1
|
Sehic E, de Miguel Gómez L, Rabe H, Thorén E, Gudmundsdottir I, Oltean M, Akouri R, Brännström M, Hellström M. Transplantation of a bioengineered tissue patch promotes uterine repair in the sheep. Biomater Sci 2024; 12:2136-2148. [PMID: 38482883 DOI: 10.1039/d3bm01912h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Innovative bioengineering strategies utilizing extracellular matrix (ECM) based scaffolds derived from decellularized tissue offer new prospects for restoring damaged uterine tissue. Despite successful fertility restoration in small animal models, the translation to larger and more clinically relevant models have not yet been assessed. Thus, our study investigated the feasibility to use a 6 cm2 graft constructed from decellularized sheep uterine tissue, mimicking a future application to repair a uterine defect in women. Some grafts were also recellularized with fetal sheep bone marrow-derived mesenchymal stem cells (SF-MSCs). The animals were followed for six weeks post-surgery during which blood samples were collected to assess the systemic immune cell activation by fluorescence-activated cell sorting (FACS) analysis. Tissue regeneration was assessed by histology, immunohistochemistry, and gene expression analyses. There was a large intra-group variance which prompted us to implement a novel scoring system to comprehensively evaluate the regenerative outcomes. Based on the regenerative score each graft received, we focused our analysis to map potential differences that may have played a role in the success or failure of tissue repair following the transplantation therapy. Notably, three out of 15 grafts exhibited major regeneration that resembled native uterine tissue, and an additional three grafts showed substantial regenerative outcomes. For the better regenerated grafts, it was observed that the systemic T-cell subgroups were significantly different compared with the failing grafts. Hence, our data suggest that the T-cell response play an important role for determining the uterus tissue regeneration outcomes. The remarkable regeneration seen in the best-performing grafts after just six weeks following transplantation provides compelling evidence that decellularized tissue for uterine bioengineering holds great promise for clinically relevant applications.
Collapse
Affiliation(s)
- Edina Sehic
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
| | - Lucía de Miguel Gómez
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
| | - Hardis Rabe
- Unit of Biological Function, Division Materials and Production, RISE - Research Institutes of Sweden, Box 857, SE-50115 Borås, Sweden
- Institute of Biomedicine, Department of Infectious diseases, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
| | - Emy Thorén
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
| | - Ingigerdur Gudmundsdottir
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
| | - Mihai Oltean
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Surgery, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-413 45, Sweden
| | - Randa Akouri
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
- Stockholm IVF-EUGIN, Hammarby allé 93, 120 63 Stockholm, Sweden
| | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
- Unit of Biological Function, Division Materials and Production, RISE - Research Institutes of Sweden, Box 857, SE-50115 Borås, Sweden
| |
Collapse
|
2
|
Jamwal S, Jena MK, Tyagi N, Kancharla S, Kolli P, Mandadapu G, Kumar S, Mohanty AK. Proteomic Approaches to Unravel the Molecular Dynamics of Early Pregnancy in Farm Animals: An In-Depth Review. J Dev Biol 2023; 12:2. [PMID: 38248867 PMCID: PMC10801625 DOI: 10.3390/jdb12010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Infertility is a major problem in farm animals, which has a negative economic effect on farm industries. Infertility can be defined as the inability of animals to achieve a successful pregnancy. Early pregnancy is crucial to establish a successful pregnancy, and it is reported that 70-80% and 20-30% of total embryonic loss occur in cattle and pigs, respectively, during the first month of pregnancy. The advanced high-throughput proteomics techniques provide valuable tools for in-depth understanding of the implantation process in farm animals. In the present review, our goal was to compile, assess, and integrate the latest proteomic research on farm animals, specifically focused on female reproduction, which involves endometrial tissues, uterine fluids, oviductal fluids, and microRNAs. The series of studies has provided in-depth insights into the events of the implantation process by unfolding the molecular landscape of the uterine tract. The discussed data are related to pregnant vs. non-pregnant animals, pregnancy vs. oestrous cycle, different days of the early pregnancy phase, and animals with uterine infections affecting reproduction health. Some of the studies have utilized non-invasive methods and in vitro models to decipher the molecular events of embryo-maternal interaction. The proteomics data are valuable sources for discovering biomarkers for infertility in ruminants and new regulatory pathways governing embryo-uterine interaction, endometrium receptivity, and embryonic development. Here, we envisage that the identified protein signatures can serve as potential therapeutic targets and biomarkers to develop new therapeutics against pregnancy diseases.
Collapse
Affiliation(s)
- Shradha Jamwal
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India; (S.J.); (N.T.); (S.K.)
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Nikunj Tyagi
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India; (S.J.); (N.T.); (S.K.)
| | - Sudhakar Kancharla
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Prachetha Kolli
- Microgen Health Inc., 14225 Sullyfield Cir Suite E, Chantilly, VA 20151, USA;
| | - Gowtham Mandadapu
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Sudarshan Kumar
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India; (S.J.); (N.T.); (S.K.)
| | - Ashok Kumar Mohanty
- ICAR–Central Institute for Research on Cattle, Meerut Cantt 250001, Uttar Pradesh, India
| |
Collapse
|
3
|
Yang Q, Liu J, Wang Y, Zhao W, Wang W, Cui J, Yang J, Yue Y, Zhang S, Chu M, Lyu Q, Ma L, Tang Y, Hu Y, Miao K, Zhao H, Tian J, An L. A proteomic atlas of ligand-receptor interactions at the ovine maternal-fetal interface reveals the role of histone lactylation in uterine remodeling. J Biol Chem 2021; 298:101456. [PMID: 34861240 PMCID: PMC8733267 DOI: 10.1016/j.jbc.2021.101456] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023] Open
Abstract
Well-orchestrated maternal–fetal cross talk occurs via secreted ligands, interacting receptors, and coupled intracellular pathways between the conceptus and endometrium and is essential for successful embryo implantation. However, previous studies mostly focus on either the conceptus or the endometrium in isolation. The lack of integrated analysis impedes our understanding of early maternal–fetal cross talk. Herein, focusing on ligand–receptor complexes and coupled pathways at the maternal–fetal interface in sheep, we provide the first comprehensive proteomic map of ligand–receptor pathway cascades essential for embryo implantation. We demonstrate that these cascades are associated with cell adhesion and invasion, redox homeostasis, and the immune response. Candidate interactions and their physiological roles were further validated by functional experiments. We reveal the physical interaction of albumin and claudin 4 and their roles in facilitating embryo attachment to endometrium. We also demonstrate a novel function of enhanced conceptus glycolysis in remodeling uterine receptivity by inducing endometrial histone lactylation, a newly identified histone modification. Results from in vitro and in vivo models supported the essential role of lactate in inducing endometrial H3K18 lactylation and in regulating redox homeostasis and apoptotic balance to ensure successful implantation. By reconstructing a map of potential ligand–receptor pathway cascades at the maternal–fetal interface, our study presents new concepts for understanding molecular and cellular mechanisms that fine-tune conceptus–endometrium cross talk during implantation. This provides more direct and accurate insights for developing potential clinical intervention strategies to improve pregnancy outcomes following both natural and assisted conception.
Collapse
Affiliation(s)
- Qianying Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Juan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yue Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenjing Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian Cui
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiajun Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuan Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Meiqiang Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qingji Lyu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lizhu Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yawen Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yupei Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kai Miao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haichao Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianhui Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
4
|
Yang Q, Fu W, Wang Y, Miao K, Zhao H, Wang R, Guo M, Wang Z, Tian J, An L. The proteome of IVF-induced aberrant embryo-maternal crosstalk by implantation stage in ewes. J Anim Sci Biotechnol 2020; 11:7. [PMID: 31956410 PMCID: PMC6958772 DOI: 10.1186/s40104-019-0405-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/26/2019] [Indexed: 01/17/2023] Open
Abstract
Background Implantation failure limits the success of in vitro fertilization and embryo transfer (IVF-ET). Well-organized embryo-maternal crosstalk is essential for successful implantation. Previous studies mainly focused on the aberrant development of in vitro fertilized (IVF) embryos. In contrast, the mechanism of IVF-induced aberrant embryo-maternal crosstalk is not well defined. Results In the present study, using ewes as the model, we profiled the proteome that features aberrant IVF embryo-maternal crosstalk following IVF-ET. By comparing in vivo (IVO) and IVF conceptuses, as well as matched endometrial caruncular (C) and intercaruncular (IC) areas, we filtered out 207, 295, and 403 differentially expressed proteins (DEPs) in each comparison. Proteome functional analysis showed that the IVF conceptuses were characterized by the increased abundance of energy metabolism and proliferation-related proteins, and the decreased abundance of methyl metabolism-related proteins. In addition, IVF endometrial C areas showed the decreased abundance of endometrial remodeling and redox homeostasis-related proteins; while IC areas displayed the aberrant abundance of protein homeostasis and extracellular matrix (ECM) interaction-related proteins. Based on these observations, we propose a model depicting the disrupted embryo-maternal crosstalk following IVF-ET: Aberrant energy metabolism and redox homeostasis of IVF embryos, might lead to an aberrant endometrial response to conceptus-derived pregnancy signals, thus impairing maternal receptivity. In turn, the suboptimal uterine environment might stimulate a compensation effect of the IVF conceptuses, which was revealed as enhanced energy metabolism and over-proliferation. Conclusion Systematic proteomic profiling provides insights to understand the mechanisms that underlie the aberrant IVF embryo-maternal crosstalk. This might be helpful to develop practical strategies to prevent implantation failure following IVF-ET.
Collapse
Affiliation(s)
- Qianying Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Wei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yue Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Kai Miao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Haichao Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Rui Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Min Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zhilong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jianhui Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Lei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
5
|
Piras C, Guo Y, Soggiu A, Chanrot M, Greco V, Urbani A, Charpigny G, Bonizzi L, Roncada P, Humblot P. Changes in protein expression profiles in bovine endometrial epithelial cells exposed to E. coli LPS challenge. MOLECULAR BIOSYSTEMS 2017; 13:392-405. [PMID: 28070584 DOI: 10.1039/c6mb00723f] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
E. coli is one of the most frequently involved bacteria in uterine diseases. Lipopolysaccharide (LPS) is a component of the outer membrane of Gram-negative bacteria involved in pathogenic processes leading to post-partum metritis and endometritis in cattle. It also causes inflammation of the endometrium. The increase of cell proliferation by LPS is part of the inflammatory process. The aim of this study was to investigate possible changes in protein expression in relation to the proliferative response of bEECs after challenge with E. coli-LPS. In vitro culture of bEECs was performed from cow genital tracts collected at a slaughterhouse. In passage 5, bEECs from each of 9 cows (3 series of 3 cows) were exposed to 0, 8, and 16 μg ml-1 LPS for 72 h. At time 0 and 72 h later, attached cells/living cells were counted and for each time and LPS dosage, cells were frozen for proteomic analyses. All samples from the 3 series were analyzed by 2-D gel electrophoresis coupled to MALDI-TOF/TOF mass spectrometry. The samples from the first series were subjected to shotgun nLC-MS/MS analysis. From the whole differential proteomics analysis, 38 proteins were differentially expressed (p < 0.05 to p < 0.001) following exposure to LPS. Among them, twenty-eight were found to be up-regulated in the LPS groups in comparison to control groups and ten were down-regulated. Differentially expressed proteins were associated with cell proliferation and apoptosis, transcription, destabilization of cell structure, oxidative stress, regulation of histones, allergy and general cell metabolism pathways. The de-regulations induced by LPS were consistent with the proliferative phenotype and indicated strong alterations of several cell functions. In addition, some of the differentially expressed proteins relates to pathways activated at the time of implantation. The specific changes induced through those signals may have negative consequences for the establishment of pregnancy.
Collapse
Affiliation(s)
- Cristian Piras
- Dipartimento di Medicina Veterinaria, Università degli studi di Milano, Milano, Italy
| | - Yongzhi Guo
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, Sweden
| | - Alessio Soggiu
- Dipartimento di Medicina Veterinaria, Università degli studi di Milano, Milano, Italy
| | - Metasu Chanrot
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, Sweden and Rajamangala University of Srivijaya (RMUTSV), Thungyai, Thailand
| | - Viviana Greco
- Proteomics and Metabonomics Unit Fondazione Santa Lucia - IRCCS, Rome, Italy
| | - Andrea Urbani
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica, Roma, Italy
| | - Gilles Charpigny
- INRA, Biologie du Développement et Reproduction, 78350, Jouy en Josas, France
| | - Luigi Bonizzi
- Dipartimento di Medicina Veterinaria, Università degli studi di Milano, Milano, Italy
| | - Paola Roncada
- Dipartimento di Medicina Veterinaria, Università degli studi di Milano, Milano, Italy and Istituto Sperimentale Italiano L. Spallanzani, Milano and TechnologieS srl, via Celoria 10, 20133 Milano, Italy.
| | - Patrice Humblot
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, Sweden
| |
Collapse
|
6
|
Correia-Álvarez E, Gómez E, Martín D, Carrocera S, Pérez S, Otero J, Peynot N, Giraud-Delville C, Caamaño JN, Sandra O, Duranthon V, Muñoz M. Expression and localization of interleukin 1 beta and interleukin 1 receptor (type I) in the bovine endometrium and embryo. J Reprod Immunol 2015; 110:1-13. [PMID: 25955718 DOI: 10.1016/j.jri.2015.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 03/06/2015] [Accepted: 03/24/2015] [Indexed: 12/31/2022]
Abstract
The interleukin-1 (IL1) system likely mediates mammalian embryo-maternal communication. In cattle, we have reported that the uterine fluid of heifers carrying early embryos shows downregulated IL1 beta (IL1B), which could lead to reduced NFkB expression and dampening of maternal innate immune responses. In this work, we assessed the expression of IL 1 beta (IL1B) and its receptor, interleukin 1 receptor type I (IL1R1) in the bovine endometrium and embryos by RT-PCR, immunohistochemistry and Western blot at the time of blastocyst development. Day 8 endometrium, both collected from animals after transfer of day 5 embryos (ET) and sham transferred (ST), showed IL1B and IL1R1 mRNA transcription and protein co-localization. Similarly, day 8 blastocyst, from ET animals and entirely produced in vitro, showed IL1R1 mRNA transcription and IL1B and IL1R1 protein co-localization. IL1B mRNA was detected in the analyzed blastocysts, but at very low levels that precluded its quantification. IL1B and IL1R1 immunostaining was observed in luminal epithelial cells, glandular epithelium and stromal cells. The presence of embryos increased endometrial IL1B protein locally, while no differences regarding IL1R1 protein and IL1B and IL1R1 mRNA were detected. These results suggest that the early preimplantation bovine embryo in the maternal tract might interact with the maternal immune system through the IL1 system. Such a mechanism may allow the embryo to elicit local endometrial responses at early stages, which are required for the development of a receptive endometrium.
Collapse
Affiliation(s)
- Eva Correia-Álvarez
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, La Olla-Deva, 33394, Gijón, Asturias, Spain
| | - Enrique Gómez
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, La Olla-Deva, 33394, Gijón, Asturias, Spain
| | - David Martín
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, La Olla-Deva, 33394, Gijón, Asturias, Spain
| | - Susana Carrocera
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, La Olla-Deva, 33394, Gijón, Asturias, Spain
| | - Silvia Pérez
- Unidad de Coordinación de Trasplantes y Terapia Celular, Hospital Universitario Central de Asturias, Carretera de Rubín s/n, 33011 Oviedo, Spain
| | - Jesús Otero
- Unidad de Coordinación de Trasplantes y Terapia Celular, Hospital Universitario Central de Asturias, Carretera de Rubín s/n, 33011 Oviedo, Spain
| | - Nathalie Peynot
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | | | - José Néstor Caamaño
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, La Olla-Deva, 33394, Gijón, Asturias, Spain
| | - Olivier Sandra
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - Véronique Duranthon
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - Marta Muñoz
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, La Olla-Deva, 33394, Gijón, Asturias, Spain.
| |
Collapse
|
7
|
Fazeli A, Moein Vaziri N, Holt WV. Proteomics of the periconception milieu. Proteomics 2015; 15:649-55. [PMID: 25404351 DOI: 10.1002/pmic.201400362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/09/2014] [Accepted: 11/13/2014] [Indexed: 01/11/2023]
Abstract
There is increasing realisation that human health status in adulthood depends critically upon environmental conditions pertaining around the time of conception and during pregnancy. Poor maternal diet or adverse environmental conditions around the periconception period somehow induces the resultant embryo to adapt predictively in order to survive this level of stress for the whole of its life. However, if there is a mismatch between expectation and reality, where the conditions during later life are better than expected, things go wrong and the adult suffers a range of illnesses, including diabetes, heart disease, hypertension and stroke. Understanding the molecular signals that direct the early embryo to adopt appropriate adaptations to suit its future life would be extremely valuable. However, although it appears to be an ideal task for proteomic applications, there are technical, ethical and practical limitations to what can be achieved with the current framework of proteomic technology. Here, we review what has been achieved to date, explain some of the experimental problems and suggest some strategies for taking this field forward.
Collapse
Affiliation(s)
- Alireza Fazeli
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|