK9) is primarily synthesized by hepatocytes and has been implicated in myocardial ischemic diseases. However, the role of PCSK9 in hepatic ischemia-reperfusion injury remains unclear. This study aims to investigate the role and mechanism of PCSK9 in hepatic ischemia-reperfusion injury. METHODS We first examined the expression of PCSK9 in mouse warm ischemia-reperfusion models and AML12 cells subjected to hypoxia/reoxygenation. Subsequently, we explored the impact of PCSK9 on liver ischemia-reperfusion injury by assessing mitochondrial damage and the resulting inflammatory response. RESULTS Our findings reveal that PCSK9 is up-regulated in response to ischemia-reperfusion injury and exacerbates hepatic ischemia-reperfusion injury. Blocking PCSK9 can alleviate hepatocyte mitochondrial damage and the consequent inflammatory response mediated by ischemia-reperfusion. Mechanistically, this protective effect is dependent on mitophagy. CONCLUSIONS Inhibiting PCSK9 in hepatocytes attenuates the inflammatory responses triggered by reactive oxygen species and mitochondrial DNA by promoting PINK1-Parkin-mediated mitophagy. This, in turn, ameliorates hepatic ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yu Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Ziyi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Chenyang Jia
- Department of Hepatopancreatobiliary Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wenjie Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Xiangdong Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Nan Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Huiling Nie
- Affiliated Eye Hospital and Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Likalamu Pascalia Wikana
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Minhao Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Yong Ni
- Department of Hepatopancreatobiliary Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Sheng Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China.
| | - Liyong Pu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China.
| |
Collapse
|
2
|
Beal EW, Dumond C, Kim JL, Akateh C, Eren E, Maynard K, Sen CK, Zweier JL, Washburn K, Whitson BA, Black SM. A Small Animal Model of Ex Vivo Normothermic Liver Perfusion. J Vis Exp 2018. [PMID: 30010635 DOI: 10.3791/57541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There is a significant shortage of liver allografts available for transplantation, and in response the donor criteria have been expanded. As a result, normothermic ex vivo liver perfusion (NEVLP) has been introduced as a method to evaluate and modify organ function. NEVLP has many advantages in comparison to hypothermic and subnormothermic perfusion including reduced preservation injury, restoration of normal organ function under physiologic conditions, assessment of organ performance, and as a platform for organ repair, remodeling, and modification. Both murine and porcine NEVLP models have been described. We demonstrate a rat model of NEVLP and use this model to show one of its important applications - the use of a therapeutic molecule added to liver perfusate. Catalase is an endogenous reactive oxygen species (ROS) scavenger and has been demonstrated to decrease ischemia-reperfusion in the eye, brain, and lung. Pegylation has been shown to target catalase to the endothelium. Here, we added pegylated-catalase (PEG-CAT) to the base perfusate and demonstrated its ability to mitigate liver preservation injury. An advantage of our rodent NEVLP model is that it is inexpensive in comparison to larger animal models. A limitation of this study is that it does not currently include post-perfusion liver transplantation. Therefore, prediction of the function of the organ post-transplantation cannot be made with certainty. However, the rat liver transplant model is well established and certainly could be used in conjunction with this model. In conclusion, we have demonstrated an inexpensive, simple, easily replicable NEVLP model using rats. Applications of this model can include testing novel perfusates and perfusate additives, testing software designed for organ evaluation, and experiments designed to repair organs.
Collapse
Affiliation(s)
- Eliza W Beal
- Collaboration for Organ Perfusion, Protection, Engineering and Regeneration (COPPER) Lab, Division of Transplant, Department of Surgery, Comprehensive Transplant Center, Ohio State University Wexner Medical Center; Department of Surgery, Division of Transplant, Ohio State University Wexner Medical Center
| | - Curtis Dumond
- Collaboration for Organ Perfusion, Protection, Engineering and Regeneration (COPPER) Lab, Division of Transplant, Department of Surgery, Comprehensive Transplant Center, Ohio State University Wexner Medical Center
| | - Jung-Lye Kim
- Collaboration for Organ Perfusion, Protection, Engineering and Regeneration (COPPER) Lab, Division of Transplant, Department of Surgery, Comprehensive Transplant Center, Ohio State University Wexner Medical Center; Department of Surgery, Division of Transplant, Ohio State University Wexner Medical Center
| | - Clifford Akateh
- Collaboration for Organ Perfusion, Protection, Engineering and Regeneration (COPPER) Lab, Division of Transplant, Department of Surgery, Comprehensive Transplant Center, Ohio State University Wexner Medical Center; Department of Surgery, Division of Transplant, Ohio State University Wexner Medical Center
| | - Emre Eren
- Collaboration for Organ Perfusion, Protection, Engineering and Regeneration (COPPER) Lab, Division of Transplant, Department of Surgery, Comprehensive Transplant Center, Ohio State University Wexner Medical Center
| | - Katelyn Maynard
- Collaboration for Organ Perfusion, Protection, Engineering and Regeneration (COPPER) Lab, Division of Transplant, Department of Surgery, Comprehensive Transplant Center, Ohio State University Wexner Medical Center
| | - Chandan K Sen
- Department of Surgery, Division of CardioThoracic Surgery, Ohio State University Wexner Medical Center
| | - Jay L Zweier
- Department of Medicine, Ohio State University Wexner Medical Center
| | - Kenneth Washburn
- Department of Surgery, Division of Transplant, Ohio State University Wexner Medical Center
| | - Bryan A Whitson
- Collaboration for Organ Perfusion, Protection, Engineering and Regeneration (COPPER) Lab, Division of Transplant, Department of Surgery, Comprehensive Transplant Center, Ohio State University Wexner Medical Center; Department of Surgery, Division of CardioThoracic Surgery, Ohio State University Wexner Medical Center
| | - Sylvester M Black
- Collaboration for Organ Perfusion, Protection, Engineering and Regeneration (COPPER) Lab, Division of Transplant, Department of Surgery, Comprehensive Transplant Center, Ohio State University Wexner Medical Center; Department of Surgery, Division of Transplant, Ohio State University Wexner Medical Center;
| |
Collapse
|
3
|
Sawada T, Inoue K, Tanabe D, Kawamoto S, Tsuji T, Tashiro S. Experimental Studies on Protective Effects of FK506 Against Hepatic Ischemia-Reperfusion Injury. THE JOURNAL OF MEDICAL INVESTIGATION 2017; 63:262-9. [PMID: 27644569 DOI: 10.2152/jmi.63.262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Purposes; FK506 (strong immunosuppressive agent) was investigated experimentally whether to protect the hepatic IRI. Methods; Warm ischemic experiment using pigs and rats were performed and examined whether FK506 is effective. Results; The results obtained are as follows. 1. Warm ischemia allowed time of the pigs without FK506 was 150 minutes, but as for that of FK506 group, the extension of 30 minutes was got in 180 minutes. 2. Biliary excretion rate of BSP after reperfusion were better in the group of 180 minutes ischemia with FK506 than in without FK506 group. 3. Chemiluminescence intensity in the peripheral neutrophils and adhered and infiltrated leukocytes in the liver were suppressed markedly by FK506. 4. The vascular endothelium with the scanning electron microscope was relatively preserved in the FK506 group comparing to the placebo group on 30 minutes after reperfusion. 5. Stress gastric ulcer was controlled and myeloperoxidase activity in the gastric mucosa was suppressed by FK506. Conclusion; Based on the results of theses experiments, it was suggested that FK506 has a protective effect on IRI by suppressing: the impairment of sinusoidal endothelial cells; the activation of KCs; the disturbance of micro-circulation; oxidative stress; inflammation; and the accumulation of leukocytes. J. Med. Invest. 63: 262-269, August, 2016.
Collapse
|
4
|
Pratschke S, Arnold H, Zollner A, Heise M, Pascher A, Schemmer P, Scherer MN, Bauer A, Jauch KW, Werner J, Guba M, Angele MK. Results of the TOP Study: Prospectively Randomized Multicenter Trial of an Ex Vivo Tacrolimus Rinse Before Transplantation in EDC Livers. Transplant Direct 2016; 2:e76. [PMID: 27500266 PMCID: PMC4946517 DOI: 10.1097/txd.0000000000000588] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Organ shortage results in the transplantation of extended donor criteria (EDC) livers which is associated with increased ischemia-reperfusion injury (IRI). Experimental studies indicate that an organ rinse with the calcineurin inhibitor tacrolimus before implantation protects against IRI. The tacrolimus organ perfusion study was initiated to examine the effects of ex vivo tacrolimus perfusion on IRI in transplantation of EDC livers. METHODS A prospective randomized multicenter trial comparing ex vivo perfusion of marginal liver grafts (≥2 EDC according to Eurotransplant manual) with tacrolimus (20 ng/mL) or histidine-tryptophane-ketoglutarate solution (control) was carried out at 5 German liver transplant centers (Munich Ludwig-Maximilians University, Berlin, Heidelberg, Mainz, Regensburg) between October 2011 and July 2013. Primary endpoint was the maximum alanine transaminase (ALT) level within 48 hours after transplantation. Secondary endpoints were aspartate transaminase (AST), prothrombine ratio, and graft-patient survival within an observation period of 1 week. After an interim analysis, the study was terminated by the scientific committee after the treatment of 24 patients (tacrolimus n = 11, Control n = 13). RESULTS Tacrolimus rinse did not reduce postoperative ALT peaks compared with control (P = 0.207; tacrolimus: median, 812; range, 362-3403 vs control: median, 652; range, 147-2034). Moreover, ALT (P = 0.100), prothrombine ratio (P = 0.553), and bilirubin (P = 0.815) did not differ between the groups. AST was higher in patients treated with tacrolimus (P = 0.011). Survival was comparable in both groups (P > 0.05). CONCLUSIONS Contrary to experimental findings, tacrolimus rinse failed to improve the primary endpoint of the study (ALT). Because 1 secondary endpoint (AST) was even higher in the intervention group, the study was terminated prematurely. Thus, tacrolimus rinse cannot be recommended in transplantation of EDC livers.
Collapse
Affiliation(s)
- Sebastian Pratschke
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Hannah Arnold
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Alfred Zollner
- Münchner Studienzentrum, University Hospital Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael Heise
- Department of General, Visceral and Transplantation Surgery, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Andreas Pascher
- Department of General, Visceral and Transplantation Surgery, Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Peter Schemmer
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Ruprecht-Karls-University, Heidelberg, Germany
| | - Marcus N Scherer
- Department of Surgery, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Andreas Bauer
- Department of Anaesthesiology, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Karl-Walter Jauch
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Jens Werner
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Markus Guba
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Martin K Angele
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of the Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
5
|
Barbas AS, Goldaracena N, Dib MJ, Selzner M. Ex-vivo liver perfusion for organ preservation: Recent advances in the field. Transplant Rev (Orlando) 2016; 30:154-60. [PMID: 27158081 DOI: 10.1016/j.trre.2016.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/15/2016] [Accepted: 03/01/2016] [Indexed: 01/13/2023]
Abstract
Liver transplantation is the optimal treatment for end-stage liver disease but is limited by the severe shortage of donor organs. This shortage has prompted increased utilization of marginal grafts from DCD and extended criteria donors, which poorly tolerate cold storage in comparison to standard criteria grafts. Ex-vivo liver perfusion (EVLP) technology has emerged as a potential alternative to cold storage for organ preservation, but there is no consensus regarding the optimal temperature or conditions for EVLP. Herein, we review recent advances in both pre-clinical and clinical studies, organized by perfusion temperature (hypothermic, subnormothermic, normothermic).
Collapse
Affiliation(s)
- A S Barbas
- University of Toronto, Multi-Organ Transplant Program, Department of Surgery, Canada.
| | - N Goldaracena
- University of Toronto, Multi-Organ Transplant Program, Department of Surgery, Canada
| | - M J Dib
- University of Toronto, Multi-Organ Transplant Program, Department of Surgery, Canada
| | - M Selzner
- University of Toronto, Multi-Organ Transplant Program, Department of Surgery, Canada
| |
Collapse
|
6
|
Khorsandi SE, Heaton N, Prachalias A. The old transplant recipient that becomes a liver donor. Transpl Int 2015; 28:1111-2. [PMID: 25865110 DOI: 10.1111/tri.12587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Nigel Heaton
- Institute of Liver Studies, King's College Hospital, London, UK.
| | | |
Collapse
|
7
|
Iwai S, Sakonju I, Okano S, Teratani T, Kasahara N, Yokote S, Yokoo T, Kobayash E. Impact of ex vivo administration of mesenchymal stem cells on the function of kidney grafts from cardiac death donors in rat. Transplant Proc 2015; 46:1578-84. [PMID: 24935331 DOI: 10.1016/j.transproceed.2013.12.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/09/2013] [Accepted: 12/16/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been applied to the treatment of various diseases, and MSC administration in marginal donor grafts may help avoid the ischemia-reperfusion injury associated with solid organ transplants. Given the reports of side effects after intravenous MSC administration, local MSC administration to the target organ might be a better approach. We administered adipose tissue-derived MSCs (AT-MSCs) ex vivo to donor rat kidneys obtained after cardiac death (CD). METHODS Using male Lewis rats (8-10 weeks), and a marginal transplant model of 1hr CD plus 1hr sub-normothermic ET-Kyoto solution preservation were conducted. AT-MSCs obtained from double-reporter (luciferase-LacZ) transgenic Lewis rats were injected either systemically (1.0 × 10(6) cells/0.5 mL) to bilaterally nephrectomized recipient rats that had received a marginal kidney graft (n = 6), or locally via the renal artery (500 μL ET-Kyoto solution containing the same number of AT-MSCs) to marginal kidney grafts, which were then preserved (1 hour; 22°C) before being transplanted into bilaterally nephrectomized recipient rats (n = 8). Serum was collected to assess the therapeutic effects of AT-MSC administration, and the recipients of rats surviving to Day 14 were separately evaluated histopathologically. Follow-up was by in vivo imaging and histological LacZ staining, and tumor formation was evaluated in MSC-injected rats at 3 months. RESULTS Systemic injection of MSC did not improve recipient survival. In vivo imaging showed MSCs trapped in the lung that later became undetectable. Ex vivo injection of MSCs did show a benefit without adverse effects. At Day 14 after RTx, 75% of the rats in the AT-MSC-injected group (MSC[+]) had survived, whereas 50% of the rats in the AT-MSC-non-injected group (MSC[-]) had died. Renal function in the MSC(+) group was improved compared with that in the MSC(-) group at Day 4. LacZ staining revealed AT-MSCs attached to the renal tubules at 24 hours after RTx that later became undetectable. Histopathologic examination showed little difference in fibrosis between the groups at Day 14. No teratomas or other abnormalities were seen at 3 months.
Collapse
Affiliation(s)
- S Iwai
- Laboratory of Small Animal Surgery I, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan.
| | - I Sakonju
- Laboratory of Small Animal Surgery I, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - S Okano
- Laboratory of Small Animal Surgery II, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - T Teratani
- Division of Development of Advanced Therapy, Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - N Kasahara
- Division of Development of Advanced Therapy, Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - S Yokote
- Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - T Yokoo
- Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - E Kobayash
- Division of Development of Advanced Therapy, Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
8
|
Solhjou Z, Athar H, Xu Q, Abdi R. Emerging therapies targeting intra-organ inflammation in transplantation. Am J Transplant 2015; 15:305-11. [PMID: 25612486 DOI: 10.1111/ajt.13073] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 09/16/2014] [Accepted: 10/12/2014] [Indexed: 01/25/2023]
Abstract
Over the past several years, the field of transplantation has witnessed significant progress on several fronts; in particular, achievements have been made in devising novel immunosuppressive strategies. An under-explored area that may hold great potential to improve transplantation outcomes is the design of novel strategies to apply specifically to organs to reduce intra-graft inflammation. A growing body of evidence indicates a key role of intra-graft inflammatory cascade in potently instigating the alloimmune response. Indeed, controlling the activation of innate immunity/inflammatory responses has been shown to be a promising strategy to increase the graft acceptance and survival. In this minireview, we provide an overview of emerging targeted strategies, which can be directly applied to grafts to down-regulate intra-graft inflammation prior to transplantation.
Collapse
Affiliation(s)
- Z Solhjou
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | | | | |
Collapse
|
9
|
Bazerbachi F, Selzner N, Seal JB, Selzner M. Liver transplantation with grafts obtained after cardiac death-current advances in mastering the challenge. World J Transl Med 2014; 3:58-68. [DOI: 10.5528/wjtm.v3.i2.58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/11/2014] [Accepted: 07/17/2014] [Indexed: 02/05/2023] Open
Abstract
The scarcity of donor livers has increased the interest in donation after cardiac death (DCD) as an additional pool to expand the availability of organs. However, the initial results of liver transplantation with DCD grafts have been suboptimal due to an increased rate of complications, as well as decreased graft survival. These challenges have led to many developments in DCD donation outcome, as well as basic and translational research. In this article we review the unique characteristics of DCD donors, nuances of DCD organ procurement, the effect of prolonged warm and cold ischemia times, and discuss major studies that compared DCD to donation after brain death liver transplantation, in terms of outcomes and complications. We also review the different methods of donor treatment that has been applied to ameliorate DCD organ outcome, and we discuss the role of machine perfusion techniques in organ reconditioning. We discuss the two major perfusion models, namely, hypothermic machine perfusion and normothermic machine perfusion; we compare both methods, and delineate their major differences.
Collapse
|
10
|
Abstract
Liver transplantation is the best therapy in end-stage liver disease. Donor organ shortage and efforts to expand the donor organ pool are permanent issues given that advances in perioperative management and immunosuppressive therapy have brought the procedure into widespread clinical use. The management of organ procurement, including donor preconditioning and adequate organ storage, has a key role in transplantation. However, the organ procurement process can differ substantially between transplant centres, depending on local and national preferences. Advances in the field have come from experimental and clinical research on dynamic storage systems, such as machine perfusion devices, as an alternative to static cold storage. Determination of the clinical significance of these new systems is a topic worthy of future investigations.
Collapse
|
11
|
|