1
|
Shekar S, Satpute N, Gupta A. Review on diabetic retinopathy with deep learning methods. JOURNAL OF MEDICAL IMAGING (BELLINGHAM, WASH.) 2021; 8:060901. [PMID: 34859116 DOI: 10.1117/1.jmi.8.6.060901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/27/2021] [Indexed: 11/14/2022]
Abstract
Purpose: The purpose of our review paper is to examine many existing works of literature presenting the different methods utilized for diabetic retinopathy (DR) recognition employing deep learning (DL) and machine learning (ML) techniques, and also to address the difficulties faced in various datasets used by DR. Approach: DR is a progressive illness and may become a reason for vision loss. Early identification of DR lesions is, therefore, helpful and prevents damage to the retina. However, it is a complex job in view of the fact that it is symptomless earlier, and also ophthalmologists have been needed in traditional approaches. Recently, automated identification of DR-based studies has been stated based on image processing, ML, and DL. We analyze the recent literature and provide a comparative study that also includes the limitations of the literature and future work directions. Results: A relative analysis among the databases used, performance metrics employed, and ML and DL techniques adopted recently in DR detection based on various DR features is presented. Conclusion: Our review paper discusses the methods employed in DR detection along with the technical and clinical challenges that are encountered, which is missing in existing reviews, as well as future scopes to assist researchers in the field of retinal imaging.
Collapse
Affiliation(s)
- Shreya Shekar
- College of Engineering Pune, Department of Electronics and Telecommunication Engineering, Pune, Maharashtra, India
| | - Nitin Satpute
- Aarhus University, Department of Electrical and Computer Engineering, Aarhus, Denmark
| | - Aditya Gupta
- College of Engineering Pune, Department of Electronics and Telecommunication Engineering, Pune, Maharashtra, India
| |
Collapse
|
2
|
Owler J, Rockett P. Influence of background preprocessing on the performance of deep learning retinal vessel detection. J Med Imaging (Bellingham) 2021; 8:064001. [PMID: 34746333 PMCID: PMC8562352 DOI: 10.1117/1.jmi.8.6.064001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/18/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose: Segmentation of the vessel tree from retinal fundus images can be used to track changes in the retina and be an important first step in a diagnosis. Manual segmentation is a time-consuming process that is prone to error; effective and reliable automation can alleviate these problems but one of the difficulties is uneven image background, which may affect segmentation performance. Approach: We present a patch-based deep learning framework, based on a modified U-Net architecture, that automatically segments the retinal blood vessels from fundus images. In particular, we evaluate how various pre-processing techniques, images with either no processing, N4 bias field correction, contrast limited adaptive histogram equalization (CLAHE), or a combination of N4 and CLAHE, can compensate for uneven image background and impact final segmentation performance. Results: We achieved competitive results on three publicly available datasets as a benchmark for our comparisons of pre-processing techniques. In addition, we introduce Bayesian statistical testing, which indicates little practical difference ( Pr > 0.99 ) between pre-processing methods apart from the sensitivity metric. In terms of sensitivity and pre-processing, the combination of N4 correction and CLAHE performs better in comparison to unprocessed and N4 pre-processing ( Pr > 0.87 ); but compared to CLAHE alone, the differences are not significant ( Pr ≈ 0.38 to 0.88). Conclusions: We conclude that deep learning is an effective method for retinal vessel segmentation and that CLAHE pre-processing has the greatest positive impact on segmentation performance, with N4 correction helping only in images with extremely inhomogeneous background illumination.
Collapse
Affiliation(s)
- James Owler
- University of Sheffield, Bioengineering—Interdisciplinary Programmes Engineering, United Kingdom
| | - Peter Rockett
- University of Sheffield, Department of Electronic and Electrical Engineering, Sheffield, United Kingdom
| |
Collapse
|
3
|
Ashraf MN, Hussain M, Habib Z. Review of Various Tasks Performed in the Preprocessing Phase of a Diabetic Retinopathy Diagnosis System. Curr Med Imaging 2021; 16:397-426. [PMID: 32410541 DOI: 10.2174/1573405615666190219102427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/31/2018] [Accepted: 01/20/2019] [Indexed: 12/15/2022]
Abstract
Diabetic Retinopathy (DR) is a major cause of blindness in diabetic patients. The increasing population of diabetic patients and difficulty to diagnose it at an early stage are limiting the screening capabilities of manual diagnosis by ophthalmologists. Color fundus images are widely used to detect DR lesions due to their comfortable, cost-effective and non-invasive acquisition procedure. Computer Aided Diagnosis (CAD) of DR based on these images can assist ophthalmologists and help in saving many sight years of diabetic patients. In a CAD system, preprocessing is a crucial phase, which significantly affects its performance. Commonly used preprocessing operations are the enhancement of poor contrast, balancing the illumination imbalance due to the spherical shape of a retina, noise reduction, image resizing to support multi-resolution, color normalization, extraction of a field of view (FOV), etc. Also, the presence of blood vessels and optic discs makes the lesion detection more challenging because these two artifacts exhibit specific attributes, which are similar to those of DR lesions. Preprocessing operations can be broadly divided into three categories: 1) fixing the native defects, 2) segmentation of blood vessels, and 3) localization and segmentation of optic discs. This paper presents a review of the state-of-the-art preprocessing techniques related to three categories of operations, highlighting their significant aspects and limitations. The survey is concluded with the most effective preprocessing methods, which have been shown to improve the accuracy and efficiency of the CAD systems.
Collapse
Affiliation(s)
| | - Muhammad Hussain
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Zulfiqar Habib
- Department of Computer Science, COMSATS University Islamabad, Lahore, Pakistan
| |
Collapse
|
4
|
Çetinkaya MB, Duran H. A detailed and comparative work for retinal vessel segmentation based on the most effective heuristic approaches. ACTA ACUST UNITED AC 2021; 66:181-200. [PMID: 33768764 DOI: 10.1515/bmt-2020-0089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/28/2020] [Indexed: 11/15/2022]
Abstract
Computer based imaging and analysis techniques are frequently used for the diagnosis and treatment of retinal diseases. Although retinal images are of high resolution, the contrast of the retinal blood vessels is usually very close to the background of the retinal image. The detection of the retinal blood vessels with low contrast or with contrast close to the background of the retinal image is too difficult. Therefore, improving algorithms which can successfully distinguish retinal blood vessels from the retinal image has become an important area of research. In this work, clustering based heuristic artificial bee colony, particle swarm optimization, differential evolution, teaching learning based optimization, grey wolf optimization, firefly and harmony search algorithms were applied for accurate segmentation of retinal vessels and their performances were compared in terms of convergence speed, mean squared error, standard deviation, sensitivity, specificity. accuracy and precision. From the simulation results it is seen that the performance of the algorithms in terms of convergence speed and mean squared error is close to each other. It is observed from the statistical analyses that the algorithms show stable behavior and also the vessel and the background pixels of the retinal image can successfully be clustered by the heuristic algorithms.
Collapse
Affiliation(s)
- Mehmet Bahadır Çetinkaya
- Department of Mechatronics Engineering, Faculty of Engineering, University of Erciyes, Melikgazi, Kayseri, Turkey
| | - Hakan Duran
- Department of Mechatronics Engineering, Faculty of Engineering, University of Erciyes, Melikgazi, Kayseri, Turkey
| |
Collapse
|
5
|
Dodo BI, Li Y, Eltayef K, Liu X. Automatic Annotation of Retinal Layers in Optical Coherence Tomography Images. J Med Syst 2019; 43:336. [PMID: 31724076 PMCID: PMC6853852 DOI: 10.1007/s10916-019-1452-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/04/2019] [Indexed: 12/15/2022]
Abstract
Early diagnosis of retinal OCT images has been shown to curtail blindness and visual impairments. However, the advancement of ophthalmic imaging technologies produces an ever-growing scale of retina images, both in volume and variety, which overwhelms the ophthalmologist ability to segment these images. While many automated methods exist, speckle noise and intensity inhomogeneity negatively impacts the performance of these methods. We present a comprehensive and fully automatic method for annotation of retinal layers in OCT images comprising of fuzzy histogram hyperbolisation (FHH) and graph cut methods to segment 7 retinal layers across 8 boundaries. The FHH handles speckle noise and inhomogeneity in the preprocessing step. Then the normalised vertical image gradient, and it’s inverse to represent image intensity in calculating two adjacency matrices and then the FHH reassigns the edge-weights to make edges along retinal boundaries have a low cost, and graph cut method identifies the shortest-paths (layer boundaries). The method is evaluated on 150 B-Scan images, 50 each from the temporal, foveal and nasal regions were used in our study. Promising experimental results have been achieved with high tolerance and adaptability to contour variance and pathological inconsistency of the retinal layers in all (temporal, foveal and nasal) regions. The method also achieves high accuracy, sensitivity, and Dice score of 0.98360, 0.9692 and 0.9712, respectively in segmenting the retinal nerve fibre layer. The annotation can facilitate eye examination by providing accurate results. The integration of the vertical gradients into the graph cut framework, which captures the unique characteristics of retinal structures, is particularly useful in finding the actual minimum paths across multiple retinal layer boundaries. Prior knowledge plays an integral role in image segmentation.
Collapse
Affiliation(s)
- Bashir Isa Dodo
- Department of Computer Science, Brunel University London, Kingston Lane, Uxbridge, UB83PH, UK.
| | - Yongmin Li
- Department of Computer Science, Brunel University London, Kingston Lane, Uxbridge, UB83PH, UK
| | - Khalid Eltayef
- Department of Computer Science, Brunel University London, Kingston Lane, Uxbridge, UB83PH, UK
| | - Xiaohui Liu
- Department of Computer Science, Brunel University London, Kingston Lane, Uxbridge, UB83PH, UK
| |
Collapse
|
6
|
Hassan M, Amin M, Murtza I, Khan A, Chaudhry A. Robust Hidden Markov Model based intelligent blood vessel detection of fundus images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2017; 151:193-201. [PMID: 28947001 DOI: 10.1016/j.cmpb.2017.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/27/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
In this paper, we consider the challenging problem of detecting retinal vessel networks. Precise detection of retinal vessel networks is vital for accurate eye disease diagnosis. Most of the blood vessel tracking techniques may not properly track vessels in presence of vessels' occlusion. Owing to problem in sensor resolution or acquisition of fundus images, it is possible that some part of vessel may occlude. In this scenario, it becomes a challenging task to accurately trace these vital vessels. For this purpose, we have proposed a new robust and intelligent retinal vessel detection technique on Hidden Markov Model. The proposed model is able to successfully track vessels in the presence of occlusion. The effectiveness of the proposed technique is evaluated on publically available standard DRIVE dataset of the fundus images. The experiments show that the proposed technique not only outperforms the other state of the art methodologies of retinal blood vessels segmentation, but it is also capable of accurate occlusion handling in retinal vessel networks. The proposed technique offers better average classification accuracy, sensitivity, specificity, and area under the curve (AUC) of 95.7%, 81.0%, 97.0%, and 90.0% respectively, which shows the usefulness of the proposed technique.
Collapse
Affiliation(s)
- Mehdi Hassan
- Department of Computer Science, Air University, Sector, E-9, PAF Complex, Islamabad, Pakistan.
| | - Muhammad Amin
- Department of Computer Science, Air University, Sector, E-9, PAF Complex, Islamabad, Pakistan
| | - Iqbal Murtza
- Pattern Recognition Lab, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore 45650, Islamabad, Pakistan
| | - Asifullah Khan
- Pattern Recognition Lab, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore 45650, Islamabad, Pakistan
| | | |
Collapse
|
7
|
Barkana BD, Saricicek I, Yildirim B. Performance analysis of descriptive statistical features in retinal vessel segmentation via fuzzy logic, ANN, SVM, and classifier fusion. Knowl Based Syst 2017. [DOI: 10.1016/j.knosys.2016.11.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Serag A, Wilkinson AG, Telford EJ, Pataky R, Sparrow SA, Anblagan D, Macnaught G, Semple SI, Boardman JP. SEGMA: An Automatic SEGMentation Approach for Human Brain MRI Using Sliding Window and Random Forests. Front Neuroinform 2017; 11:2. [PMID: 28163680 PMCID: PMC5247463 DOI: 10.3389/fninf.2017.00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/05/2017] [Indexed: 11/29/2022] Open
Abstract
Quantitative volumes from brain magnetic resonance imaging (MRI) acquired across the life course may be useful for investigating long term effects of risk and resilience factors for brain development and healthy aging, and for understanding early life determinants of adult brain structure. Therefore, there is an increasing need for automated segmentation tools that can be applied to images acquired at different life stages. We developed an automatic segmentation method for human brain MRI, where a sliding window approach and a multi-class random forest classifier were applied to high-dimensional feature vectors for accurate segmentation. The method performed well on brain MRI data acquired from 179 individuals, analyzed in three age groups: newborns (38–42 weeks gestational age), children and adolescents (4–17 years) and adults (35–71 years). As the method can learn from partially labeled datasets, it can be used to segment large-scale datasets efficiently. It could also be applied to different populations and imaging modalities across the life course.
Collapse
Affiliation(s)
- Ahmed Serag
- MRC Centre for Reproductive Health, University of Edinburgh Edinburgh, UK
| | | | - Emma J Telford
- MRC Centre for Reproductive Health, University of Edinburgh Edinburgh, UK
| | - Rozalia Pataky
- MRC Centre for Reproductive Health, University of Edinburgh Edinburgh, UK
| | - Sarah A Sparrow
- MRC Centre for Reproductive Health, University of Edinburgh Edinburgh, UK
| | - Devasuda Anblagan
- MRC Centre for Reproductive Health, University of EdinburghEdinburgh, UK; Centre for Clinical Brain Sciences, University of EdinburghEdinburgh, UK
| | - Gillian Macnaught
- Clinical Research Imaging Centre, University of Edinburgh Edinburgh, UK
| | - Scott I Semple
- Clinical Research Imaging Centre, University of EdinburghEdinburgh, UK; Centre for Cardiovascular Science, University of EdinburghEdinburgh, UK
| | - James P Boardman
- MRC Centre for Reproductive Health, University of EdinburghEdinburgh, UK; Centre for Clinical Brain Sciences, University of EdinburghEdinburgh, UK
| |
Collapse
|
9
|
Vostatek P, Claridge E, Uusitalo H, Hauta-Kasari M, Fält P, Lensu L. Performance comparison of publicly available retinal blood vessel segmentation methods. Comput Med Imaging Graph 2017; 55:2-12. [DOI: 10.1016/j.compmedimag.2016.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
|