1
|
Li M, Duan Y, Wei J, Chen S, Xue C, Zheng L, Deng H, Fan S, Xiong W, Li G, Tan M, Tang F, She K, Zhou M. Yin Yang 1 suppresses tumor invasion and metastasis in nasopharyngeal carcinoma by negatively regulating eIF4E transcriptional activity and expression. Am J Cancer Res 2023; 13:3763-3780. [PMID: 37693135 PMCID: PMC10492101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023] Open
Abstract
Tumor metastasis is a leading cause of death in nasopharyngeal carcinoma (NPC) patients. Previous research has identified that transcription factor Yin Yang 1 (YY1) acts as a tumor suppressor that inhibits cell proliferation and tumor growth in NPC; however, the role and the molecular mechanisms of YY1 in NPC invasion and metastasis remain unclear. In this study, we discovered that YY1 could inhibit the migration and invasion of NPC cells in vitro as well as NPC xenograft tumor metastasis in vivo. Furthermore, we identified eIF4E as a direct downstream target of YY1, and YY1 could negatively regulate the expression of eIF4E at transcriptional level. Moreover, we found that eIF4E promoted the migration and invasion of NPC cells as well as NPC lung metastasis, suggesting its potential as a pro-metastatic mediator in NPC. Importantly, restoring eIF4E expression could partially reverse the inhibitory effects of YY1 on NPC malignancy. In consistent with these findings, the expression of YY1 was downregulated while eIF4E was upregulated in NPC patients with metastasis, and there was a negative correlation between YY1 and eIF4E expression. Collectively, our results indicate that YY1 suppresses the invasion and metastasis of NPC by negatively regulating eIF4E transcription. Therefore, targeting the YY1/eIF4E transcriptional axis could be a potential therapeutic strategy for the treatment of patients with NPC.
Collapse
Affiliation(s)
- Mengna Li
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Yumei Duan
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Jianxia Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Shipeng Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Changning Xue
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Lemei Zheng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Hongyu Deng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Ming Tan
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical UniversityTaichung 406040, Taiwan
| | - Faqing Tang
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
| | - Kelin She
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Nomal UniversityChangsha 410005, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| |
Collapse
|
2
|
Cha CD, Son SH, Kim CG, Park H, Chung MS. Prognostic Implication of YY1 and CP2c Expression in Patients with Primary Breast Cancer. Cancers (Basel) 2023; 15:3495. [PMID: 37444605 PMCID: PMC10340759 DOI: 10.3390/cancers15133495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Yin Yang 1 (YY1) is a transcription factor that regulates epigenetic pathways and protein modifications. CP2c is a transcription factor that functions as an oncogene to regulate cell proliferation. YY1 is known to interact with CP2c to suppress CP2c's transcriptional activity. This study aimed to investigate YY1 and CP2c expression in breast cancer and prognostic implications. In this study, YY1 and CP2c expression was evaluated using immunohistochemical staining, Western blot and RT-PCR assays. Of 491 patients with primary breast cancer, 138 patients showed YY1 overexpression. Luminal subtype and early stage were associated with overexpression (p < 0.001). After a median follow-up of 68 months, YY1 overexpression was found to be associated with a better prognosis (disease-free survival rates of 92.0% vs. 79.2%, p = 0.014). In Cox proportional hazards model, YY1 overexpression functioned as an independent prognostic factor after adjustment of hormone receptor/HER2 status and tumor size (hazard ratio of 0.50, 95% CI 0.26-0.98, p = 0.042). Quantitative analysis of YY1 and CP2c protein expression in tumors revealed a negative correlation between them. In conclusion, YY1 overexpression is a favorable prognostic biomarker in patients with breast cancer, and it has a negative correlation with CP2c at the protein level.
Collapse
Affiliation(s)
- Chihwan David Cha
- Department of Surgery, Hanyang University College of Medicine, Seoul 04764, Republic of Korea;
| | - Seung Han Son
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04764, Republic of Korea;
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04764, Republic of Korea;
| | - Hosub Park
- Department of Pathology, Hanyang University College of Medicine, Seoul 04764, Republic of Korea;
| | - Min Sung Chung
- Department of Surgery, Hanyang University College of Medicine, Seoul 04764, Republic of Korea;
| |
Collapse
|
3
|
Wang L, Zhao L, Zhang Y, Shao S, Ning Q, Zhao X, Luo M. Comprehensive Analysis of the Expression and Prognosis of chromobox Family Members in Breast Cancer. Clin Breast Cancer 2023; 23:e206-e218. [PMID: 36890004 DOI: 10.1016/j.clbc.2023.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Chromobox proteins are canonical components of the Polycomb group family and play pivotal roles in several cancers. However, little is known about the function, prognostic value and drug sensitivity of CBX family members in breast cancer. METHODS In this study we investigated the expression, prognosis value and drug sensitivity of CBX family in breast cancer using the ONCOMINE, GEPIA, Human Protein Atlas and Kaplan-Meier Plotter databases, etc. and preliminary verified the expression of CBX family in breast cancer cell lines by RT-qPCR. RESULTS We found that the expression levels of CBX1/2/3/4/8 members were elevated in breast cancer tissues compared to adjacent normal breast tissues, while the expression levels of CBX6/7 genes were reduced in breast cancer tissue. In vitro qRT-PCR validated the expression differences of CBX1/2/3/4/8 in breast cancer cell lines. Further analysis showed expression of CBX family members was remarkably correlated with cancer subgroups. As nodal metastasis status increased, the mRNA expression of CBX1/2/3/4/8 members tended to be higher, while CBX6/7 tended to be lower. The expression of CBX1/2/3 was higher in patients with TP53 mutation and CBX6/7 expression tended to be lower in patients with TP53 mutation groups. High transcription levels of CBX2/3 were significantly associated with shorter overall survival in breast cancer patients, while lower expression of CBX4/5/6/7 members was associated with unfavorable overall survival. Moreover, a high mutation rate of CBX gene members (43%) was observed in breast cancer patients, and genetic alterations in CBX genes was associated with poor prognosis. CONCLUSION Taken together, our results indicated that CBX2/3/6/7/8 could be considered prognostic and therapeutic biomarkers of breast cancer and are worthy of further study.
Collapse
Affiliation(s)
- Lu Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Lin Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Yujiao Zhang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Shan Shao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Qian Ning
- Department of Respiratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Xinhan Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China.
| | - Minna Luo
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China.
| |
Collapse
|
4
|
Luo Y, Xiang S, Feng J. Protein Phase Separation: New Insights into Carcinogenesis. Cancers (Basel) 2022; 14:cancers14235971. [PMID: 36497453 PMCID: PMC9740862 DOI: 10.3390/cancers14235971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Phase separation is now acknowledged as an essential biologic mechanism wherein distinct activated molecules assemble into a different phase from the surrounding constituents of a cell. Condensates formed by phase separation play an essential role in the life activities of various organisms under normal physiological conditions, including the advanced structure and regulation of chromatin, autophagic degradation of incorrectly folded or unneeded proteins, and regulation of the actin cytoskeleton. During malignant transformation, abnormally altered condensate assemblies are often associated with the abnormal activation of oncogenes or inactivation of tumor suppressors, resulting in the promotion of the carcinogenic process. Thus, understanding the role of phase separation in various biological evolutionary processes will provide new ideas for the development of drugs targeting specific condensates, which is expected to be an effective cancer therapy strategy. However, the relationship between phase separation and cancer has not been fully elucidated. In this review, we mainly summarize the main processes and characteristics of phase separation and the main methods for detecting phase separation. In addition, we summarize the cancer proteins and signaling pathways involved in phase separation and discuss their promising future applications in addressing the unmet clinical therapeutic needs of people with cancer. Finally, we explain the means of targeted phase separation and cancer treatment.
Collapse
|
5
|
Liquid-liquid phase separation in tumor biology. Signal Transduct Target Ther 2022; 7:221. [PMID: 35803926 PMCID: PMC9270353 DOI: 10.1038/s41392-022-01076-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Liquid–liquid phase separation (LLPS) is a novel principle for explaining the precise spatial and temporal regulation in living cells. LLPS compartmentalizes proteins and nucleic acids into micron-scale, liquid-like, membraneless bodies with specific functions, which were recently termed biomolecular condensates. Biomolecular condensates are executors underlying the intracellular spatiotemporal coordination of various biological activities, including chromatin organization, genomic stability, DNA damage response and repair, transcription, and signal transduction. Dysregulation of these cellular processes is a key event in the initiation and/or evolution of cancer, and emerging evidence has linked the formation and regulation of LLPS to malignant transformations in tumor biology. In this review, we comprehensively summarize the detailed mechanisms of biomolecular condensate formation and biophysical function and review the recent major advances toward elucidating the multiple mechanisms involved in cancer cell pathology driven by aberrant LLPS. In addition, we discuss the therapeutic perspectives of LLPS in cancer research and the most recently developed drug candidates targeting LLPS modulation that can be used to combat tumorigenesis.
Collapse
|
6
|
Jeon YH, Kim GW, Kim SY, Yi SA, Yoo J, Kim JY, Lee SW, Kwon SH. Heterochromatin Protein 1: A Multiplayer in Cancer Progression. Cancers (Basel) 2022; 14:cancers14030763. [PMID: 35159030 PMCID: PMC8833910 DOI: 10.3390/cancers14030763] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/16/2022] Open
Abstract
Dysregulation of epigenetic mechanisms as well as genomic mutations contribute to the initiation and progression of cancer. In addition to histone code writers, including histone lysine methyltransferase (KMT), and histone code erasers, including histone lysine demethylase (KDM), histone code reader proteins such as HP1 are associated with abnormal chromatin regulation in human diseases. Heterochromatin protein 1 (HP1) recognizes histone H3 lysine 9 methylation and broadly affects chromatin biology, such as heterochromatin formation and maintenance, transcriptional regulation, DNA repair, chromatin remodeling, and chromosomal segregation. Molecular functions of HP1 proteins have been extensively studied, although their exact roles in diseases require further study. Here, we comprehensively review the studies that have revealed the altered expression of HP1 and its functions in tumorigenesis. In particular, the distinctive effects of each HP1 subtype, namely HP1α, HP1β, and HP1γ, have been thoroughly explored in various cancer types. We also highlight how HP1 can serve as a potential biomarker for cancer prognosis and therapeutic target for cancer patients.
Collapse
Affiliation(s)
- Yu Hyun Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - So Yeon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - Sang Ah Yi
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Jung Yoo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - Ji Yoon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - Sang Wu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
- Correspondence: ; Tel.: +82-32-749-4513
| |
Collapse
|
7
|
Identification of the Roles of Chromobox Family Members in Gastric Cancer: A Study Based on Multiple Datasets. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5306509. [PMID: 33344640 PMCID: PMC7732380 DOI: 10.1155/2020/5306509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/05/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022]
Abstract
Background As the important components in polycomb repressive complexes 1 (PRC1) and heterochromatin protein 1 (HP1), Chromobox (CBX) family members are involved in epigenetic regulatory function, transcriptional repression, and other cellular metabolisms. Increasing studies have indicated significant associations between CBX and tumorigenesis, which is a progression in different types of cancers. However, the information about the roles of each CBX in gastric cancer is extremely limited. Methods We explored CBX mRNA expression, corrections with clinicopathological parameters, protein expression, prognostic values, enrichment analysis with several databases including Oncomine, Human Protein Atlas, UALCAN, Kaplan-Meier plotter, cBioPortal, GeneMANIA, and Enrichr. Results In our study, comparing to the normal tissues, higher mRNA expression of CBX1/2/3/4/5/8 and lower mRNA expression of CBX7 were found in GC tissues while upregulations of CBX1/2/3/4/5/8 and downregulations of CBX7 were indicated to be significantly correlated to the nodal metastasis status and individual cancer stages in GC patients. As for protein level, the expression of CBX2/3/4/5/6 was higher and the expression of CBX7 was lower in the GC tissues than those in the normal. What is more, higher mRNA expression of CBX1/5/6/8 and lower mRNA expression of CBX7 were markedly correlated to poor outcomes of OS and FP in GC patients. Besides, high mutation rate of CBXs (42%) was observed in GC patients. Conclusions We suggest that CBX5/7 may serve as potential therapeutic targets for GC while CBX1/8 may serve as potential prognostic indicators for GC.
Collapse
|
8
|
Lin K, Zhu J, Hu C, Bu F, Luo C, Zhu X, Zhu Z. Comprehensive analysis of the prognosis for chromobox family in gastric cancer. J Gastrointest Oncol 2020; 11:932-951. [PMID: 33209489 DOI: 10.21037/jgo-20-208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Chromobox (CBX) family proteins are a class of transcriptional repressors involved in epigenetic regulation and developmental processes of various tumors, including gastric cancer. However, the function and prognosis of different CBXs in gastric cancer remain unknown. Methods This study addresses this issue by synthesizing several mainstream databases (Oncomine, GEPIA2, cBioportal, and Kaplan-Meier plotter, among others) that currently contain many tumor samples and provide very reliable analysis results, investigating the role of CBXs in the prognosis of gastric cancer. Results The mRNA of CBX1/2/3/4/5/8 was highly expressed in gastric cancer, the mRNA of CBX7 was lowly expressed in gastric cancer, and the mRNA expression of CBX6 was not significantly different in CRC. Besides, high and low CBXs mRNA expression correlated with cancer stage, node metastasis status, H. pylori infection status, and tumor grade in CRC patients. We found that high mRNA expression of CBX4/5/6/7/8 was significantly associated with worse overall survival (OS), progression-free survival (FP), and post-progression survival (PPS) in a large number of CRC patients. High mRNA expression of CBX3 was significantly associated with better OS and FP. We also found that none of the eight CBXs family genes had a mutation rate of less than 5% in gastric cancer, and the highest mutation rate was in CBX3 (14%). Conclusions These results suggest that CBX3/4/5/6/7/8 could be a prognostic biomarker in gastric cancer patients.
Collapse
Affiliation(s)
- Kang Lin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinfeng Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cegui Hu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fanqin Bu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chen Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaojian Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhengming Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Wang W, Chen Y, Xu A, Cai M, Cao J, Zhu H, Yang B, Shao X, Ying M, He Q. Protein phase separation: A novel therapy for cancer? Br J Pharmacol 2020; 177:5008-5030. [PMID: 32851637 DOI: 10.1111/bph.15242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/18/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, phase separation has been increasingly reported to play a pivotal role in a wide range of biological processes. Due to the close relationships between cancer and disorders in intracellular physiological function, the identification of new mechanisms involved in intracellular regulation has been regarded as a new direction for cancer therapy. Introducing the concept of phase separation into complex descriptions of disease mechanisms may provide many different insights. Here, we review the recent findings on the phase separation of cancer-related proteins, describing the possible relationships between phase separation and key proteins associated with cancer and indicate possible regulatory modalities, especially drug candidates for phase separation, which may provide more effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Wei Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingqian Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Aixiao Xu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Minyi Cai
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuejing Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Sarvagalla S, Kolapalli SP, Vallabhapurapu S. The Two Sides of YY1 in Cancer: A Friend and a Foe. Front Oncol 2019; 9:1230. [PMID: 31824839 PMCID: PMC6879672 DOI: 10.3389/fonc.2019.01230] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Yin Yang 1 (YY1), a dual function transcription factor, is known to regulate transcriptional activation and repression of many genes associated with multiple cellular processes including cellular differentiation, DNA repair, autophagy, cell survival vs. apoptosis, and cell division. Owing to its role in processes that upon deregulation are linked to malignant transformation, YY1 has been implicated as a major driver of many cancers. While a large body of evidence supports the role of YY1 as a tumor promoter, recent reports indicated that YY1 also functions as a tumor suppressor. The mechanism by which YY1 brings out opposing outcome in tumor growth vs. suppression is not completely clear and some of the recent reports have provided significant insight into this. Likewise, the mechanism by which YY1 functions both as a transcriptional activator and repressor is not completely clear. It is likely that the proteins with which YY1 interacts might determine its function as an activator or repressor of transcription as well as its role as a tumor suppressor or promoter. Hence, a collection of YY1-protein interactions in the context of different cancers would help us gain an insight into how YY1 promotes or suppresses cancers. This review focuses on the YY1 interacting partners and its target genes in different cancer models. Finally, we discuss the possibility of therapeutically targeting the YY1 in cancers where it functions as a tumor promoter.
Collapse
Affiliation(s)
| | | | - Sivakumar Vallabhapurapu
- Division of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, India
| |
Collapse
|
11
|
Skipper KA, Hollensen AK, Antoniou MN, Mikkelsen JG. Sustained transgene expression from sleeping beauty DNA transposons containing a core fragment of the HNRPA2B1-CBX3 ubiquitous chromatin opening element (UCOE). BMC Biotechnol 2019; 19:75. [PMID: 31706316 PMCID: PMC6842454 DOI: 10.1186/s12896-019-0570-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022] Open
Abstract
Background DNA transposon-based vectors are effective nonviral tools for gene therapy and genetic engineering of cells. However, promoter DNA methylation and a near-random integration profile, which can result in transgene integration into heterochromatin, renders such vectors vulnerable to transcriptional repression. Therefore, to secure persistent transgene expression it may be necessary to protect transposon-embedded transgenes with anti-transcriptional silencing elements. Results We compare four different protective strategies in CHO-K1 cells. Our findings show robust protection from silencing of transgene cassettes mediated by the ubiquitous chromatin-opening element (UCOE) derived from the HNRPA2B1-CBX3 locus. Using a bioinformatic approach, we define a shorter HNRPA2B1-CBX3 UCOE core fragment and demonstrate that this can robustly maintain transgene expression after extended passaging of CHO-K1 cells carrying DNA transposon vectors equipped with this protective feature. Conclusions Our findings contribute to the understanding of the mechanism of HNRPA2B1-CBX3 UCOE-based transgene protection and support the use of a correctly oriented core fragment of this UCOE for DNA transposon vector-based production of recombinant proteins in CHO-K1 cells.
Collapse
Affiliation(s)
| | - Anne Kruse Hollensen
- Department of Biomedicine, HEALTH, Aarhus University, DK- 8000, Aarhus C, Denmark.,Department of Molecular Biology and Genetics, Science and Technology, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, 8th Floor Tower Wing, Guy's Hospital, London, SE1 9RT, UK
| | | |
Collapse
|
12
|
Schiano C, Franzese M, Pane K, Garbino N, Soricelli A, Salvatore M, de Nigris F, Napoli C. Hybrid 18F-FDG-PET/MRI Measurement of Standardized Uptake Value Coupled with Yin Yang 1 Signature in Metastatic Breast Cancer. A Preliminary Study. Cancers (Basel) 2019; 11:cancers11101444. [PMID: 31561604 PMCID: PMC6827137 DOI: 10.3390/cancers11101444] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose: Detection of breast cancer (BC) metastasis at the early stage is important for the assessment of BC progression status. Image analysis represents a valuable tool for the management of oncological patients. Our preliminary study combined imaging parameters from hybrid 18F-FDG-PET/MRI and the expression level of the transcriptional factor Yin Yang 1 (YY1) for the detection of early metastases. Methods: The study enrolled suspected n = 217 BC patients that underwent 18F-FDG-PET/MRI scans. The analysis retrospectively included n = 55 subjects. n = 40 were BC patients and n = 15 imaging-negative female individuals were healthy subjects (HS). Standard radiomics parameters were extracted from PET/MRI image. RNA was obtained from peripheral blood mononuclear cells and YY1 expression level was evaluated by real time reverse transcription polymerase chain reactions (qRT-PCR). An enzyme-linked immuosorbent assay (ELISA) was used to determine the amount of YY1 serum protein. Statistical comparison between subgroups was evaluated by Mann-Whitney U and Spearman’s tests. Results: Radiomics showed a significant positive correlation between Greg-level co-occurrence matrix (GLCM) and standardized uptake value maximum (SUVmax) (r = 0.8 and r = 0.8 respectively) in BC patients. YY1 level was significant overexpressed in estrogen receptor (ER)-positive/progesteron receptor-positive/human epidermal growth factor receptor2-negative (ER+/PR+/HER2-) subtype of BC patients with synchronous metastasis (SM) at primary diagnosis compared to metachronous metastasis (MM) and HS (p < 0.001) and correlating significantly with 18F-FDG-uptake parameter (SUVmax) (r = 0.48). Conclusions: The combination of functional 18F-FDG-PET/MRI parameters and molecular determination of YY1 could represent a novel integrated approach to predict synchronous metastatic disease with more accuracy than 18F-FDG-PET/MRI alone.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Soricelli
- IRCCS SDN, 80134 Naples, Italy
- Department of Motor Sciences and Healthiness, University of Naples Parthenope, 80134 Naples, Italy
| | | | - Filomena de Nigris
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Claudio Napoli
- IRCCS SDN, 80134 Naples, Italy
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
13
|
Yang W, Feng B, Meng Y, Wang J, Geng B, Cui Q, Zhang H, Yang Y, Yang J. FAM3C-YY1 axis is essential for TGFβ-promoted proliferation and migration of human breast cancer MDA-MB-231 cells via the activation of HSF1. J Cell Mol Med 2019; 23:3464-3475. [PMID: 30887707 PMCID: PMC6484506 DOI: 10.1111/jcmm.14243] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/22/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
Family with sequence similarity three member C (FAM3C) (interleukin‐like EMT inducer [ILEI]), heat shock factor 1 (HSF1) and Ying‐Yang 1 (YY1) have been independently reported to be involved in the pathogenesis of various cancers. However, whether they are coordinated to trigger the development of cancer remains unknown. This study determined the role and mechanism of YY1 and HSF1 in FAM3C‐induced proliferation and migration of breast cancer cells. In human MDA‐MB‐231 breast cancer cell line, transforming growth factor‐β (TGFβ) up‐regulated FAM3C, HSF1 and YY1 expressions. FAM3C overexpression promoted the proliferation and migration of MDA‐MB‐231 cells with YY1 and HSF1 up‐regulation, whereas FAM3C silencing exerted the opposite effects. FAM3C inhibition repressed TGFβ‐induced HSF1 activation, and proliferation and migration of breast cancer cells. YY1 was shown to directly activate HSF1 transcription to promote the proliferation and migration of breast cancer cells. YY1 silencing blunted FAM3C‐ and TGFβ‐triggered activation of HSF1‐Akt‐Cyclin D1 pathway, and proliferation and migration of breast cancer cells. Inhibition of HSF1 blocked TGFβ‐, FAM3C‐ and YY1‐induced proliferation and migration of breast cancer cells. YY1 and HSF1 had little effect on FAM3C expression. Similarly, inhibition of HSF1 also blunted FAM3C‐ and TGFβ‐promoted proliferation and migration of human breast cancer BT‐549 cells. In human breast cancer tissues, FAM3C, YY1 and HSF1 protein expressions were increased. In conclusion, FAM3C activated YY1‐HSF1 signalling axis to promote the proliferation and migration of breast cancer cells. Furthermore, novel FAM3C‐YY1‐HSF1 pathway plays an important role in TGFβ‐triggered proliferation and migration of human breast cancer MDA‐MB‐231 cells.
Collapse
Affiliation(s)
- Weili Yang
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Biomedical Informatics, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Biaoqi Feng
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Yuhong Meng
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Junpei Wang
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Biomedical Informatics, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Bin Geng
- State Key Laboratory of Cardiovascular Disease, Hypertension Center, Fuwai Hospital, Peking University Health Science Center, CAMS & PUMC, Beijing, China
| | - Qinghua Cui
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Biomedical Informatics, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Hongquan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Yang Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jichun Yang
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
14
|
Shen X, Zhong J, Yu P, Zhao Q, Huang T. YY1-regulated LINC00152 promotes triple negative breast cancer progression by affecting on stability of PTEN protein. Biochem Biophys Res Commun 2018; 509:448-454. [PMID: 30594392 DOI: 10.1016/j.bbrc.2018.12.074] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/11/2018] [Indexed: 02/01/2023]
Abstract
Thousands of lncRNAs have been identified but few have been functionally characterized in triple negative breast cancer (TNBC). LINC00152 was known as cytoskeleton regulator RNA (CYTOR) and expressed in various cancers including breast cancer. But the underlying molecular mechanism of LINC00152 in pathogenesis of TNBC have not been elucidated. In our study, we identified that LINC00152 expression was dramatically elevated in TNBC tissue and cells. Inhibition or overexpression of LINC00152 obviously increased or suppressed PTEN protein expression but did not affect the mRNA expression level. Our further experiments showed up-regulated LINC00152 in TNBC obviously enhanced NEDD4-1 mediated ubiquitination and degradation of PTEN protein. Finally, we demonstrated that YY1 bound with LINC00152 promotor and mostly inhibited the transcription of LINC00152. Furthermore, analysis of clinical samples resource retrieved from databases suggested high LINC00152 expression was correlated with ER or PR negative expression, late TNM stage and lymphatic invasion, as well as shorter overall survival time in patients. Consequently, this study firstly reveals that up-regulated LINC00152 mediates PTEN protein stability attenuation in TNBC.
Collapse
Affiliation(s)
- Xi Shen
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jianxin Zhong
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Pan Yu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qiuyang Zhao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Patra P, Izawa T, Pena-Castillo L. REPA: Applying Pathway Analysis to Genome-Wide Transcription Factor Binding Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:1270-1283. [PMID: 27019499 DOI: 10.1109/tcbb.2015.2453948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Pathway analysis has been extensively applied to aid in the interpretation of the results of genome-wide transcription profiling studies, and has been shown to successfully find associations between the biological phenomena under study and biological pathways. There are two widely used approaches of pathway analysis: over-representation analysis, and gene set analysis. Recently genome-wide transcription factor binding data has become widely available allowing for the application of pathway analysis to this type of data. In this work, we developed regulatory enrichment pathway analysis (REPA) to apply gene set analysis to genome-wide transcription factor binding data to infer associations between transcription factors and biological pathways. We used the transcription factor binding data generated by the ENCODE project, and gene sets from the Molecular Signatures and KEGG databases. Our results showed that 54 percent of the predictions examined have literature support and that REPA's recall is roughly 54 percent. This level of precision is promising as several of REPA's predictions are expected to be novel and can be used to guide new research avenues. In addition, the results of our case studies showed that REPA enhances the interpretation of genome-wide transcription profiling studies by suggesting putative regulators behind the observed transcriptional responses.
Collapse
|
16
|
Overexpression of CBX3 in Pancreatic Adenocarcinoma Promotes Cell Cycle Transition-Associated Tumor Progression. Int J Mol Sci 2018; 19:ijms19061768. [PMID: 29903985 PMCID: PMC6032220 DOI: 10.3390/ijms19061768] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/28/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Previous studies showed that Chromobox protein homolog 3 (CBX3) was overexpressed in several types of human cancers, however its pattern and role in pancreatic adenocarcinoma (PAAD) has not yet been understood. The aim of this study was to identify the expression and function of CBX3 in PAAD. METHODS Data of transcriptomic and protein expression of CBX3 in PAAD were collected from different databases and analyzed. The in vitro and in vivo role of CBX3 in PAAD was examined. RESULTS CBX3 was overexpressed in human PAAD tissues, which was associated with poor prognosis of overall and disease-free survival of the patients. Overexpression of CBX3 induced the in vitro proliferation, anchorage-free growth, migration and invasion of the PAAD cells, and led to in vivo growth of orthotoptic PAAD tumors in mice. GO and KEGG pathway analysis, as well as experimental observation showed that CBX3 may be associated with cell cycle transition of PAAD cells, and cyclin-dependent kinase 1 (CDK1) and proliferating cell nuclear antigen (PCNA) may mediate the tumor-promoting action of CBX3. CDK1 knockdown attenuated the cell cycle transition, proliferation and invasion of CBX3-overexpressing PAAD cells. CONCLUSION Our findings suggest the tumor-promoting role of CBX3 in PAAD to be targeted by novel therapeutic strategies.
Collapse
|
17
|
Vad-Nielsen J, Jakobsen KR, Daugaard TF, Thomsen R, Brügmann A, Sørensen BS, Nielsen AL. Regulatory dissection of the CBX5 and hnRNPA1 bi-directional promoter in human breast cancer cells reveals novel transcript variants differentially associated with HP1α down-regulation in metastatic cells. BMC Cancer 2016; 16:32. [PMID: 26791953 PMCID: PMC4721113 DOI: 10.1186/s12885-016-2059-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 01/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The three members of the human heterochromatin protein 1 (HP1) family of proteins, HP1α, HP1β, and HPγ, are involved in chromatin packing and epigenetic gene regulation. HP1α is encoded from the CBX5 gene and is a suppressor of metastasis. CBX5 is down-regulated at the transcriptional and protein level in metastatic compared to non-metastatic breast cancer. CBX5 shares a bi-directional promoter structure with the hnRNPA1 gene. But whereas CBX5 expression is down-regulated in metastatic cells, hnRNAP1 expression is constant. Here, we address the regulation of CBX5 in human breast cancer. METHODS Transient transfection and transposon mediated integration of dual-reporter mini-genes containing the bi-directional hnRNPA1 and CBX5 promoter was performed to investigate transcriptional regulation in breast cancer cell lines. Bioinformatics and functional analysis were performed to characterize transcriptional events specifically regulating CBX5 expression. TSA treatment and Chromatin Immunoprecipitation (ChIP) were performed to investigate the chromatin structure along CBX5 in breast cancer cells. Finally, expression of hnRNPA1 and CBX5 mRNA isoforms were measured by quantitative reverse transcriptase PCR (qRT-PCR) in breast cancer tissue samples. RESULTS We demonstrate that an hnRNPA1 and CBX5 bi-directional core promoter fragment does not comprise intrinsic capacity for specific CBX5 down-regulation in metastatic cells. Characterization of transcriptional events in the 20 kb CBX5 intron 1 revealed existence of several novel CBX5 transcripts. Two of these encode consensus HP1α protein but used autonomous promoters in intron 1 by which HP1α expression could be de-coupled from the bi-directional promoter. In addition, another CBX5 transcriptional isoform, STET, was discovered. This transcript includes CBX5 exon 1 and part of intron 1 sequences but lacks inclusion of HP1α encoding exons. Inverse correlation between STET and HP1α coding CBX5 mRNA expression was observed in breast cancer cell lines and tissue samples from breast cancer patients. CONCLUSION We find that HP1α is down-regulated in a mechanism involving CBX5 promoter downstream sequences and that regulation through alternative polyadenylation and splicing generates a transcript, STET, with potential importance in carcinogenesis.
Collapse
Affiliation(s)
- Johan Vad-Nielsen
- Department of Biomedicine, The Bartholin building, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Kristine Raaby Jakobsen
- Department of Biomedicine, The Bartholin building, Aarhus University, DK-8000, Aarhus C, Denmark.,Department of Clinical-Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Tina Fuglsang Daugaard
- Department of Biomedicine, The Bartholin building, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Rune Thomsen
- Department of Biomedicine, The Bartholin building, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Anja Brügmann
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - Boe Sandahl Sørensen
- Department of Clinical-Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Lade Nielsen
- Department of Biomedicine, The Bartholin building, Aarhus University, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
18
|
Vad-Nielsen J, Nielsen AL. Beyond the histone tale: HP1α deregulation in breast cancer epigenetics. Cancer Biol Ther 2015; 16:189-200. [PMID: 25588111 DOI: 10.1080/15384047.2014.1001277] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heterochromatin protein 1α (HP1α) encoded from the CBX5-gene is an evolutionary conserved protein that binds histone H3 di- or tri-methylated at position lysine 9 (H3K9me2/3), a hallmark for heterochromatin, and has an essential role in forming higher order chromatin structures. HP1α has diverse functions in heterochromatin formation, gene regulation, and mitotic progression, and forms complex networks of gene, RNA, and protein interactions. Emerging evidence has shown that HP1α serves a unique biological role in breast cancer related processes and in particular for epigenetic control mechanisms involved in aberrant cell proliferation and metastasis. However, how HP1α deregulation plays dual mechanistic functions for cancer cell proliferation and metastasis suppression and the underlying cellular mechanisms are not yet comprehensively described. In this paper we provide an overview of the role of HP1α as a new sight of epigenetics in proliferation and metastasis of human breast cancer. This highlights the importance of addressing HP1α in breast cancer diagnostics and therapeutics.
Collapse
Key Words
- CBX, chromobox homolog
- CD, chromo domain
- CSC, cancer stem cells
- CSD, cromo shadow domain
- CTE, C-terminal extension
- DNMT, DNA-methyltransferase
- EMT, epithelial-to-mesenchymal transition
- HDMT, histone demethylase
- HMT, histone methyltransferase
- HP1, heterochromatin protein 1
- NTE, N-terminal extension
- PEV, position effect variegation
- SOMU, sumoylation
- TGS, transcriptional gene silencing
- TSS, transcriptional start site
- bp, base pair
- breast-cancer, metastasis
- chromatin
- epigenetics
- histone-modifications
- invasion
- mitosis
- proliferation
Collapse
|
19
|
Tretiakova MS, Bond SD, Wheeler D, Contreras A, Kocherginsky M, Kroll TG, Hale TK. Heterochromatin protein 1 expression is reduced in human thyroid malignancy. J Transl Med 2014; 94:788-95. [PMID: 24840329 DOI: 10.1038/labinvest.2014.68] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 04/01/2014] [Accepted: 04/13/2014] [Indexed: 01/12/2023] Open
Abstract
Owing to the loss of heterochromatin integrity that occurs during thyroid tumorigenesis, the expression of Heterochromatin Protein 1 isoforms HP1α and HP1β was assessed by immunohistochemistry in 189 thyroid tumors and non-neoplastic tissues. Expression of HP1β was significantly decreased in all thyroid lesions, except in follicular adenomas, when compared with matched adjacent normal tissue. This loss of HP1β expression may in part be caused by microRNA dysregulation. An example is miR-205, a microRNA that is abundantly upregulated in thyroid carcinomas and shown to reduce the expression of HP1β. In contrast to HP1β, HP1α expression was only reduced in metastatic carcinomas and poorly differentiated lesions. These results suggest the reduction of HP1β followed by a decrease in HP1α contributes to the pathogenesis of thyroid carcinomas, and their loss is a potential marker of thyroid malignancy and metastatic potential, respectively.
Collapse
Affiliation(s)
| | - Sarah D Bond
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - David Wheeler
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Alejandro Contreras
- Lester and Sue Smith Breast Center and the Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | | | - Todd G Kroll
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Tracy K Hale
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
20
|
Kang W, Tong JHM, Chan AWH, Zhao J, Dong Y, Wang S, Yang W, Sin FMC, Ng SSM, Yu J, Cheng ASL, To KF. Yin Yang 1 contributes to gastric carcinogenesis and its nuclear expression correlates with shorter survival in patients with early stage gastric adenocarcinoma. J Transl Med 2014; 12:80. [PMID: 24674326 PMCID: PMC3986816 DOI: 10.1186/1479-5876-12-80] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 03/24/2014] [Indexed: 01/12/2023] Open
Abstract
Background Yin Yang 1 (YY1) is a transcription factor that regulates diverse biological processes and increasing recognized to have important roles in carcinogenesis. The function and clinical significance of YY1 in gastric adenocarcinoma (GAC) have not been elucidated. Methods In this study, the functional role of YY1 in gastric cancer was investigated by MTT proliferation assays, monolayer colony formation, cell cycle analysis, signaling pathway analysis, Western blot analysis and in vivo study through YY1 knockdown or overexpression. Immunohistochemical study with YY1 antibody was performed on tissue microarray consisting of 247 clinical GAC samples. The clinical correlation and prognosis significance were evaluated. Results YY1 expression was up-regulated in gastric cancer cell lines and primary gastric cancers. Knocking down YY1 by siYY1 inhibited cell growth, inducing G1 phase accumulation and apoptosis. Ectopic YY1 expression enhanced cell proliferation in vitro and in vivo. Knocking down YY1 in gastric cancer cells suppressed proliferation by inhibiting Wnt/β-catenin pathway, whereas its overexpression exerted oncogenic property by activating Wnt/β-catenin pathway. In primary GAC samples, YY1 nuclear expression correlated with shorter survival and predicted poor prognosis in early stage GACs. Conclusion Our data demonstrated that YY1 contributes to gastric carcinogenesis in gastric cancer. In early stage GACs YY1 might serve as a poor prognostic marker and possibly as a potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
| |
Collapse
|
21
|
Significance of rs1271572 in the estrogen receptor beta gene promoter and its correlation with breast cancer in a southwestern Chinese population. J Biomed Sci 2013; 20:32. [PMID: 23711151 PMCID: PMC3672062 DOI: 10.1186/1423-0127-20-32] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 05/21/2013] [Indexed: 01/02/2023] Open
Abstract
Background To characterize single nucleotide polymorphisms (SNPs) within the promoter region of the estrogen receptor beta (ERβ) gene and to analyze the association of ERβ SNPs with susceptibility to breast cancer. Genotype frequencies of five SNPs (rs3020449, rs3020450, rs2987983, rs1271572 and rs1887994) in the promoter region of the ERβ gene in 873 women with breast cancer, 645 women with fibroadenoma and 700 healthy women were determined using an allele-specific tetra-primer polymerase chain reaction (PCR). Kaplan-Meier survival analysis was performed to evaluate the association of selected rs1271572 with prognosis in breast cancer. Electrophoretic mobility-shift assays were conducted to explore the binding of SNP rs1271572 containing probes to transcriptional factor Ying Yang 1 (YY1). Results Women with the homozygous TT genotype of rs1271572 had a significantly higher risk in developing breast cancer. Breast cancer patients with the TT genotype of rs1271572 had lower five-year survival rates than those with other genotypes and were more likely to suffer brain metastases. The rs1271572 G→T SNP abrogated YY1 binding and reduced the transcription activity of the promoter 0 N in the ERβ gene in vitro. Conclusions TT genotype of rs1271572 is associated with increased risk for breast cancer in Chinese women and is associated with unfavored prognosis in Chinese breast cancer patients. TT genotype of rs1271572 inhibited expression of ERβ gene by down regulating transcriptional activity of the promoter 0 N in the ERβ gene. Our data revealed that the TT genotype of rs1271572 resulted in loss of the YY1 binding site and reduced the transcription activity of the promoter 0 N in the ERβ gene.
Collapse
|
22
|
Positive and negative regulation of prostate stem cell antigen expression by Yin Yang 1 in prostate epithelial cell lines. PLoS One 2012; 7:e35570. [PMID: 22536409 PMCID: PMC3334921 DOI: 10.1371/journal.pone.0035570] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 03/20/2012] [Indexed: 01/12/2023] Open
Abstract
Prostate cancer is influenced by epigenetic modification of genes involved in cancer development and progression. Increased expression of Prostate Stem Cell Antigen (PSCA) is correlated with development of malignant human prostate cancer, while studies in mouse models suggest that decreased PSCA levels promote prostate cancer metastasis. These studies suggest that PSCA has context-dependent functions, and could be differentially regulated during tumor progression. In the present study, we identified the multi-functional transcription factor Yin Yang 1 (YY1) as a modulator of PSCA expression in prostate epithelial cell lines. Increased YY1 levels are observed in prostatic intraepithelial neoplasia (PIN) and advanced disease. We show that androgen-mediated up-regulation of PSCA in prostate epithelial cell lines is dependent on YY1. We identified two direct YY1 binding sites within the PSCA promoter, and showed that the upstream site inhibited, while the downstream site, proximal to the androgen-responsive element, stimulated PSCA promoter activity. Thus, changes in PSCA expression levels in prostate cancer may at least partly be affected by cellular levels of YY1. Our results also suggest multiple roles for YY1 in prostate cancer which may contribute to disease progression by modulation of genes such as PSCA.
Collapse
|
23
|
Abstract
Yin Yang 1 (YY1) is a transcription factor with diverse and complex biological functions. YY1 either activates or represses gene transcription, depending on the stimuli received by the cells and its association with other cellular factors. Since its discovery, a biological role for YY1 in tumor development and progression has been suggested because of its regulatory activities toward multiple cancer-related proteins and signaling pathways and its overexpression in most cancers. In this review, we primarily focus on YY1 studies in cancer research, including the regulation of YY1 as a transcription factor, its activities independent of its DNA binding ability, the functions of its associated proteins, and mechanisms regulating YY1 expression and activities. We also discuss the correlation of YY1 expression with clinical outcomes of cancer patients and its target potential in cancer therapy. Although there is not a complete consensus about the role of YY1 in cancers based on its activities of regulating oncogene and tumor suppressor expression, most of the currently available evidence supports a proliferative or oncogenic role of YY1 in tumorigenesis.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
24
|
Chow KHM, Liu J, Sun RWY, Vanhoutte PM, Xu A, Chen J, Che CM, Wang Y. The gold (III) porphyrin complex, gold-2a, suppresses WNT1 expression in breast cancer cells by enhancing the promoter association of YY1. Am J Transl Res 2011; 3:479-491. [PMID: 22046489 PMCID: PMC3204891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 10/12/2011] [Indexed: 05/31/2023]
Abstract
The gold (III) porphyrin complex, gold-2a, elicits anti-tumor activity by targeting the Wnt/β-catenin signaling pathway [Chow KH et al, Cancer Research 2010;70(1):329-37]. Here, the molecular mechanisms underlying the inhibitory effects of this compound on WNT1 gene expression were elucidated further. A response element to gold-2a was identified located within the -1290 to -1112 nt region of the WNT1 promoter, containing a binding site for the transcription regulator Yin Yang 1 (YY1). Gold-2a promoted the association of YY1 and suppressor of zeste 12 (Suz12; a component of the polycomb repressor complex 2) with the WNT1 promoter. Under normal culture conditions, the intracellular translocalization of YY1 was synchronized with cell cycle progression and WNT1 expression. Gold-2a promoted the nuclear accumulation and abolished the nuclear exportation of YY1, resulting in a persistent inhibition of WNT1 expression and a cell cycle arrest at G1/S phase. A dimorphic role of YY1 in regulating cell proliferation and division was revealed. Thus, the present study extends the understanding of the anti-tumor mechanism of gold-2a to the epigenetic level, which involves the modulation of the dynamic interactions between YY1 and a specific region of the WNT1 promoter.
Collapse
Affiliation(s)
- Kim Hei-Man Chow
- Department of Pharmacology and Pharmacy, The University of Hong KongPokfulam, Hong Kong, China
| | - Jing Liu
- Department of Pharmacology and Pharmacy, The University of Hong KongPokfulam, Hong Kong, China
| | - Raymond Wai-Yin Sun
- Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong KongPokfulam, Hong Kong, China
| | - Paul M Vanhoutte
- Department of Pharmacology and Pharmacy, The University of Hong KongPokfulam, Hong Kong, China
| | - Aimin Xu
- Department of Pharmacology and Pharmacy, The University of Hong KongPokfulam, Hong Kong, China
| | - Jie Chen
- Department of Pharmacology and Pharmacy, The University of Hong KongPokfulam, Hong Kong, China
| | - Chi-Ming Che
- Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong KongPokfulam, Hong Kong, China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, The University of Hong KongPokfulam, Hong Kong, China
- Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong KongPokfulam, Hong Kong, China
| |
Collapse
|
25
|
Gonçalves JP, Francisco AP, Mira NP, Teixeira MC, Sá-Correia I, Oliveira AL, Madeira SC. TFRank: network-based prioritization of regulatory associations underlying transcriptional responses. ACTA ACUST UNITED AC 2011; 27:3149-57. [PMID: 21965816 DOI: 10.1093/bioinformatics/btr546] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
MOTIVATION Uncovering mechanisms underlying gene expression control is crucial to understand complex cellular responses. Studies in gene regulation often aim to identify regulatory players involved in a biological process of interest, either transcription factors coregulating a set of target genes or genes eventually controlled by a set of regulators. These are frequently prioritized with respect to a context-specific relevance score. Current approaches rely on relevance measures accounting exclusively for direct transcription factor-target interactions, namely overrepresentation of binding sites or target ratios. Gene regulation has, however, intricate behavior with overlapping, indirect effect that should not be neglected. In addition, the rapid accumulation of regulatory data already enables the prediction of large-scale networks suitable for higher level exploration by methods based on graph theory. A paradigm shift is thus emerging, where isolated and constrained analyses will likely be replaced by whole-network, systemic-aware strategies. RESULTS We present TFRank, a graph-based framework to prioritize regulatory players involved in transcriptional responses within the regulatory network of an organism, whereby every regulatory path containing genes of interest is explored and incorporated into the analysis. TFRank selected important regulators of yeast adaptation to stress induced by quinine and acetic acid, which were missed by a direct effect approach. Notably, they reportedly confer resistance toward the chemicals. In a preliminary study in human, TFRank unveiled regulators involved in breast tumor growth and metastasis when applied to genes whose expression signatures correlated with short interval to metastasis.
Collapse
|
26
|
Thomsen R, Christensen DB, Rosborg S, Linnet TE, Blechingberg J, Nielsen AL. Analysis of HP1α regulation in human breast cancer cells. Mol Carcinog 2011; 50:601-13. [PMID: 21374739 DOI: 10.1002/mc.20755] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 01/10/2011] [Accepted: 01/27/2011] [Indexed: 12/20/2022]
Abstract
The three mammalian HP1 proteins, HP1α/CBX5, HP1β/CBX1, and HPγ/CBX3, are involved in chromatin packing and gene regulation. The HP1α protein is down-regulated in invasive compared to non-invasive breast cancer cells and HP1α is a suppressor of cell migration and invasion. In this report, we examined the background for HP1α protein down-regulation in invasive breast cancer cells. We identified a strict correlation between HP1α down-regulation at the protein level and the mRNA level. The HP1α mRNA down-regulation in invasive cancer cells was not caused by mRNA destabilization. Chromatin immunoprecipitation analysis of the HP1α gene showed a decrease in the histone mark for transcriptional activity H3-K36 tri-methylation and RNA polymerase II in invasive breast cancer cells which correlated with a decreased abundance of basal transcription factors at the HP1α promoter. E2F transcription factors regulate HP1α transcription and we identified that E2F5 depletion increased HP1α expression in invasive breast cancer cells. Finally, we have characterized two HP1α mRNA isoforms and both HP1α mRNA isoforms were down-regulated to a similar extend at the transcriptional level in invasive breast cancer cells. Collectively the presented results show that HP1α down-regulation in invasive breast cancer cells is primary a transcriptional effect and demonstrates a novel set of mechanisms involved in HP1α transcriptional regulation. The finding that HP1α is down-regulated primarily at the transcriptional level provides a new insight for the further elucidation of the detailed molecular mechanisms causing the HP1α down-regulation in invasive breast cancer cells.
Collapse
Affiliation(s)
- Rune Thomsen
- Department of Human Genetics, Aarhus University, Denmark
| | | | | | | | | | | |
Collapse
|
27
|
Okoh V, Deoraj A, Roy D. Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. Biochim Biophys Acta Rev Cancer 2010; 1815:115-33. [PMID: 21036202 DOI: 10.1016/j.bbcan.2010.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 01/01/2023]
Abstract
Elevated lifetime estrogen exposure is a major risk factor for breast cancer. Recent advances in the understanding of breast carcinogenesis clearly indicate that induction of estrogen receptor (ER) mediated signaling is not sufficient for the development of breast cancer. The underlying mechanisms of breast susceptibility to estrogen's carcinogenic effect remain elusive. Physiologically achievable concentrations of estrogen or estrogen metabolites have been shown to generate reactive oxygen species (ROS). Recent data implicated that these ROS induced DNA synthesis, increased phosphorylation of kinases, and activated transcription factors, e.g., AP-1, NRF1, E2F, NF-kB and CREB of non-genomic pathways which are responsive to both oxidants and estrogen. Estrogen-induced ROS by increasing genomic instability and by transducing signal through influencing redox sensitive transcription factors play important role (s) in cell transformation, cell cycle, migration and invasion of the breast cancer. The present review discusses emerging data in support of the role of estrogen induced ROS-mediated signaling pathways which may contribute in the development of breast cancer. It is envisioned that estrogen induced ROS mediated signaling is a key complementary mechanism that drives the carcinogenesis process. ROS mediated signaling however occurs in the context of other estrogen induced processes such as ER-mediated signaling and estrogen reactive metabolite-associated genotoxicity. Importantly, estrogen-induced ROS can function as independent reversible modifiers of phosphatases and activate kinases to trigger the transcription factors of downstream target genes which participate in cancer progression.
Collapse
Affiliation(s)
- Victor Okoh
- Department of Environmental and Occupational Health, Florida International University, Miami, FL, USA
| | | | | |
Collapse
|
28
|
Tai W, Qin B, Cheng K. Inhibition of breast cancer cell growth and invasiveness by dual silencing of HER-2 and VEGF. Mol Pharm 2010; 7:543-56. [PMID: 20047302 DOI: 10.1021/mp9002514] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Overexpression of HER-2 accounts for approximately 25% of all breast cancer cases, while 87.7% of HER-2 positive breast cancers are associated with upregulated VEGF. The objective of this study is to explore the combination therapy of blocking HER-2 and VEGF expressions simultaneously using siRNA. This is the first report to examine the effect of dual silencing of HER-2 and VEGF genes on tumor growth and invasiveness. We have designed nine HER-2 siRNAs and ten VEGF siRNAs, and identified potent siRNA which can silence the target gene up to 75-83.5%. The most potent HER-2 and VEGF siRNAs were used to conduct functional studies in HER-2 positive breast cancer cells. Tumor invasiveness properties including cell morphology change, in vitro migration, cell spreading, and adhesion to ECM were evaluated. In addition, cell proliferation and apoptosis were examined after the siRNA treatment. Our data demonstrated for the first time that HER-2 siRNA could inhibit cell migration and invasion abilities. Combination of HER-2 and VEGF siRNAs exhibited synergistic silencing effect on VEGF. Both HER-2 siRNA and VEGF siRNA showed significant inhibition on cell migration and proliferation. HER-2 siRNA also demonstrated dramatic suppression on cell spreading and adhesion to ECM, as well as induction of apoptosis. Dual silencing of HER-2 and VEGF exhibited significant cell morphology change, and substantial suppression on migration, spreading, cell adhesion, and proliferation. Our observations suggested that HER-2 positive breast cancer may be more effectively treated by dual inhibition of HER-2 and VEGF gene expressions using siRNA.
Collapse
Affiliation(s)
- Wanyi Tai
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2454 Charlotte Street, Kansas City, Missouri 64108, USA
| | | | | |
Collapse
|
29
|
Powe DG, Akhtar G, Habashy HO, Abdel-Fatah T, Rakha EA, Green AR, Ellis IO. Investigating AP-2 and YY1 protein expression as a cause of high HER2 gene transcription in breast cancers with discordant HER2 gene amplification. Breast Cancer Res 2009; 11:R90. [PMID: 20025767 PMCID: PMC2815554 DOI: 10.1186/bcr2461] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 11/20/2009] [Accepted: 12/21/2009] [Indexed: 12/15/2022] Open
Abstract
Introduction Candidacy for anti-HER2 adjuvant therapy in breast cancer is assessed using tumour HER2 status but recently it has been proposed that the transcription factors AP-2α and YY1 may cause Her2 protein overexpression independently of gene amplification. Methods We characterised AP-2α/β, AP-2α and YY1 with HER2 gene and protein expression, other relevant biomarkers, and clinical outcome using tissue microarrays (TMAs) and immunohistochemistry in a large (n = 1,176) clinically annotated series of early stage operable breast cancer. The associations and prognostic independence of AP-2 and YY1 was assessed in all patients and an oestrogen receptor negative subgroup. Results Nuclear expression of AP-2α/β, AP-2α and YY1 was detected in 23%, 44% and 33% of cases respectively. AP-2α/β significantly correlated with YY1 and both markers were increased in luminal oestrogen receptor (ER) positive tumours of small size and low grade but only AP-2α/β correlated with good prognosis breast cancer specific survival and disease free interval (BCSS and DFI). These characteristics were lost in oestrogen receptor negative patients. AP-2α also correlated with luminal-type tumours but not with YY1 expression or good prognosis. AP-2α and YY1 showed a significant correlation with Her2 protein expression and in addition, YY1 correlated with HER2 gene expression. Discordant HER2 gene and protein expression was identified in six cases (0.71% of the study group) with four of these showing AP-2α but absence of AP-2α/β and YY1 expression. Conclusions AP-2α/β and YY1 are markers of good prognosis principally due to their association with oestrogen receptor but are not independent predictors. Discordant HER2 protein/gene expression is a rare event that is not always explained by the actions of AP-2 and YY1.
Collapse
Affiliation(s)
- Desmond G Powe
- Department of Cellular Pathology, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Derby Road, Nottingham NG7 2UH, UK.
| | | | | | | | | | | | | |
Collapse
|