1
|
Dou Y, Zhang Y, Liu Y, Sun X, Liu X, Li B, Yang Q. Role of macrophage in intervertebral disc degeneration. Bone Res 2025; 13:15. [PMID: 39848963 PMCID: PMC11758090 DOI: 10.1038/s41413-024-00397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Intervertebral disc degeneration is a degenerative disease where inflammation and immune responses play significant roles. Macrophages, as key immune cells, critically regulate inflammation through polarization into different phenotypes. In recent years, the role of macrophages in inflammation-related degenerative diseases, such as intervertebral disc degeneration, has been increasingly recognized. Macrophages construct the inflammatory microenvironment of the intervertebral disc and are involved in regulating intervertebral disc cell activities, extracellular matrix metabolism, intervertebral disc vascularization, and innervation, profoundly influencing the progression of disc degeneration. To gain a deeper understanding of the inflammatory microenvironment of intervertebral disc degeneration, this review will summarize the role of macrophages in the pathological process of intervertebral disc degeneration, analyze the regulatory mechanisms involving macrophages, and review therapeutic strategies targeting macrophage modulation for the treatment of intervertebral disc degeneration. These insights will be valuable for the treatment and research directions of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Yiming Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, 300070, China
| | - Yang Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Xinyu Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Bin Li
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215007, China.
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
2
|
Wei Z, Ye H, Li Y, Li X, Liu Y, Chen Y, Yu J, Wang J, Ye X. Mechanically tough, adhesive, self-healing hydrogel promotes annulus fibrosus repair via autologous cell recruitment and microenvironment regulation. Acta Biomater 2024; 178:50-67. [PMID: 38382832 DOI: 10.1016/j.actbio.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Annulus fibrosus (AF) defect is an important cause of disc re-herniation after discectomy. The self-regeneration ability of the AF is limited, and AF repair is always hindered by the inflammatory microenvironment after injury. Hydrogels represent one of the most promising materials for AF tissue engineering strategies. However, currently available commercial hydrogels cannot withstand the harsh mechanical load within intervertebral disc. In the present study, an innovative triple cross-linked oxidized hyaluronic acid (OHA)-dopamine (DA)- polyacrylamide (PAM) composite hydrogel, modified with collagen mimetic peptide (CMP) and supplied with transforming growth factor beta 1 (TGF-β1) (OHA-DA-PAM/CMP/TGF-β1 hydrogel) was developed for AF regeneration. The hydrogel exhibited robust mechanical strength, strong bioadhesion, and significant self-healing capabilities. Modified with collagen mimetic peptide, the hydrogel exhibited extracellular-matrix-mimicking properties and sustained the AF cell phenotype. The sustained release of TGF-β1 from the hydrogel was pivotal in recruiting AF cells and promoting extracellular matrix production. Furthermore, the composite hydrogel attenuated LPS-induced inflammatory response and promote ECM synthesis in AF cells via suppressing NFκB/NLRP3 pathway. In vivo, the composite hydrogel successfully sealed AF defects and alleviated intervertebral disk degeneration in a rat tail AF defect model. Histological evaluation showed that the hydrogel integrated well with host tissue and facilitated AF repair. The strategy of recruiting endogenous cells and providing an extracellular-matrix-mimicking and anti-inflammatory microenvironment using the mechanically tough composite OHA-DA-PAM/CMP/TGF-β1 hydrogel may be applicable for AF defect repair in the clinic. STATEMENT OF SIGNIFICANCE: Annulus fibrosus (AF) repair is challenging due to its limited self-regenerative capacity and post-injury inflammation. In this study, a mechanically tough and highly bioadhesive triple cross-linked composite hydrogel, modified with collagen mimetic peptide (CMP) and supplemented with transforming growth factor beta 1 (TGF-β1), was developed to facilitate AF regeneration. The sustained release of TGF-β1 enhanced AF cell recruitment, while both TGF-β1 and CMP could modulate the microenvironment to promote AF cell proliferation and ECM synthesis. In vivo, this composite hydrogel effectively promoted the AF repair and mitigated the intervertebral disc degeneration. This research indicates the clinical potential of the OHA-DA-PAM/CMP/TGF-β1 composite hydrogel for repairing AF defects.
Collapse
Affiliation(s)
- Zhenyuan Wei
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Han Ye
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, China
| | - Yucai Li
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Xiaoxiao Li
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yi Liu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yujie Chen
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jiangming Yu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Jielin Wang
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Xiaojian Ye
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| |
Collapse
|
3
|
Aydemir E, Yılmaz NZ, Bayrak ÖF, Sahin F. Investigating the Effects of Chordoma Cell-Derived Exosomes on the Tumorigenicity of Nucleus Pulposus Cells. J Neurol Surg B Skull Base 2024; 85:161-167. [PMID: 38449582 PMCID: PMC10914466 DOI: 10.1055/a-2018-4627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Objective Interaction of tumor cells with the surrounding environment is essential for tumor growth and progression that eventually leads to metastasis. Growing evidence shows that extracellular vesicles also known as exosomes play a crucial role in signaling between the tumor and its microenvironment. Tumor-derived exosomes have generally protumorigenic effects such as metastasis, hypoxia, angiogenesis, and epithelial-mesenchymal transition. Methods In this study, exosomes were isolated from a chordoma cell line, MUG-Chor1, and characterized subsequently. The number of exosomes was determined and introduced into the healthy nucleus pulposus (NP) cells for 140 days. The protumorigenic effects of a chordoma cell line-derived exosomes that initiate the tumorigenesis on NP cells were investigated. The impact of tumor-derived exosomes on various cellular events including cell cycle, migration, proliferation, apoptosis, and viability has been studied by treating NP cells with chordoma cell-line-derived exosomes cells. Results Upon treatment with exosomes, the NP cells not only gained a chordoma-like morphology but also molecular characteristics such as alterations in the levels of certain gene expressions. The migratory and angiogenic capabilities of NP cells increased after treatment with chordoma-derived exosomes. Conclusion Based on our findings, we can conclude that exosomes carry information from tumor cells and may exert tumorigenic effects on nontumorous cells.
Collapse
Affiliation(s)
- Esra Aydemir
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Biruni University, Istanbul, Türkiye
| | - Nur Zübeyda Yılmaz
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Ömer Faruk Bayrak
- Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul, Türkiye
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| |
Collapse
|
4
|
Xiang H, Zhao W, Jiang K, He J, Chen L, Cui W, Li Y. Progress in regulating inflammatory biomaterials for intervertebral disc regeneration. Bioact Mater 2024; 33:506-531. [PMID: 38162512 PMCID: PMC10755503 DOI: 10.1016/j.bioactmat.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/04/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is rising worldwide and leading to significant health issues and financial strain for patients. Traditional treatments for IVDD can alleviate pain but do not reverse disease progression, and surgical removal of the damaged disc may be required for advanced disease. The inflammatory microenvironment is a key driver in the development of disc degeneration. Suitable anti-inflammatory substances are critical for controlling inflammation in IVDD. Several treatment options, including glucocorticoids, non-steroidal anti-inflammatory drugs, and biotherapy, are being studied for their potential to reduce inflammation. However, anti-inflammatories often have a short half-life when applied directly and are quickly excreted, thus limiting their therapeutic effects. Biomaterial-based platforms are being explored as anti-inflammation therapeutic strategies for IVDD treatment. This review introduces the pathophysiology of IVDD and discusses anti-inflammatory therapeutics and the components of these unique biomaterial platforms as comprehensive treatment systems. We discuss the strengths, shortcomings, and development prospects for various biomaterials platforms used to modulate the inflammatory microenvironment, thus providing guidance for future breakthroughs in IVDD treatment.
Collapse
Affiliation(s)
- Honglin Xiang
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Weikang Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, PR China
| | - Ke Jiang
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Jiangtao He
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Lu Chen
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yuling Li
- Department of Orthopaedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China
| |
Collapse
|
5
|
Yurube T, Takeoka Y, Kanda Y, Ryosuke K, Kakutani K. Intervertebral disc cell fate during aging and degeneration: apoptosis, senescence, and autophagy. NORTH AMERICAN SPINE SOCIETY JOURNAL (NASSJ) 2023; 14:100210. [PMID: 37090223 PMCID: PMC10113901 DOI: 10.1016/j.xnsj.2023.100210] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Background Degenerative disc disease, a major cause of low back pain and associated neurological symptoms, is a global health problem with the high morbidity, workforce loss, and socioeconomic burden. The present surgical strategy of disc resection and/or spinal fusion results in the functional loss of load, shock absorption, and movement; therefore, the development of new biological therapies is demanded. This achievement requires the understanding of intervertebral disc cell fate during aging and degeneration. Methods Literature review was performed to clarify the current concepts and future perspectives of disc cell fate, focused on apoptosis, senescence, and autophagy. Results The intervertebral disc has a complex structure with the nucleus pulposus (NP), annulus fibrosus (AF), and cartilage endplates. While the AF arises from the mesenchyme, the NP originates from the notochord. Human disc NP notochordal phenotype disappears in adolescence, accompanied with cell death induction and chondrocyte proliferation. Discs morphologically and biochemically degenerate from early childhood as well, thereby suggesting a possible involvement of cell fate including age-related phenotypic changes in the disease process. As the disc is the largest avascular organ in the body, nutrient deprivation is a suspected contributor to degeneration. During aging and degeneration, disc cells undergo senescence, irreversible growth arrest, producing proinflammatory cytokines and matrix-degradative enzymes. Excessive stress ultimately leads to programmed cell death including apoptosis, necroptosis, pyroptosis, and ferroptosis. Autophagy, the intracellular degradation and recycling system, plays a role in maintaining cell homeostasis. While the incidence of apoptosis and senescence increases with age and degeneration severity, autophagy can be activated earlier, in response to limited nutrition and inflammation, but impaired in aged, degenerated discs. The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) is a signal integrator to determine disc cell fate. Conclusions Cell fate and microenvironmental regulation by modulating PI3K/Akt/mTOR signaling is a potential biological treatment for degenerative disc disease.
Collapse
|
6
|
Identification of SMIM1 and SEZ6L2 as Potential Biomarkers for Genes Associated with Intervertebral Disc Degeneration in Pyroptosis. DISEASE MARKERS 2022; 2022:9515571. [PMID: 35578687 PMCID: PMC9107366 DOI: 10.1155/2022/9515571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022]
Abstract
Background. Inflammatory reactions and pyroptosis play an important role in the pathology of intervertebral disc degeneration (IDD). The aim of the present study was to investigate pyroptosis in the nucleus pulposus cells (NPCs) of inflammatory induced IDD by bioinformatic methods and to search for possible diagnostic biomarkers. Methods. Gene expression profiles related to IDD were downloaded from the GEO database to identify differentially expressed genes (DEGs) between inflammation-induced IDD and non-inflammatory intervention samples. Pyroptosis genes were then searched for, and their expression in IDD was analyzed. Weighted gene co-expression network analysis (WGCNA) was then used to search for modules of IDD genes associated with pyroptosis and intersected with DEGs to discover candidate genes that would be diagnostically valuable. A LASSO model was developed to screen for genes that met the requirements, and ROC curves were created to clarify the diagnostic value of the genetic markers. Ultimately, the screened genes were further validated, and their diagnostic value assessed by selecting gene sets from the GEO database. RT-PCR was used to assess the mRNA expression of diagnostic markers in the nucleus pulposus (NP). Pan-cancer analysis was applied to demonstrate the expression and prognostic value of the screened genes in various tumors. Results. A total of 733 DEGs were identified in GSE41883 and GSE27494, which were mainly enriched in transmembrane receptor protein serine/threonine, kinase signaling pathway, response to lipopolysaccharide, and other biological processes, and they were mainly related to TGF beta signaling pathway, toll-like receptor signaling pathway, and TNF signaling pathway. A total of 81 genes related to pyroptosis were identified in the literature, and eight genes related to IDD were identified in the Veen diagram, namely, IL1A, IL1B, NOD2, GBP1, IL6, AK1, EEF2K, and PYCARD. Eleven candidate genes were obtained after locating the intersection of pyroptosis-related module genes and DEGs according to WGCNA analysis. A total of six valid genes were obtained after constructing a machine learning model, and five key genes were finally identified after correlation analysis. GSE23132 and GSE56081 validated the candidate genes, and the final IDD-related diagnostic markers were obtained as SMIM1 and SEZ6L2. RT-PCR results indicated that the mRNA expression of both was significantly elevated in IDD. The pan-cancer analysis demonstrated that SMIM1 and SEZ6L2 have important roles in the expression and prognosis of various tumors. Conclusion. In conclusion, this research identifies SMIM1 and SEZ6L2 as important biomarkers of IDD associated with pyroptosis, which will help to unravel the development and pathogenesis of IDD and determine potential therapeutic targets.
Collapse
|
7
|
Wu T, Li X, Jia X, Zhu Z, Lu J, Feng H, Shen B, Guo K, Li Y, Wang Q, Gao Z, Yu B, Ba Z, Huang Y, Wu D. Krüppel like factor 10 prevents intervertebral disc degeneration via TGF-β signaling pathway both in vitro and in vivo. J Orthop Translat 2021; 29:19-29. [PMID: 34094855 PMCID: PMC8141503 DOI: 10.1016/j.jot.2021.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 01/07/2023] Open
Abstract
Background Krüppel like factor 10 (KLF10), which is also known as TGF-β Inducible Early Gene-1 (TIEG1), plays a crucial role in regulating cell proliferation, cell apoptosis and inflammatory reaction in human carcinoma cells. Moreover, KLF10 knockout in mice leads to severe defects associated with muscle, skeleton and heart etc. However, the function of KLF10 in intervertebral disc degeneration (IVDD) has not been reported yet. Methods The relationship between KLF10 and IVDD were investigated in nucleus pulposus (NP) tissues from human and rats. The role of KLF10 in NP cells was explored via loss or gain of function experiments. IVDD rat models were constructed through needle puncture and the effects of KLF10 in IVDD model of rats were investigated via intradiscal injection of KLF10. Results We first found that KLF10 was lowly expressed in degenerative NP tissues and the level of KLF10 showed negative correlation with the disc grades of IVDD patients. Loss or gain of function experiments demonstrated that KLF10 could inhibit apoptosis and enhance migration and proliferation of IL-1β induced NP cells. And KLF10 overexpression reduced extracellular matrix (ECM) degeneration and enhanced ECM synthesis, whereas knockdown of KLF10 resulted in adverse effects. These positive effects of KLF10 could be reversed by the inhibition of TGF-β signaling pathway. In vivo, KLF10 overexpression alleviated IVDD. Conclusions This is the first study to reveal that KLF10 was dysregulated in IVDD and overexpressed KLF10 could alleviate IVDD by regulating TGF-β signaling pathway both in vitro and in vivo, which were involved in prohibiting apoptosis, promoting proliferation and migration of NP cells.The translational potential of this article: Overexpression of KLF10 might be an effective therapeutic strategy in the treatment of IVDD.
Collapse
Affiliation(s)
- Tongde Wu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xinhua Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xuebing Jia
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ziqi Zhu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jiawei Lu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hang Feng
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450003, Henan, China
| | - Beiduo Shen
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Kai Guo
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yuzhi Li
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qiang Wang
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhiqiang Gao
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Bin Yu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhaoyu Ba
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yufeng Huang
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| |
Collapse
|
8
|
Wu ZL, Xie QQ, Liu TC, Yang X, Zhang GZ, Zhang HH. Role of the Wnt pathway in the formation, development, and degeneration of intervertebral discs. Pathol Res Pract 2021; 220:153366. [PMID: 33647863 DOI: 10.1016/j.prp.2021.153366] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
Intervertebral disc degeneration (IVDD) is an age-related degenerative disease that is the main cause of low back pain. It seriously affects the quality of life of patients and places a heavy economic burden on families and society. The Wnt pathway plays an important role in the growth, development, and degeneration of intervertebral discs (IVDs). In the embryonic stage, the Wnt pathway participates in the growth and development of IVD by promoting the transformation of progenitor cells into notochord cells and the extension of the notochord. However, the activation of the Wnt pathway after birth promotes IVD cell senescence, apoptosis, and degradation of the extracellular matrix and induces the production of inflammatory factors, thereby accelerating the IVDD process. This article reviews the relationship between the Wnt pathway and IVD, emphasizing its influence on IVD growth, development, and degeneration. Targeting this pathway may become an effective strategy for the treatment of IVDD.
Collapse
Affiliation(s)
- Zuo-Long Wu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China
| | - Qi-Qi Xie
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China
| | - Tai-Cong Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China
| | - Xing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China
| | - Guang-Zhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China
| | - Hai-Hong Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China; Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, China; Key Laboratory of Orthopaedics Disease of Gansu Province, Lanzhou, Gansu 730000, China.
| |
Collapse
|
9
|
Lei M, Wang K, Li S, Zhao K, Hua W, Wu X, Yang C. The c-Jun signaling pathway has a protective effect on nucleus pulposus cells in patients with intervertebral disc degeneration. Exp Ther Med 2020; 20:123. [PMID: 33005249 PMCID: PMC7523272 DOI: 10.3892/etm.2020.9251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022] Open
Abstract
Among a range of diverse clinical symptoms, intervertebral disc degeneration (IDD) contributes mostly to the onset of lower back pain. The present study aimed to investigate the effects of c-Jun on nucleus pulposus (NP) cells of IDD and its regulation on molecular mechanisms. Intervertebral disc (IVD) tissues were collected from patients suffering from IDD disease, and NP cells were subsequently isolated and cultured. By overexpressing c-Jun in NP cells, expression levels of mRNAs and proteins of IDD-related genes and inflammatory cytokines were subjected to reverse transcription-quantitative PCR, western blot and ELISA assays. Additional transforming growth factor-β (TGF-β) antibodies were administrated to suppress the function of TGF-β. Cell proliferation and apoptosis were determined via Cell Counting Kit-8 and TUNEL assays, respectively. The results demonstrated that the overexpression of c-Jun robustly upregulated both mRNA and protein expression of TGF-β, TIMP metallopeptidase inhibitor 3, aggrecan and collagen type II alpha 1 chain and simultaneously downregulated the expression of the inflammatory cytokines TNF-α, interleukin (IL)-1β, IL-6 and IL-17. Furthermore, following c-Jun overexpression, survival rates of NP cells were increased while apoptosis rates were decreased. However, the addition of a TGF-β antibody significantly promoted apoptosis and restricted cell survival, which differed from the results of the c-Jun overexpression group. The present study hypothesized therefore that c-Jun may positively regulate TGF-β expression within NP cells of IDD, which could promote the proliferation of IDD-NP cells and accelerate cell viability via reducing apoptosis and the inflammatory response.
Collapse
Affiliation(s)
- Ming Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Kangcheng Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
10
|
Xue W, Zhao Y, Xiao Z, Wu X, Ma D, Han J, Li X, Xue X, Yang Y, Fang Y, Fan C, Liu S, Xu B, Han S, Chen B, Zhang H, Fan Y, Liu W, Dong Q, Dai J. Epidermal growth factor receptor-extracellular-regulated kinase blockade upregulates TRIM32 signaling cascade and promotes neurogenesis after spinal cord injury. Stem Cells 2019; 38:118-133. [PMID: 31621984 DOI: 10.1002/stem.3097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 12/22/2022]
Abstract
Nerve regeneration is blocked after spinal cord injury (SCI) by a complex myelin-associated inhibitory (MAI) microenvironment in the lesion site; however, the underlying mechanisms are not fully understood. During the process of neural stem cell (NSC) differentiation, pathway inhibitors were added to quantitatively assess the effects on neuronal differentiation. Immunoprecipitation and lentivirus-induced overexpression were used to examine effects in vitro. In vivo, animal experiments and lineage tracing methods were used to identify nascent neurogenesis after SCI. In vitro results indicated that myelin inhibited neuronal differentiation by activating the epidermal growth factor receptor (EGFR)-extracellular-regulated kinase (ERK) signaling cascade. Subsequently, we found that tripartite motif (TRIM) 32, a neuronal fate-determining factor, was inhibited. Moreover, inhibition of EGFR-ERK promoted TRIM32 expression and enhanced neuronal differentiation in the presence of myelin. We further demonstrated that ERK interacts with TRIM32 to regulate neuronal differentiation. In vivo results indicated that EGFR-ERK blockade increased TRIM32 expression and promoted neurogenesis in the injured area, thus enhancing functional recovery after SCI. Our results showed that EGFR-ERK blockade antagonized MAI of neuronal differentiation of NSCs through regulation of TRIM32 by ERK. Collectively, these findings may provide potential new targets for SCI repair.
Collapse
Affiliation(s)
- Weiwei Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xianming Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Dezun Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jin Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xing Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaoyu Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ying Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yongxiang Fang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agricultural Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Caixia Fan
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Sumei Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Bai Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Sufang Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Haipeng Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yongheng Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Weiyuan Liu
- University of the Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qun Dong
- Pathology Department, Taikang Xianlin Drum Tower Hospital, Nanjing, People's Republic of China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China
| |
Collapse
|
11
|
Chen S, Liu S, Ma K, Zhao L, Lin H, Shao Z. TGF-β signaling in intervertebral disc health and disease. Osteoarthritis Cartilage 2019; 27:1109-1117. [PMID: 31132405 DOI: 10.1016/j.joca.2019.05.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This paper aims to provide a comprehensive review of the changing role of transforming growth factor-β (TGF-β) signaling in intervertebral disc (IVD) health and disease. METHODS A comprehensive literature search was performed using PubMed terms 'TGF-β' and 'IVD'. RESULTS TGF-β signaling is necessary for the development and growth of IVD, and can play a protective role in the restoration of IVD tissues by stimulating matrix synthesis, inhibiting matrix catabolism, inflammatory response and cell loss. However, excessive activation of TGF-β signaling is detrimental to the IVD, and inhibition of the aberrant TGF-β signaling can delay IVD degeneration. CONCLUSIONS Activation of TGF-β signaling has a promising treatment prospect for IVD degeneration, while excessive activation of TGF-β signaling may contribute to the progression of IVD degeneration. Studies aimed at elucidating the changing role of TGF-β signaling in IVD at different pathophysiological stages and its specific molecular mechanisms are needed, and these studies will contribute to safe and effective TGF-β signaling-based treatments for IVD degeneration.
Collapse
Affiliation(s)
- S Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - S Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - K Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - L Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - H Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Z Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
12
|
Chen J, Xie JJ, Jin MY, Gu YT, Wu CC, Guo WJ, Yan YZ, Zhang ZJ, Wang JL, Zhang XL, Lin Y, Sun JL, Zhu GH, Wang XY, Wu YS. Sirt6 overexpression suppresses senescence and apoptosis of nucleus pulposus cells by inducing autophagy in a model of intervertebral disc degeneration. Cell Death Dis 2018; 9:56. [PMID: 29352194 PMCID: PMC5833741 DOI: 10.1038/s41419-017-0085-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/22/2017] [Accepted: 10/05/2017] [Indexed: 02/08/2023]
Abstract
Treatment of intervertebral disc degeneration (IDD) seeks to prevent senescence and death of nucleus pulposus (NP) cells. Previous studies have shown that sirt6 exerts potent anti-senescent and anti-apoptotic effects in models of age-related degenerative disease. However, it is not known whether sirt6 protects against IDD. Here, we explored whether sirt6 influenced IDD. The sirt6 level was reduced in senescent human NP cells. Sirt6 overexpression protected against apoptosis and both replicative and stress-induced premature senescence. Sirt6 also activated NP cell autophagy both in vivo and in vitro. 3-methyladenine (3-MA) and chloroquine (CQ)-mediated inhibition of autophagy partially reversed the anti-senescent and anti-apoptotic effects of sirt6, which regulated the expression of degeneration-associated proteins. In vivo, sirt6 overexpression attenuated IDD. Together, the data showed that sirt6 attenuated cell senescence, and reduced apoptosis, by triggering autophagy that ultimately ameliorated IDD. Thus, sirt6 may be a novel therapeutic target for IDD treatment.
Collapse
Affiliation(s)
- Jian Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Jun-Jun Xie
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Meng-Yun Jin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Yun-Tao Gu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Cong-Cong Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Wei-Jun Guo
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Ying-Zhao Yan
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Zeng-Jie Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Jian-Le Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Xiao-Lei Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Yan Lin
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Jia-Li Sun
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Guang-Hui Zhu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China.
| | - Xiang-Yang Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China.
| | - Yao-Sen Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China.
| |
Collapse
|
13
|
Wang F, Cai F, Shi R, Wang XH, Wu XT. Aging and age related stresses: a senescence mechanism of intervertebral disc degeneration. Osteoarthritis Cartilage 2016; 24:398-408. [PMID: 26455958 DOI: 10.1016/j.joca.2015.09.019] [Citation(s) in RCA: 350] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/13/2015] [Accepted: 09/30/2015] [Indexed: 02/02/2023]
Abstract
Intervertebral disc (IVD) degeneration is a complicated process that involves both age-related change and tissue damage caused by multiple stresses. In a degenerative IVD, cellular senescence accumulates and is associated with reduced proliferation, compromised self-repair, increased inflammatory response, and enhanced catabolic metabolism. In this review, we decipher the senescence mechanism of IVD degeneration (IVDD) by interpreting how aging coordinates with age-related, microenvironment-derived stresses in promoting disc cell senescence and accelerating IVDD. After chronic and prolonged replication, cell senescence may occur as a natural part of the disc aging process, but can potentially be accelerated by growth factor deficiency, oxidative accumulation, and inflammatory irritation. While acute disc injury, excessive mechanical overloading, diabetes, and chronic tobacco smoking contribute to the amplification of senescence-inducing stresses, the avascular nature of IVD impairs the immune-clearance of the senescent disc cells, which accumulate in cell clusters, demonstrate inflammatory and catabolic phenotypes, deteriorate disc microenvironment, and accelerate IVDD. Anti-senescence strategies, including telomerase transduction, supply of growth factors, and blocking cell cycle inhibitors, have been shown to be feasible in rescuing disc cells from early senescence, but their efficiency for disc regeneration requires more in vivo validations. Guidelines dedicated to avoiding or alleviating senescence-inducing stresses might decelerate cellular senescence and benefit patients with IVD degenerative diseases.
Collapse
Affiliation(s)
- F Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - F Cai
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - R Shi
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - X-H Wang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| | - X-T Wu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China; Surgery Research Center, School of Medicine, Southeast University, 87# Dingjiaqiao Road, 210009 Nanjing, China.
| |
Collapse
|
14
|
Wang F, Shi R, Cai F, Wang YT, Wu XT. Stem Cell Approaches to Intervertebral Disc Regeneration: Obstacles from the Disc Microenvironment. Stem Cells Dev 2015; 24:2479-95. [PMID: 26228642 DOI: 10.1089/scd.2015.0158] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Intervertebral disc (IVD) degeneration results in segmental instability and irritates neural compressive symptoms, such as low back pain and motor deficiency. The transplanting of stem cell into degenerative discs has attracted increasing clinical attention, as a new and proven approach to alleviating disc degeneration and to relieving discogenic pains. Aside from supplementation with stem cells, the IVD itself already contains a pool of stem and progenitor cells. Since the resident disc stem cells are incapable of reversing the pathologic changes that occur during aging and disc degeneration, it has been debated as to whether transplanted stem cells are capable of providing an efficient and durable therapeutic effect, even though there have been positive outcomes in both animal models and in clinical trials. This review aims to decipher the interactions between the stem cell and the disc microenvironment. Within their new niches in the IVD, the exogenous stem cell shows metabolic adaptation to the low-glucose supply, hypoxia, and compressive loadings, but demonstrates little tolerance to the disc-like acidity and hypertonicity. Similarly, the survival of endogenous stem cells is threatened as well by the harsh disc microenvironment, which may exhaust the stem cell resources and restrict the self-repair capacity of a degenerating IVD. To eliminate the intrinsic obstacles within the stressful disc niches, stem cells should be delivered with an injectable scaffold that provides both survival and mechanical support. Quick healing or concretion of the injection injuries, which minimizes stem cell leakage and disturbance to disc homeostasis, is of equal importance toward achieving efficient stem cell-based disc regeneration.
Collapse
Affiliation(s)
- Feng Wang
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| | - Rui Shi
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| | - Feng Cai
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| | - Yun-Tao Wang
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| | - Xiao-Tao Wu
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| |
Collapse
|
15
|
Barathidasan R, Pawaiya RS, Rai RB, Dhama K. Upregulated Myc expression in N-methyl nitrosourea (MNU)- induced rat mammary tumours. Asian Pac J Cancer Prev 2014; 14:4883-9. [PMID: 24083763 DOI: 10.7314/apjcp.2013.14.8.4883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The most common incident cancer and cause of cancer-related deaths in women is breast cancer. The Myc gene is upregulated in many cancer types including breast cancer, and it is considered as a potential anti-cancer drug target. The present study was conducted to evaluate the Myc (gene and protein) expression pattern in an experimental mammary tumour model in rats. MATERIALS AND METHODS Thirty six Sprague Dawley rats were divided into: Experimental group (26 animals), which received the chemical carcinogen N-methyl nitrosourea (MNU) and a control group (10 animals), which received vehicle only. c-Myc oncoprotein and its mRNA expression pattern were evaluated using immunohistochemistry (IHC) and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), respectively, in normal rat mammary tissue and mammary tumours. The rat glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was used as internal control for semi-quantitative RT-PCR. RESULTS Histopathological examination of mammary tissues and tumours from MNU treated animals revealed the presence of premalignant lesions, benign tumours, in situ carcinomas and invasive carcinomas. Immunohistochemical evaluation of tumour tissues showed upregulation and heterogeneous cellular localization of c-Myc oncoprotein. The expression levels of c-Myc oncoprotein were significantly elevated (75- 91%) in all the tumours. Semi-quantitative RT-PCR revealed increased expression of c-Myc mRNA in mammary tumours compared to normal mammary tissues. CONCLUSIONS Further large-scale investigation study is needed to adopt this experimental rat mammary tumour model as an in vivo model to study anti-cancer strategies directed against Myc or its downstream partners at the transcriptional or post-transcriptional level.
Collapse
Affiliation(s)
- Rajamani Barathidasan
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, India E-mail :
| | | | | | | |
Collapse
|
16
|
Chen JY, Zhang L, Zhang H, Su L, Qin LP. Triggering of p38 MAPK and JNK Signaling is Important for Oleanolic Acid-Induced Apoptosis via the Mitochondrial Death Pathway in Hypertrophic Scar Fibroblasts. Phytother Res 2014; 28:1468-78. [DOI: 10.1002/ptr.5150] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/26/2014] [Accepted: 03/08/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Jian-Yu Chen
- Department of Pharmacognosy, School of Pharmacy; Second Military Medical University; Shanghai 200433 PR China
- Department of Pharmaceutical Botany, School of Pharmacy; Second Military Medical University; Shanghai 200433 PR China
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy; Second Military Medical University; Shanghai 200433 PR China
| | - Hong Zhang
- Department of Pharmaceutical Botany, School of Pharmacy; Second Military Medical University; Shanghai 200433 PR China
| | - Li Su
- Pharmaceutical Analysis Center, School of Pharmacy; Second Military Medical University; Shanghai 200433 PR China
| | - Lu-Ping Qin
- Department of Pharmacognosy, School of Pharmacy; Second Military Medical University; Shanghai 200433 PR China
| |
Collapse
|
17
|
Global identification of genes related to nutrient deficiency in intervertebral disc cells in an experimental nutrient deprivation model. PLoS One 2013; 8:e58806. [PMID: 23520533 PMCID: PMC3592817 DOI: 10.1371/journal.pone.0058806] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/07/2013] [Indexed: 11/19/2022] Open
Abstract
Background Intervertebral disc degeneration is a significant cause of degenerative spinal diseases. Nucleus pulposus (NP) cells reportedly fail to survive in large degenerated discs with limited nutrient availability. Therefore, understanding the regulatory mechanism of the molecular response of NP cells to nutrient deprivation may reveal a new strategy to treat disc degeneration. This study aimed to identify genes related to nutrient deprivation in NP cells on a global scale in an experimental nutrient deprivation model. Methodology/Principal Findings Rat NP cells were subjected to serum starvation. Global gene expression was profiled by microarray analysis. Confirmation of the selected genes was obtained by real-time polymerase chain reaction array analysis. Western blotting was used to confirm the expression of selected genes. Functional interactions between p21Cip1 and caspase 3 were examined. Finally, flow cytometric analyses of NP cells were performed. Microarray analysis revealed 2922 differentially expressed probe sets with ≥1.5-fold changes in expression. Serum starvation of NP cells significantly affected the expression of several genes involved in DNA damage checkpoints of the cell cycle, including Atm, Brca1, Cdc25, Gadd45, Hus1, Ppm1D, Rad 9, Tp53, and Cyclin D1. Both p27Kip1 and p53 protein expression was upregulated in serum-starved cells. p21Cip1 expression remained in NP cells transfected with short interfering RNA targeting caspase 3 (caspase 3 siRNA). Both G1 arrest and apoptosis induced by serum starvation were inhibited in cells transfected with caspase 3 siRNA. Conclusions/Significance Nutrient deprivation in NP cells results in the activation of a signaling response including DNA damage checkpoint genes regulating the cell cycle. These results provide novel possibilities to improve the success of intervertebral disc regenerative techniques.
Collapse
|
18
|
Tran CM, Smith HE, Symes A, Rittié L, Perbal B, Shapiro IM, Risbud MV. Transforming growth factor β controls CCN3 expression in nucleus pulposus cells of the intervertebral disc. ACTA ACUST UNITED AC 2013; 63:3022-31. [PMID: 21618206 DOI: 10.1002/art.30468] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate transforming growth factor β (TGFβ) regulation of CCN3 expression in cells of the nucleus pulposus. METHODS Real-time reverse transcription-polymerase chain reaction and Western blot analyses were used to measure CCN3 expression in the nucleus pulposus. Transfections were used to measure the effect of Smad3, MAPKs, and activator protein 1 (AP-1) on TGFβ-mediated CCN3 promoter activity. Lentiviral knockdown of Smad3 was performed to assess the role of Smad3 in CCN3 expression. RESULTS CCN3 was expressed in embryonic and adult intervertebral discs. TGFβ decreased the expression of CCN3 and suppressed its promoter activity in nucleus pulposus cells. DN-Smad3, Smad3 small interfering RNA, or DN-AP-1 had little effect on TGFβ suppression of CCN3 promoter activity. However, p38 and ERK inhibitors blocked suppression of CCN3 by TGFβ, suggesting involvement of these signaling pathways in the regulation of CCN3. Interestingly, overexpression of Smad3 in the absence of TGFβ increased CCN3 promoter activity. We validated the role of Smad3 in controlling CCN3 expression in Smad3-null mice and in nucleus pulposus cells transduced with lentiviral short hairpin Smad3. In terms of function, treatment with recombinant CCN3 showed a dose-dependent decrease in the proliferation of nucleus pulposus cells. Moreover, CCN3-treated cells showed a decrease in aggrecan, versican, CCN2, and type I collagen expression. CONCLUSION The opposing effect of TGFβ on CCN2 and CCN3 expression and the suppression of CCN2 by CCN3 in nucleus pulposus cells further the paradigm that these CCN proteins form an interacting triad, which is possibly important in maintaining extracellular matrix homeostasis and cell numbers.
Collapse
Affiliation(s)
- Cassie M Tran
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Sobral LM, Aseredo F, Agostini M, Bufalino A, Pereira MCC, Graner E, Coletta RD. Molecular events associated with ciclosporin A-induced gingival overgrowth are attenuated by Smad7 overexpression in fibroblasts. J Periodontal Res 2011; 47:149-58. [DOI: 10.1111/j.1600-0765.2011.01412.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Cui D, Pan Z, Zhang S, Zheng J, Huang Q, Wu K. Downregulation of c-Myc in pterygium and cultured pterygial cells. Clin Exp Ophthalmol 2011; 39:784-92. [DOI: 10.1111/j.1442-9071.2011.02531.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Regeneration potential and mechanism of bone marrow mesenchymal stem cell transplantation for treating intervertebral disc degeneration. J Orthop Sci 2010; 15:707-19. [PMID: 21116887 DOI: 10.1007/s00776-010-1536-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 07/06/2010] [Indexed: 02/07/2023]
Abstract
Intervertebral disc degeneration is a primary cause of low back pain and has a high societal cost. The pathological mechanism by which the intervertebral disc degenerates is largely unknown. Cell-based therapy especially using bone marrow mesenchymal stem cells as seeds for transplantation, although still in its infancy, is proving to be a promising, realistic approach to intervertebral disc regeneration. This article reviews current advances regarding regeneration potential in both the in vivo and vitro studies of bone marrow mesenchymal stem cell-based therapy and discusses the up-to-date regeneration mechanisms of stem cell transplantation for treating intervertebral disc degeneration.
Collapse
|