1
|
Ge P, Yang M, Bouchard JL, Dzamko N, Lewis SJG, Halliday GM, Doran TM. Chemoselective Bioconjugation of Amyloidogenic Protein Antigens to PEGylated Microspheres Enables Detection of α-Synuclein Autoantibodies in Human Plasma. Bioconjug Chem 2022; 33:301-310. [PMID: 35020392 DOI: 10.1021/acs.bioconjchem.1c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The misfolding and subsequent aggregation of amyloidogenic proteins is a classic pathological hallmark of neurodegenerative diseases. Aggregates of the α-synuclein protein (αS) are implicated in Parkinson's disease (PD) pathogenesis, and naturally occurring autoantibodies to these aggregates are proposed to be potential early-stage biomarkers to facilitate the diagnosis of PD. However, upon misfolding, αS forms a multitude of quaternary structures of varying functions that are unstable ex vivo. Thus, when used as a capture agent in enzyme-linked immunosorbent assays (ELISAs), significant variance among laboratories has prevented the development of these valuable diagnostic tests. We reasoned that those conflicting results arise due to the high nonspecific binding and amyloid nucleation that are typical of ELISA platforms. In this work, we describe a multiplexed, easy-to-operate immunoassay that is generally applicable to quantify the levels of amyloid proteins and their binding partners, named Oxaziridine-Assisted Solid-phase Immunosorbent (OASIS) assay. The assay is built on a hydrophilic poly(ethylene glycol) scaffold that inhibits aggregate nucleation, which we show reduces assay variance when compared to similar ELISA measurements. To validate our OASIS assay in patient-derived samples, we measured the levels of naturally occurring antibodies against the αS monomer and oligomers in a cohort of donor plasma from patients diagnosed with PD. Using OASIS assays, we observed significantly higher titers of immunoglobulin G antibody recognizing αS oligomers in PD patients compared to those in healthy controls, while there was no significant difference in naturally occurring antibodies against the αS monomer. In addition to its development into a blood test to potentially predict or monitor PD, we anticipate that the OASIS assay will be of high utility for studies aimed at understanding protein misfolding, its pathology and symptomology in PD, and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Peng Ge
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mu Yang
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jacob L Bouchard
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nicolas Dzamko
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Simon J G Lewis
- Parkinson's Disease Research Clinic, Brain and Mind Centre, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Glenda M Halliday
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Todd M Doran
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Saliva, an easily accessible fluid as diagnostic tool and potent stem cell source for Alzheimer's Disease: Present and future applications. Brain Res 2019; 1727:146535. [PMID: 31669827 DOI: 10.1016/j.brainres.2019.146535] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/16/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a progressive and multifactorial disease. Many scientific advances have advanced our understanding of the pathogenesis of AD. However, the clinical diagnosis of AD remains difficult, with only post-mortem assays confirming its definitive diagnosis. There is a crucial need for an early and accurate detection of AD related symptoms. To date, current diagnosis techniques are costly or invasive. Finding a peripheral biomarker that could provide a sensitive, reproducible, and accurate detection prior to the onset of the AD clinical symptoms will allow identification of "at risk" individuals, thereby facilitating early initiation of treatments that may prove more effective. Salivary glands contain stem cells, which are affected by aging, suggesting that tissue samples from these glands may reveal a stem cell biomarker of AD, but also stem cells may be harvested from these glands, with proper timing and isolation technique, for cell-based regenerative medicine. Alternatively, instead of the salivary glands, saliva may represent an attractive source for biomarkers due to minimal discomfort to the patient, non-invasive collection, and the possibility of cost-effective screening large populations, encouraging greater compliance in clinical trials and frequent testing. In addition, salivary glands contain stem cells, which are likely also present in the saliva, making these cells as potentially sensitive cellular biomarker of and a therapeutic agent for AD. The aim of this review is to critically analyze the use of saliva for the identification of circulating biological markers to help the diagnosis of early cognitive impairment associated with AD and to generate insights into the potential application of stem cells derived from salivary glands or saliva as therapeutics (i.e., stem cell transplantation) for the disease.
Collapse
|
3
|
A β-sheet-targeted theranostic agent for diagnosing and preventing aggregation of pathogenic peptides in Alzheimer’s disease. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9594-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Lomakin YA, Stepanov AV, Balabashin DS, Ponomarenko NA, Smirnov IV, Belogurov AA. Design of Chemical Conjugate for Targeted Therapy of Multiple Sclerosis Based of Constant Fragment of Human Antibody Heavy Chain and Peptoid Analog of Autoantigen MOG 35-55. Bull Exp Biol Med 2017; 162:777-780. [PMID: 28429225 DOI: 10.1007/s10517-017-3711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Indexed: 10/19/2022]
Abstract
Elimination of B cells producing autoantibodies to neuroantigens is considered as beneficial in the treatment of multiple sclerosis. Myelin oligodendrocyte glycoprotein (MOG) is a significant autoantigen in multiple sclerosis. It was shown that MOG-like peptoid AMogP3 can bind autoantibodies produced by pathological lymphocytes. We propose a structure of an innovative drug for targeted elimination of the pool of autoreactive B cells responsible for multiple sclerosis pathogenesis; this compound is a complex of peptoid AMogP3 with Fc fragment of human immunoglobulin. The obtained Fc-PEG-AMogP3 conjugate effectively interact with autoreactive antibodies, which attests to their high therapeutic potential.
Collapse
Affiliation(s)
- Y A Lomakin
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Moscow, Russia
| | - A V Stepanov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Moscow, Russia
| | - D S Balabashin
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Moscow, Russia
| | - N A Ponomarenko
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Moscow, Russia
| | - I V Smirnov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Moscow, Russia
| | - A A Belogurov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
5
|
SNP Variation in MicroRNA Biogenesis Pathway Genes as a New Innovation Strategy for Alzheimer Disease Diagnostics. Alzheimer Dis Assoc Disord 2016; 30:203-9. [DOI: 10.1097/wad.0000000000000135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
6
|
Wu J, Li L. Autoantibodies in Alzheimer's disease: potential biomarkers, pathogenic roles, and therapeutic implications. J Biomed Res 2016; 30:361-372. [PMID: 27476881 PMCID: PMC5044708 DOI: 10.7555/jbr.30.20150131] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/26/2015] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a prevalent and debilitating neurodegenerative disorder in the elderly. The etiology of AD has not been fully defined and currently there is no cure for this devastating disease. Compelling evidence suggests that the immune system plays a critical role in the pathophysiology of AD. Autoantibodies against a variety of molecules have been associated with AD. The roles of these autoantibodies in AD, however, are not well understood. This review attempts to summarize recent findings on these autoantibodies and explore their potential as diagnostic/ prognostic biomarkers for AD, their roles in the pathogenesis of AD, and their implications in the development of effective immunotherapies for AD.
Collapse
Affiliation(s)
- Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
7
|
Várady G, Szabó E, Fehér Á, Németh A, Zámbó B, Pákáski M, Janka Z, Sarkadi B. Alterations of membrane protein expression in red blood cells of Alzheimer's disease patients. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2015; 1:334-8. [PMID: 27239515 PMCID: PMC4878320 DOI: 10.1016/j.dadm.2015.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Preventive measures, prognosis, or selected therapy in multifactorial maladies, including Alzheimer's disease (AD), require the application of a wide range of diagnostic assays. There is a large unmet need for relatively simple, blood-based biomarkers in this regard. We have recently developed a rapid and reliable flow cytometry and antibody-based method for the quantitative measurement of various red blood cell (RBC) membrane proteins from a drop of blood. Here, we document that the RBC expression of certain membrane proteins, especially that of the GLUT1 transporter and the insulin receptor (INSR), is significantly higher in AD patients than in age-matched healthy subjects. The observed differences may reflect long-term metabolic alterations relevant in the development of AD. These findings may pave the way for a diagnostic application of RBC membrane proteins as relatively stable and easily accessible personalized biomarkers in AD.
Collapse
Affiliation(s)
- György Várady
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Edit Szabó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ágnes Fehér
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Adrienn Németh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Boglárka Zámbó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Magdolna Pákáski
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltán Janka
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Balázs Sarkadi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; MTA-SE Molecular Biophysics Research Group, Semmelweis University, Department of Biophysics and Radiation Biology, Budapest, Hungary
| |
Collapse
|
8
|
François M, Leifert W, Martins R, Thomas P, Fenech M. Biomarkers of Alzheimer's disease risk in peripheral tissues; focus on buccal cells. Curr Alzheimer Res 2015; 11:519-31. [PMID: 24938500 PMCID: PMC4166904 DOI: 10.2174/1567205011666140618103827] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/26/2014] [Accepted: 06/16/2014] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is a progressive degenerative disorder of the brain and is the most common form of dementia. To-date no simple, inexpensive and minimally invasive procedure is available to confirm with certainty the early diagnosis of AD prior to the manifestations of symptoms characteristic of the disease. Therefore, if population screening of individuals is to be performed, more suitable, easily accessible tissues would need to be used for a diagnostic test that would identify those who exhibit cellular pathology indicative of mild cognitive impairment (MCI) and AD risk so that they can be prioritized for primary prevention. This need for minimally invasive tests could be achieved by targeting surrogate tissues, since it is now well recognized that AD is not only a disorder restricted to pathology and biomarkers within the brain. Human buccal cells for instance are accessible in a minimally invasive manner, and exhibit cytological and nuclear morphologies that may be indicative of accelerated ageing or neurodegenerative disorders such as AD. However, to our knowledge there is no review available in the literature covering the biology of buccal cells and their applications in AD biomarker research. Therefore, the aim of this review is to summarize some of the main findings of biomarkers reported for AD in peripheral tissues, with a further focus on the rationale for the use of the buccal mucosa (BM) for biomarkers of AD and the evidence to date of changes exhibited in buccal cells with AD.
Collapse
Affiliation(s)
| | | | | | | | - Michael Fenech
- CSIRO Animal, Food and Health Sciences, Gate 13, Kintore Ave, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|