1
|
Fumagalli G, Monza L, Cavaletti G, Rigolio R, Meregalli C. Neuroinflammatory Process Involved in Different Preclinical Models of Chemotherapy-Induced Peripheral Neuropathy. Front Immunol 2021; 11:626687. [PMID: 33613570 PMCID: PMC7890072 DOI: 10.3389/fimmu.2020.626687] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Peripheral neuropathies are characterized by nerves damage and axonal loss, and they could be classified in hereditary or acquired forms. Acquired peripheral neuropathies are associated with several causes, including toxic agent exposure, among which the antineoplastic compounds are responsible for the so called Chemotherapy-Induced Peripheral Neuropathy (CIPN). Several clinical features are related to the use of anticancer drugs which exert their action by affecting different mechanisms and structures of the peripheral nervous system: the axons (axonopathy) or the dorsal root ganglia (DRG) neurons cell body (neuronopathy/ganglionopathy). In addition, antineoplastic treatments may affect the blood brain barrier integrity, leading to cognitive impairment that may be severe and long-lasting. CIPN may affect patient quality of life leading to modification or discontinuation of the anticancer therapy. Although the mechanisms of the damage are not completely understood, several hypotheses have been proposed, among which neuroinflammation is now emerging to be relevant in CIPN pathophysiology. In this review, we consider different aspects of neuro-immune interactions in several CIPN preclinical studies which suggest a critical connection between chemotherapeutic agents and neurotoxicity. The features of the neuroinflammatory processes may be different depending on the type of drug (platinum derivatives, taxanes, vinca alkaloids and proteasome inhibitors). In particular, recent studies have demonstrated an involvement of the immune response (both innate and adaptive) and the stimulation and secretion of mediators (cytokines and chemokines) that may be responsible for the painful symptoms, whereas glial cells such as satellite and Schwann cells might contribute to the maintenance of the neuroinflammatory process in DRG and axons respectively. Moreover, neuroinflammatory components have also been shown in the spinal cord with microglia and astrocytes playing an important role in CIPN development. Taking together, better understanding of these aspects would permit the development of possible strategies in order to improve the management of CIPN.
Collapse
Affiliation(s)
- Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Roberta Rigolio
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,NeuroMI (Milan Center for Neuroscience), University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
2
|
Pancheri E, Guglielmi V, Wilczynski GM, Malatesta M, Tonin P, Tomelleri G, Nowis D, Vattemi G. Non-Hematologic Toxicity of Bortezomib in Multiple Myeloma: The Neuromuscular and Cardiovascular Adverse Effects. Cancers (Basel) 2020; 12:cancers12092540. [PMID: 32906684 PMCID: PMC7563977 DOI: 10.3390/cancers12092540] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) is a still uncurable tumor of mainly elderly patients originating from the terminally differentiated B cells. Introduction to the treatment of MM patients of a new class of drugs called proteasome inhibitors (bortezomib followed by carfilzomib and ixazomib) significantly improved disease control. Proteasome inhibitors interfere with the major mechanism of protein degradation in a cell leading to the severe imbalance in the protein turnover that is deadly to MM cells. Currently, these drugs are the mainstream of MM therapy but are also associated with an increased rate of the injuries to multiple organs and tissues. In this review, we summarize the current knowledge on the molecular mechanisms of the first-in-class proteasome inhibitor bortezomib-induced disturbances in the function of peripheral nerves and cardiac and skeletal muscle. Abstract The overall approach to the treatment of multiple myeloma (MM) has undergone several changes during the past decade. and proteasome inhibitors (PIs) including bortezomib, carfilzomib, and ixazomib have considerably improved the outcomes in affected patients. The first-in-class selective PI bortezomib has been initially approved for the refractory forms of the disease but has now become, in combination with other drugs, the backbone of the frontline therapy for newly diagnosed MM patients, as well as in the maintenance therapy and relapsed/refractory setting. Despite being among the most widely used and highly effective agents for MM, bortezomib can induce adverse events that potentially lead to early discontinuation of the therapy with negative effects on the quality of life and outcome of the patients. Although peripheral neuropathy and myelosuppression have been recognized as the most relevant bortezomib-related adverse effects, cardiac and skeletal muscle toxicities are relatively common in MM treated patients, but they have received much less attention. Here we review the neuromuscular and cardiovascular side effects of bortezomib. focusing on the molecular mechanisms underlying its toxicity. We also discuss our preliminary data on the effects of bortezomib on skeletal muscle tissue in mice receiving the drug.
Collapse
Affiliation(s)
- Elia Pancheri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Valeria Guglielmi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Grzegorz M. Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology Warsaw, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anatomy and Histology, University of Verona, 37134 Verona, Italy;
| | - Paola Tonin
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Giuliano Tomelleri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, 02-093 Warsaw, Poland;
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-093 Warsaw, Poland
| | - Gaetano Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
- Correspondence:
| |
Collapse
|
3
|
Velasco R, Alberti P, Bruna J, Psimaras D, Argyriou AA. Bortezomib and other proteosome inhibitors-induced peripheral neurotoxicity: From pathogenesis to treatment. J Peripher Nerv Syst 2020; 24 Suppl 2:S52-S62. [PMID: 31647153 DOI: 10.1111/jns.12338] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Proteasome inhibitors (PIs), especially bortezomib (BTZ), have come to the forefront over the last years because of their unprecedented efficacy mainly against multiple myeloma (MM). Unfortunately, peripheral neuropathy (PN) secondary to treatment of MM with PIs has emerged as a clinically relevant complication, which negatively impacts the quality of life of MM survivors. Bortezomib-induced peripheral neuropathy (BIPN) is a dose-limiting toxicity, which develops in 30% to 60% of patients during treatment. Typically, BIPN is a length-dependent sensory axonopathy characterized by numbness, tingling, and severe neuropathic pain in stocking and glove distribution. BIPN mechanisms have not yet been fully elucidated. Experimental studies suggest that aggresome formation, endoplasmic reticulum stress, myotoxicity, microtubule stabilization, inflammatory response, and DNA damage could contribute to this neurotoxicity. A new generation of structurally distinct PIs has been developed, being increasingly used in clinical settings. Carfilzomib exhibits a much lower neurotoxicity profile, with a significantly lower incidence of PN compared to BTZ. Pre-existing PN increases the risk of developing BIPN. Besides, BIPN is related to dose, schedule and mode of administration and modifications of these factors have lowered the incidence of PN. However, to date there is no cure for PIs-induced PN (PIIPN), and a careful neurological monitoring and dose adjustment is a key strategy for preserving quality of life. This review critically looks at the pathogenesis, incidence, risk factors, both clinical and pharmacogenetics, clinical phenotype and management of PIIPN. We also make recommendations for further elucidating the whole clinical spectrum of PIIPN.
Collapse
Affiliation(s)
- Roser Velasco
- Unit of Neuro-Oncology, Hospital Universitari de Bellvitge-Institut Català D'Oncologia L'Hospitalet, IDIBELL, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Paola Alberti
- NeuroMI (Milan Center for Neuroscience), Milan, Italy.,School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Jordi Bruna
- Unit of Neuro-Oncology, Hospital Universitari de Bellvitge-Institut Català D'Oncologia L'Hospitalet, IDIBELL, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Dimitri Psimaras
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie Mazarin, Paris, France.,Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,OncoNeuroTox Group, Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpetrière-Charles Foix et Hôpital Percy, Paris, France
| | - Andreas A Argyriou
- Department of Neurology, "Saint Andrew's" State General Hospital of Patras, Patras, Greece
| |
Collapse
|
4
|
Gendreau S, Berzero G, Tafani C, Raynouard I, Ricard D, Malfuson JV, Viala K, Debs R, Houillier C, Diamanti L, Marchioni E, Lenglet T, Ouzegdouh M, Bihan K, Gilardin L, Psimaras D. Demyelinating polyradiculoneuritis in patients with multiple myeloma: the other side of bortezomib-induced neurotoxicity. Acta Oncol 2020; 59:484-489. [PMID: 32122210 DOI: 10.1080/0284186x.2020.1723163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Segolene Gendreau
- Département de Médecine Interne et d’Immunologie Clinique, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - Giulia Berzero
- Service de Neurologie 2-Mazarin, AP-HP, Groupe Hospitalier Pitié-Salpetrière, Paris, France
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
- Neuroncology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Camille Tafani
- Service de neurologie, Hôpital d’Instruction des Armées Percy, Service de Santé des Armées, Clamart, France
- OncoNeuroTox Group, Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpetrière-Charles Foix et Hôpital Percy, Paris, France
| | - Igor Raynouard
- Service de Neurologie 2-Mazarin, AP-HP, Groupe Hospitalier Pitié-Salpetrière, Paris, France
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Damien Ricard
- Service de neurologie, Hôpital d’Instruction des Armées Percy, Service de Santé des Armées, Clamart, France
- OncoNeuroTox Group, Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpetrière-Charles Foix et Hôpital Percy, Paris, France
- Ecole du Val-de-Grâce, Service de Santé des Armées, F-75005, Paris, France
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-94235, Cachan, France
- Université de Paris, CNRS, Centre Borelli, F-75005 Paris, France
| | - Jean-Valère Malfuson
- Ecole du Val-de-Grâce, Service de Santé des Armées, F-75005, Paris, France
- Service d’Hématologie, Service de Santé des Armées, Hôpital d’Instruction des Armées Percy, Clamart, France
| | - Karine Viala
- Department of Clinical Neurophysiology, APHP, Pitié-Salpêtrière Hospital, Paris
| | - Rabab Debs
- Department of Clinical Neurophysiology, APHP, Pitié-Salpêtrière Hospital, Paris
| | - Caroline Houillier
- Service de Neurologie 2-Mazarin, AP-HP, Groupe Hospitalier Pitié-Salpetrière, Paris, France
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
- Service d’Hématologie, Institut Curie, Site Saint Cloud, France
| | - Luca Diamanti
- Neuroncology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Timothée Lenglet
- Department of Clinical Neurophysiology, APHP, Pitié-Salpêtrière Hospital, Paris
| | - Maya Ouzegdouh
- Département d’Hématologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Kevin Bihan
- Regional Pharmacovigilance Center, Department of Pharmacology, Pitié-Salpêtrière Hospital, Paris, France
| | - Laurent Gilardin
- Département de Médecine Interne et d’Immunologie Clinique, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - Dimitri Psimaras
- Service de Neurologie 2-Mazarin, AP-HP, Groupe Hospitalier Pitié-Salpetrière, Paris, France
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
- OncoNeuroTox Group, Center for Patients with Neurological Complications of Oncologic Treatments, Hôpitaux Universitaires Pitié-Salpetrière-Charles Foix et Hôpital Percy, Paris, France
| |
Collapse
|
5
|
Kumar SK, Laubach JP, Giove TJ, Quick M, Neuwirth R, Yung G, Rajkumar SV, Richardson PG. Impact of concomitant dexamethasone dosing schedule on bortezomib-induced peripheral neuropathy in multiple myeloma. Br J Haematol 2017; 178:756-763. [PMID: 28591409 DOI: 10.1111/bjh.14754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/29/2017] [Indexed: 11/27/2022]
Abstract
Peripheral neuropathy (PN) is the most troublesome adverse event associated with the proteasome inhibitor bortezomib. Studies suggest an inflammatory aetiology for bortezomib-induced PN (BiPN) and it has been hypothesized that reducing inflammation with concomitant dexamethasone may reduce BiPN incidence and/or severity. We retrospectively analysed PN rates from 32 studies (2697 patients with previously untreated multiple myeloma) incorporating bortezomib and differing dexamethasone schedules: partnered dosing (days of and after bortezomib), weekly dosing, and other dosing schedules (e.g. days 1-4, 8-11). Pooled overall PN rates were 45·5%, 63·9%, and 47·5%, respectively, with 5·3%, 11·0%, and 9·6% grade ≥3. Adjusting for potential confounders (age, gender, presence of thalidomide, bortezomib treatment duration), PN rates in patients on partnered dosing schedules appeared lower than in patients on weekly or other dosing schedules. Analyses conducted using patient-level data suggest that cumulative dexamethasone dose, a potential confounding factor, is unlikely to have influenced the analyses. Findings were similar in a separate pooled analysis excluding data from regimens incorporating thalidomide, when pooled overall PN rates were 50·1%, 63·9%, and 48·3%, respectively, with 4·2%, 11·0%, and 8·6% grade ≥3. These findings suggest that partnered dexamethasone dosing may result in less severe BiPN compared with alternative dexamethasone dosing schedules.
Collapse
Affiliation(s)
- Shaji K Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Maureen Quick
- Millennium Pharmaceuticals, Inc., Cambridge, MA, USA
| | | | - Godwin Yung
- Millennium Pharmaceuticals, Inc., Cambridge, MA, USA
| | | | | |
Collapse
|
6
|
Kaplan GS, Torcun CC, Grune T, Ozer NK, Karademir B. Proteasome inhibitors in cancer therapy: Treatment regimen and peripheral neuropathy as a side effect. Free Radic Biol Med 2017; 103:1-13. [PMID: 27940347 DOI: 10.1016/j.freeradbiomed.2016.12.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/22/2016] [Accepted: 12/04/2016] [Indexed: 01/10/2023]
Abstract
Proteasomal system plays an important role in protein turnover, which is essential for homeostasis of cells. Besides degradation of oxidized proteins, it is involved in the regulation of many different signaling pathways. These pathways include mainly cell differentiation, proliferation, apoptosis, transcriptional activation and angiogenesis. Thus, proteasomal system is a crucial target for treatment of several diseases including neurodegenerative diseases, cystic fibrosis, atherosclerosis, autoimmune diseases, diabetes and cancer. Over the last fifteen years, proteasome inhibitors have been tested to highlight their mechanisms of action and used in the clinic to treat different types of cancer. Proteasome inhibitors are mainly used in combinational therapy along with classical chemo-radiotherapy. Several studies have proved their significant effects but serious side effects such as peripheral neuropathy, limits their use in required effective doses. Recent studies focus on peripheral neuropathy as the primary side effect of proteasome inhibitors. Therefore, it is important to delineate the underlying mechanisms of peripheral neuropathy and develop new inhibitors according to obtained data. This review will detail the role of proteasome inhibition in cancer therapy and development of peripheral neuropathy as a side effect. Additionally, new approaches to prevent treatment-limiting side effects will be discussed in order to help researchers in developing effective strategies to overcome side effects of proteasome inhibitors.
Collapse
Affiliation(s)
- Gulce Sari Kaplan
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Ceyda Corek Torcun
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Tilman Grune
- Department for Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Nesrin Kartal Ozer
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
7
|
Alé A, Bruna J, Navarro X, Udina E. Neurotoxicity induced by antineoplastic proteasome inhibitors. Neurotoxicology 2014; 43:28-35. [DOI: 10.1016/j.neuro.2014.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/03/2014] [Accepted: 02/03/2014] [Indexed: 12/22/2022]
|
8
|
Measuring symptoms as a critical component of drug development and evaluation in hematological diseases. ACTA ACUST UNITED AC 2013; 3:1127-1138. [PMID: 24910769 DOI: 10.4155/cli.13.108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
With the rapid development of new therapies for patients with hematological malignancies, there is an increasing need for patient report of symptom status during all phases of drug testing. The patient's perspective on new treatments reflects treatment tolerability as well as symptom benefit, and may assist patients and clinicians in choosing treatments. Inclusion of patient-reported outcomes, more common in solid-tumor than hematological trials, provides early information about symptoms to guide decisions about appropriate dosing and supportive care needs. We provide a historical overview of the use of patient-reported outcomes and symptom assessment in solid-tumor and hematological drug development, and offer recommendations about methodological issues in the monitoring of symptoms in the drug development process in hematological clinical trials.
Collapse
|
9
|
Carozzi VA, Renn CL, Bardini M, Fazio G, Chiorazzi A, Meregalli C, Oggioni N, Shanks K, Quartu M, Serra MP, Sala B, Cavaletti G, Dorsey SG. Bortezomib-induced painful peripheral neuropathy: an electrophysiological, behavioral, morphological and mechanistic study in the mouse. PLoS One 2013; 8:e72995. [PMID: 24069168 PMCID: PMC3772181 DOI: 10.1371/journal.pone.0072995] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/23/2013] [Indexed: 11/18/2022] Open
Abstract
Bortezomib is the first proteasome inhibitor with significant antineoplastic activity for the treatment of relapsed/refractory multiple myeloma as well as other hematological and solid neoplasms. Peripheral neurological complications manifesting with paresthesias, burning sensations, dysesthesias, numbness, sensory loss, reduced proprioception and vibratory sensitivity are among the major limiting side effects associated with bortezomib therapy. Although bortezomib-induced painful peripheral neuropathy is clinically easy to diagnose and reliable models are available, its pathophysiology remains partly unclear. In this study we used well-characterized immune-competent and immune-compromised mouse models of bortezomib-induced painful peripheral neuropathy. To characterize the drug-induced pathological changes in the peripheral nervous system, we examined the involvement of spinal cord neuronal function in the development of neuropathic pain and investigated the relevance of the immune response in painful peripheral neuropathy induced by bortezomib. We found that bortezomib treatment induced morphological changes in the spinal cord, dorsal roots, dorsal root ganglia (DRG) and peripheral nerves. Neurophysiological abnormalities and specific functional alterations in Aδ and C fibers were also observed in peripheral nerve fibers. Mice developed mechanical allodynia and functional abnormalities of wide dynamic range neurons in the dorsal horn of spinal cord. Bortezomib induced increased expression of the neuronal stress marker activating transcription factor-3 in most DRG. Moreover, the immunodeficient animals treated with bortezomib developed a painful peripheral neuropathy with the same features observed in the immunocompetent mice. In conclusion, this study extends the knowledge of the sites of damage induced in the nervous system by bortezomib administration. Moreover, a selective functional vulnerability of peripheral nerve fiber subpopulations was found as well as a change in the electrical activity of wide dynamic range neurons of dorsal horn of spinal cord. Finally, the immune response is not a key factor in the development of morphological and functional damage induced by bortezomib in the peripheral nervous system.
Collapse
Affiliation(s)
- Valentina A. Carozzi
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
- * E-mail: (VAC)
| | - Cynthia L. Renn
- School of Nursing, Center for Pain Studies, University of Maryland, Baltimore, Maryland, United States of America
| | - Michela Bardini
- “M. Tettamanti” Research Center, Department of Health Sciences, University of Milan Bicocca, Monza, Italy
| | - Grazia Fazio
- “M. Tettamanti” Research Center, Department of Health Sciences, University of Milan Bicocca, Monza, Italy
| | - Alessia Chiorazzi
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
| | - Cristina Meregalli
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
| | - Norberto Oggioni
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
| | - Kathleen Shanks
- School of Nursing, Center for Pain Studies, University of Maryland, Baltimore, Maryland, United States of America
| | - Marina Quartu
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Monserrato, Italy
| | - Maria Pina Serra
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Monserrato, Italy
| | - Barbara Sala
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
| | - Guido Cavaletti
- Department of Surgery and Translational Medicine, University of Milan Bicocca, Monza, Italy
| | - Susan G. Dorsey
- School of Nursing, Center for Pain Studies, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|