1
|
Bhondeley M, Liu Z. GSM1 Requires Hap4 for Expression and Plays a Role in Gluconeogenesis and Utilization of Nonfermentable Carbon Sources. Genes (Basel) 2024; 15:1128. [PMID: 39336719 PMCID: PMC11432098 DOI: 10.3390/genes15091128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Multiple transcription factors in the budding yeast Saccharomyces cerevisiae are required for the switch from fermentative growth to respiratory growth. The Hap2/3/4/5 complex is a transcriptional activator that binds to CCAAT sequence elements in the promoters of many genes involved in the tricarboxylic acid cycle and oxidative phosphorylation and activates gene expression. Adr1 and Cat8 are required to activate the expression of genes involved in the glyoxylate cycle, gluconeogenesis, and utilization of nonfermentable carbon sources. Here, we characterize the regulation and function of the zinc cluster transcription factor Gsm1 using Western blotting and lacZ reporter-gene analysis. GSM1 is subject to glucose repression, and it requires a CCAAT sequence element for Hap2/3/4/5-dependent expression under glucose-derepression conditions. Genome-wide CHIP analyses revealed many potential targets. We analyzed 29 of them and found that FBP1, LPX1, PCK1, SFC1, and YAT1 require both Gsm1 and Hap4 for optimal expression. FBP1, PCK1, SFC1, and YAT1 play important roles in gluconeogenesis and utilization of two-carbon compounds, and they are known to be regulated by Cat8. GSM1 overexpression in cat8Δ mutant cells increases the expression of these target genes and suppresses growth defects in cat8Δ mutants on lactate medium. We propose that Gsm1 and Cat8 have shared functions in gluconeogenesis and utilization of nonfermentable carbon sources and that Cat8 is the primary regulator.
Collapse
Affiliation(s)
- Manika Bhondeley
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
- Kudo Biotechnology, 117 Kendrick Street, Needham, MA 02494, USA
| | - Zhengchang Liu
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
2
|
Raghuram N, Hughes AL. Amino acids trigger MDC-dependent mitochondrial remodeling by altering mitochondrial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602707. [PMID: 39026767 PMCID: PMC11257621 DOI: 10.1101/2024.07.09.602707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cells utilize numerous pathways to maintain mitochondrial homeostasis, including a recently identified mechanism that adjusts the content of the outer mitochondrial membrane (OMM) through formation of OMM-derived multilamellar domains called mitochondrial-derived compartments, or MDCs. MDCs are triggered by perturbations in mitochondrial lipid and protein content, as well as increases in intracellular amino acids. Here, we sought to understand how amino acids trigger MDCs. We show that amino acid-activation of MDCs is dependent on the functional state of mitochondria. While amino acid excess triggers MDC formation when cells are grown on fermentable carbon sources, stimulating mitochondrial biogenesis blocks MDC formation. Moreover, amino acid elevation depletes TCA cycle metabolites in yeast, and preventing consumption of TCA cycle intermediates for amino acid catabolism suppresses MDC formation. Finally, we show that directly impairing the TCA cycle is sufficient to trigger MDC formation in the absence of amino acid stress. These results demonstrate that amino acids stimulate MDC formation by perturbing mitochondrial metabolism.
Collapse
Affiliation(s)
- Nidhi Raghuram
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Adam L. Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Lead Contact
| |
Collapse
|
3
|
Horkai D, Hadj-Moussa H, Whale AJ, Houseley J. Dietary change without caloric restriction maintains a youthful profile in ageing yeast. PLoS Biol 2023; 21:e3002245. [PMID: 37643155 PMCID: PMC10464975 DOI: 10.1371/journal.pbio.3002245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 07/12/2023] [Indexed: 08/31/2023] Open
Abstract
Caloric restriction increases lifespan and improves ageing health, but it is unknown whether these outcomes can be separated or achieved through less severe interventions. Here, we show that an unrestricted galactose diet in early life minimises change during replicative ageing in budding yeast, irrespective of diet later in life. Average mother cell division rate is comparable between glucose and galactose diets, and lifespan is shorter on galactose, but markers of senescence and the progressive dysregulation of gene expression observed on glucose are minimal on galactose, showing that these are not intrinsic aspects of replicative ageing but rather associated processes. Respiration on galactose is critical for minimising hallmarks of ageing, and forced respiration during ageing on glucose by overexpression of the mitochondrial biogenesis factor Hap4 also has the same effect though only in a fraction of cells. This fraction maintains Hap4 activity to advanced age with low senescence and a youthful gene expression profile, whereas other cells in the same population lose Hap4 activity, undergo dramatic dysregulation of gene expression and accumulate fragments of chromosome XII (ChrXIIr), which are tightly associated with senescence. Our findings support the existence of two separable ageing trajectories in yeast. We propose that a complete shift to the healthy ageing mode can be achieved in wild-type cells through dietary change in early life without caloric restriction.
Collapse
Affiliation(s)
- Dorottya Horkai
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Alex J. Whale
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | | |
Collapse
|
4
|
Salis HM. Genetic circuitry boosts cell longevity. Science 2023; 380:343. [PMID: 37104573 DOI: 10.1126/science.adh4872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Reprogramming cellular dynamics is used to study and delay the onset of aging in yeast.
Collapse
Affiliation(s)
- Howard M Salis
- Departments of Agricultural and Biological Engineering, Chemical Engineering, and Biomedical Engineering, Bioinformatics and Genomics Program, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
5
|
Ebrahim A, Alfwuaires MA, Abukhalil MH, Alasmari F, Ahmad F, Yao R, Luo Y, Huang Y. Schizosaccharomyces pombe Grx4, Fep1, and Php4: In silico analysis and expression response to different iron concentrations. Front Genet 2022; 13:1069068. [PMID: 36568394 PMCID: PMC9768344 DOI: 10.3389/fgene.2022.1069068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Due to iron's essential role in cellular metabolism, most organisms must maintain their homeostasis. In this regard, the fission yeast Schizosaccharomyces pombe (sp) uses two transcription factors to regulate intracellular iron levels: spFep1 under iron-rich conditions and spPhp4 under iron-deficient conditions, which are controlled by spGrx4. However, bioinformatics analysis to understand the role of the spGrx4/spFep1/spPhp4 axis in maintaining iron homeostasis in S. pombe is still lacking. Our study aimed to perform bioinformatics analysis on S. pombe proteins and their sequence homologs in Aspergillus flavus (af), Saccharomyces cerevisiae (sc), and Homo sapiens (hs) to understand the role of spGrx4, spFep1, and spPhp4 in maintaining iron homeostasis. The three genes' expression patterns were also examined at various iron concentrations. A multiple sequence alignment analysis of spGrx4 and its sequence homologs revealed a conserved cysteine residue in each PF00085 domain. Blast results showed that hsGLRX3 is most similar to spGrx4. In addition, spFep1 is most closely related in sequence to scDal80, whereas scHap4 is most similar to spFep1. We also found two highly conserved motifs in spFep1 and its sequence homologs that are significant for iron transport systems because they contain residues involved in iron homeostasis. The scHap4 is most similar to spPhp4. Using STRING to analyze protein-protein interactions, we found that spGrx4 interacts strongly with spPhp4 and spFep1. Furthermore, spGrx4, spPhp4, and spFep1 interact with spPhp2, spPhp3, and spPhp5, indicating that the three proteins play cooperative roles in iron homeostasis. At the highest level of Fe, spgrx4 had the highest expression, followed by spfep1, while spphp4 had the lowest expression; a contrast occurred at the lowest level of Fe, where spgrx4 expression remained constant. Our findings support the notion that organisms develop diverse strategies to maintain iron homeostasis.
Collapse
Affiliation(s)
- Alia Ebrahim
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Manal A. Alfwuaires
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohammad H. Abukhalil
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an, Jordan,Department of Biology, College of Science, Al-Hussein Bin Talal University, Ma’an, Jordan
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawad Ahmad
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Rui Yao
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ying Luo
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, Nanjing, China,*Correspondence: Ying Huang,
| |
Collapse
|
6
|
Rewiring regulation on respiro-fermentative metabolism relieved Crabtree effects in Saccharomyces cerevisiae. Synth Syst Biotechnol 2022; 7:1034-1043. [PMID: 35801089 PMCID: PMC9241035 DOI: 10.1016/j.synbio.2022.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/12/2022] [Accepted: 06/12/2022] [Indexed: 11/20/2022] Open
Abstract
The respiro-fermentative metabolism in the yeast Saccharomyces cerevisiae, also called the Crabtree effect, results in lower energy efficiency and biomass yield which can impact yields of chemicals to be produced using this cell factory. Although it can be engineered to become Crabtree negative, the slow growth and glucose consumption rate limit its industrial application. Here the Crabtree effect in yeast can be alleviated by engineering the transcription factor Mth1 involved in glucose signaling and a subunit of the RNA polymerase II mediator complex Med2. It was found that the mutant with the MTH1A81D&MED2*432Y allele could grow in glucose rich medium with a specific growth rate of 0.30 h−1, an ethanol yield of 0.10 g g−1, and a biomass yield of 0.21 g g−1, compared with a specific growth rate of 0.40 h−1, an ethanol yield of 0.46 g g−1, and a biomass yield of 0.11 g g−1 in the wild-type strain CEN.PK 113-5D. Transcriptome analysis revealed significant downregulation of the glycolytic process, as well as the upregulation of the TCA cycle and the electron transfer chain. Significant expression changes of several reporter transcription factors were also identified, which might explain the higher energy efficiencies in the engineered strain. We further demonstrated the potential of the engineered strain with the production of 3-hydroxypropionic acid at a titer of 2.04 g L−1, i.e., 5.4-fold higher than that of a reference strain, indicating that the alleviated glucose repression could enhance the supply of mitochondrial acetyl-CoA. These results suggested that the engineered strain could be used as an efficient cell factory for mitochondrial production of acetyl-CoA derived chemicals.
Collapse
|
7
|
Capps D, Hunter A, Chiang M, Pracheil T, Liu Z. Ubiquitin-Conjugating Enzymes Ubc1 and Ubc4 Mediate the Turnover of Hap4, a Master Regulator of Mitochondrial Biogenesis in Saccharomyces cerevisiae. Microorganisms 2022; 10:microorganisms10122370. [PMID: 36557625 PMCID: PMC9787919 DOI: 10.3390/microorganisms10122370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Mitochondrial biogenesis is tightly regulated in response to extracellular and intracellular signals, thereby adapting yeast cells to changes in their environment. The Hap2/3/4/5 complex is a master transcriptional regulator of mitochondrial biogenesis in yeast. Hap4 is the regulatory subunit of the complex and exhibits increased expression when the Hap2/3/4/5 complex is activated. In cells grown under glucose derepression conditions, both the HAP4 transcript level and Hap4 protein level are increased. As part of an inter-organellar signaling mechanism coordinating gene expression between the mitochondrial and nuclear genomes, the activity of the Hap2/3/4/5 complex is reduced in respiratory-deficient cells, such as ρ0 cells lacking mitochondrial DNA, as a result of reduced Hap4 protein levels. However, the underlying mechanism is unclear. Here, we show that reduced HAP4 expression in ρ0 cells is mediated through both transcriptional and post-transcriptional mechanisms. We show that loss of mitochondrial DNA increases the turnover of Hap4, which requires the 26S proteasome and ubiquitin-conjugating enzymes Ubc1 and Ubc4. Stabilization of Hap4 in the ubc1 ubc4 double mutant leads to increased expression of Hap2/3/4/5-target genes. Our results indicate that mitochondrial biogenesis in yeast is regulated by the functional state of mitochondria partly through ubiquitin/proteasome-dependent turnover of Hap4.
Collapse
|
8
|
Yuzawa T, Shirai T, Orishimo R, Kawai K, Kondo A, Hirasawa T. 13C-metabolic flux analysis in glycerol-assimilating strains of Saccharomyces cerevisiae. J GEN APPL MICROBIOL 2021; 67:142-149. [PMID: 33967166 DOI: 10.2323/jgam.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Glycerol is an attractive raw material for the production of useful chemicals using microbial cells. We previously identified metabolic engineering targets for the improvement of glycerol assimilation ability in Saccharomyces cerevisiae based on adaptive laboratory evolution (ALE) and transcriptome analysis of the evolved cells. We also successfully improved glycerol assimilation ability by the disruption of the RIM15 gene encoding a Greatwall protein kinase together with overexpression of the STL1 gene encoding the glycerol/H+ symporter. To understand glycerol assimilation metabolism in the evolved glycerol-assimilating strains and STL1-overexpressing RIM15 disruptant, we performed metabolic flux analysis using 13C-labeled glycerol. Significant differences in metabolic flux distributions between the strains obtained from the culture after 35 and 85 generations in ALE were not found, indicating that metabolic flux changes might occur in the early phase of ALE (i.e., before 35 generations at least). Similarly, metabolic flux distribution was not significantly changed by RIM15 gene disruption. However, fluxes for the lower part of glycolysis and the TCA cycle were larger and, as a result, flux for the pentose phosphate pathway was smaller in the STL1-overexpressing RIM15 disruptant than in the strain obtained from the culture after 85 generations in ALE. It could be effective to increase flux for the pentose phosphate pathway to improve the glycerol assimilation ability in S. cerevisiae.
Collapse
Affiliation(s)
- Taiji Yuzawa
- School of Life Science and Technology, Tokyo Institute of Technology
| | | | | | - Kazuki Kawai
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Akihiko Kondo
- Center for Sustainable Resource Science, RIKEN.,Graduate School of Science, Technology and Innovation, Kobe University
| | - Takashi Hirasawa
- School of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|
9
|
Bouchez CL, Hammad N, Cuvellier S, Ransac S, Rigoulet M, Devin A. The Warburg Effect in Yeast: Repression of Mitochondrial Metabolism Is Not a Prerequisite to Promote Cell Proliferation. Front Oncol 2020; 10:1333. [PMID: 32974131 PMCID: PMC7466722 DOI: 10.3389/fonc.2020.01333] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/25/2020] [Indexed: 01/16/2023] Open
Abstract
O. Warburg conducted one of the first studies on tumor energy metabolism. His early discoveries pointed out that cancer cells display a decreased respiration and an increased glycolysis proportional to the increase in their growth rate, suggesting that they mainly depend on fermentative metabolism for ATP generation. Warburg's results and hypothesis generated controversies that are persistent to this day. It is thus of great importance to understand the mechanisms by which cancer cells can reversibly regulate the two pathways of their energy metabolism as well as the functioning of this metabolism in cell proliferation. Here, we made use of yeast as a model to study the Warburg effect and its eventual function in allowing an increased ATP synthesis to support cell proliferation. The role of oxidative phosphorylation repression in this effect was investigated. We show that yeast is a good model to study the Warburg effect, where all parameters and their modulation in the presence of glucose can be reconstituted. Moreover, we show that in this model, mitochondria are not dysfunctional, but that there are fewer mitochondria respiratory chain units per cell. Identification of the molecular mechanisms involved in this process allowed us to dissociate the parameters involved in the Warburg effect and show that oxidative phosphorylation repression is not mandatory to promote cell growth. Last but not least, we were able to show that neither cellular ATP synthesis flux nor glucose consumption flux controls cellular growth rate.
Collapse
Affiliation(s)
- Cyrielle L Bouchez
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France.,Univ. de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Noureddine Hammad
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France.,Univ. de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Sylvain Cuvellier
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France.,Univ. de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Stéphane Ransac
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France.,Univ. de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Michel Rigoulet
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France.,Univ. de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Anne Devin
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France.,Univ. de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| |
Collapse
|
10
|
Hijazi I, Knupp J, Chang A. Retrograde signaling mediates an adaptive survival response to endoplasmic reticulum stress in Saccharomyces cerevisiae. J Cell Sci 2020; 133:jcs.241539. [PMID: 32005698 DOI: 10.1242/jcs.241539] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/23/2020] [Indexed: 12/11/2022] Open
Abstract
One major cause of endoplasmic reticulum (ER) stress is homeostatic imbalance between biosynthetic protein folding and protein folding capacity. Cells utilize mechanisms such as the unfolded protein response (UPR) to cope with ER stress. Nevertheless, when ER stress is prolonged or severe, cell death may occur, accompanied by production of mitochondrial reactive oxygen species (ROS). Using a yeast model (Saccharomyces cerevisiae), we describe an innate, adaptive response to ER stress to increase select mitochondrial proteins, O2 consumption and cell survival. The mitochondrial response allows cells to resist additional ER stress. The ER stress-induced mitochondrial response is mediated by activation of retrograde (RTG) signaling to enhance anapleurotic reactions of the tricarboxylic acid cycle. Mitochondrial response to ER stress is accompanied by inactivation of the conserved TORC1 pathway, and activation of Snf1/AMPK, the conserved energy sensor and regulator of metabolism. Our results provide new insight into the role of respiration in cell survival in the face of ER stress, and should help in developing therapeutic strategies to limit cell death in disorders linked to ER stress.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Imadeddin Hijazi
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N University, Ann Arbor, MI 48109, USA
| | - Jeffrey Knupp
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N University, Ann Arbor, MI 48109, USA
| | - Amy Chang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 N University, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Bouchez CL, Yoboue ED, de la Rosa Vargas LE, Salin B, Cuvellier S, Rigoulet M, Duvezin-Caubet S, Devin A. "Labile" heme critically regulates mitochondrial biogenesis through the transcriptional co-activator Hap4p in Saccharomyces cerevisiae. J Biol Chem 2020; 295:5095-5109. [PMID: 32075909 DOI: 10.1074/jbc.ra120.012739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/13/2020] [Indexed: 01/02/2023] Open
Abstract
Heme (iron protoporphyrin IX) is a well-known prosthetic group for enzymes involved in metabolic pathways such as oxygen transport and electron transfer through the mitochondrial respiratory chain. However, heme has also been shown to be an important regulatory molecule (as "labile" heme) for diverse processes such as translation, kinase activity, and transcription in mammals, yeast, and bacteria. Taking advantage of a yeast strain deficient for heme production that enabled controlled modulation and monitoring of labile heme levels, here we investigated the role of labile heme in the regulation of mitochondrial biogenesis. This process is regulated by the HAP complex in yeast. Using several biochemical assays along with EM and epifluorescence microscopy, to the best of our knowledge, we show for the first time that cellular labile heme is critical for the post-translational regulation of HAP complex activity, most likely through the stability of the transcriptional co-activator Hap4p. Consequently, we found that labile heme regulates mitochondrial biogenesis and cell growth. The findings of our work highlight a new mechanism in the regulation of mitochondrial biogenesis by cellular metabolites.
Collapse
Affiliation(s)
- Cyrielle L Bouchez
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France.,Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Edgar D Yoboue
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France.,Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Livier E de la Rosa Vargas
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France.,Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Bénédicte Salin
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France.,Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Sylvain Cuvellier
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France.,Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Michel Rigoulet
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France.,Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Stéphane Duvezin-Caubet
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France.,Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - Anne Devin
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France .,Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| |
Collapse
|
12
|
Kawai K, Kanesaki Y, Yoshikawa H, Hirasawa T. Identification of metabolic engineering targets for improving glycerol assimilation ability of Saccharomyces cerevisiae based on adaptive laboratory evolution and transcriptome analysis. J Biosci Bioeng 2019; 128:162-169. [DOI: 10.1016/j.jbiosc.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 11/29/2022]
|
13
|
Gier S, Simon M, Nordström K, Khalifa S, Schulz MH, Schmitt MJ, Breinig F. Transcriptome Kinetics of Saccharomyces cerevisiae in Response to Viral Killer Toxin K1. Front Microbiol 2019; 10:1102. [PMID: 31156606 PMCID: PMC6531845 DOI: 10.3389/fmicb.2019.01102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/30/2019] [Indexed: 11/29/2022] Open
Abstract
The K1 A/B toxin secreted by virus-infected Saccharomyces cerevisiae strains kills sensitive cells via disturbance of cytoplasmic membrane functions. Despite decades of research, the mechanisms underlying K1 toxicity and immunity have not been elucidated yet. In a novel approach, this study aimed to characterize transcriptome changes in K1-treated sensitive yeast cells in a time-dependent manner. Global transcriptional profiling revealed substantial cellular adaptations in target cells resulting in 1,189 differentially expressed genes in total. Killer toxin K1 induced oxidative, cell wall and hyperosmotic stress responses as well as rapid down-regulation of transcription and translation. Essential pathways regulating energy metabolism were also significantly affected by the toxin. Remarkably, a futile cycle of the osmolytes trehalose and glycogen was identified probably representing a critical feature of K1 intoxication. In silico analysis suggested several transcription factors involved in toxin-triggered signal transduction. The identified transcriptome changes provide valuable hints to illuminate the still unknown molecular events leading to K1 toxicity and immunity implicating an evolutionarily conserved response at least initially counteracting ionophoric toxin action.
Collapse
Affiliation(s)
- Stefanie Gier
- Department of Molecular and Cell Biology, Saarland University, Saarbrücken, Germany.,Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Martin Simon
- Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany.,Molecular Cell Biology and Microbiology, University of Wuppertal, Wuppertal, Germany.,Molecular Cell Dynamics, Saarland University, Saarbrücken, Germany
| | - Karl Nordström
- Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany.,Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Salem Khalifa
- Cluster of Excellence "Multimodal Computing and Interaction", Max Planck Institute for Informatics, Saarland University, Saarbrücken, Germany
| | - Marcel H Schulz
- Cluster of Excellence "Multimodal Computing and Interaction", Max Planck Institute for Informatics, Saarland University, Saarbrücken, Germany
| | - Manfred J Schmitt
- Department of Molecular and Cell Biology, Saarland University, Saarbrücken, Germany.,Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Frank Breinig
- Department of Molecular and Cell Biology, Saarland University, Saarbrücken, Germany.,Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| |
Collapse
|
14
|
Devaux F, Thiébaut A. The regulation of iron homeostasis in the fungal human pathogen Candida glabrata. MICROBIOLOGY-SGM 2019; 165:1041-1060. [PMID: 31050635 DOI: 10.1099/mic.0.000807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron is an essential element to most microorganisms, yet an excess of iron is toxic. Hence, living cells have to maintain a tight balance between iron uptake and iron consumption and storage. The control of intracellular iron concentrations is particularly challenging for pathogens because mammalian organisms have evolved sophisticated high-affinity systems to sequester iron from microbes and because iron availability fluctuates among the different host niches. In this review, we present the current understanding of iron homeostasis and its regulation in the fungal pathogen Candida glabrata. This yeast is an emerging pathogen which has become the second leading cause of candidemia, a life-threatening invasive mycosis. C. glabrata is relatively poorly studied compared to the closely related model yeast Saccharomyces cerevisiae or to the pathogenic yeast Candida albicans. Still, several research groups have started to identify the actors of C. glabrata iron homeostasis and its transcriptional and post-transcriptional regulation. These studies have revealed interesting particularities of C. glabrata and have shed new light on the evolution of fungal iron homeostasis.
Collapse
Affiliation(s)
- Frédéric Devaux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Antonin Thiébaut
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| |
Collapse
|
15
|
Cerulus B, Jariani A, Perez-Samper G, Vermeersch L, Pietsch JMJ, Crane MM, New AM, Gallone B, Roncoroni M, Dzialo MC, Govers SK, Hendrickx JO, Galle E, Coomans M, Berden P, Verbandt S, Swain PS, Verstrepen KJ. Transition between fermentation and respiration determines history-dependent behavior in fluctuating carbon sources. eLife 2018; 7:e39234. [PMID: 30299256 PMCID: PMC6211830 DOI: 10.7554/elife.39234] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/05/2018] [Indexed: 01/24/2023] Open
Abstract
Cells constantly adapt to environmental fluctuations. These physiological changes require time and therefore cause a lag phase during which the cells do not function optimally. Interestingly, past exposure to an environmental condition can shorten the time needed to adapt when the condition re-occurs, even in daughter cells that never directly encountered the initial condition. Here, we use the molecular toolbox of Saccharomyces cerevisiae to systematically unravel the molecular mechanism underlying such history-dependent behavior in transitions between glucose and maltose. In contrast to previous hypotheses, the behavior does not depend on persistence of proteins involved in metabolism of a specific sugar. Instead, presence of glucose induces a gradual decline in the cells' ability to activate respiration, which is needed to metabolize alternative carbon sources. These results reveal how trans-generational transitions in central carbon metabolism generate history-dependent behavior in yeast, and provide a mechanistic framework for similar phenomena in other cell types.
Collapse
Affiliation(s)
- Bram Cerulus
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Abbas Jariani
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Gemma Perez-Samper
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Lieselotte Vermeersch
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Julian MJ Pietsch
- Centre for Synthetic and Systems Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Matthew M Crane
- Centre for Synthetic and Systems Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
- Department of PathologyUniversity of WashingtonWashingtonUnited States
| | - Aaron M New
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Brigida Gallone
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Miguel Roncoroni
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Maria C Dzialo
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Sander K Govers
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Jhana O Hendrickx
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Eva Galle
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Maarten Coomans
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Pieter Berden
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Sara Verbandt
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| | - Peter S Swain
- Centre for Synthetic and Systems Biology, School of Biological SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Kevin J Verstrepen
- VIB Laboratory for Systems BiologyVIB-KU Leuven Center for MicrobiologyLeuvenBelgium
- Departement Microbiële en Moleculaire Systemen (M2S)CMPG Laboratory of Genetics and GenomicsLeuvenBelgium
| |
Collapse
|
16
|
Shi X, Zou Y, Chen Y, Ying H. Overexpression of THI4 and HAP4 Improves Glucose Metabolism and Ethanol Production in Saccharomyces cerevisiae. Front Microbiol 2018; 9:1444. [PMID: 29997610 PMCID: PMC6030257 DOI: 10.3389/fmicb.2018.01444] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Redox homeostasis is essential to the maintenance of cell metabolism. Changes in the redox state cause global metabolic and transcriptional changes. Our previous study indicated that the overexpression of NADH oxidase in Saccharomyces cerevisiae led to increased glucose consumption and ethanol production. Gene expression related to thiamine synthesis and osmotolerance as well as HAP4 expression was increased in response to redox change caused by the overexpression of NADH oxidase. To identify detailed relationships among cofactor levels, thiamine synthesis, expression of HAP4, and osmotolerance, and to determine whether these changes are interdependent, THI4 and HAP4 were overexpressed in S. cerevisiae BY4741. The glucose consumption rate of THI4-overexpressing strain (thi4-OE) was the highest, followed by HAP4-overexpressing strain (hap4-OE) > NADH oxidase-overexpressing strain (nox-OE) > control strain (con), while strain hap4-OE showed the highest concentration of ethanol after 26 h of fermentation. Reduced glycerol production and increased osmotolerance were observed in thi4-OE and hap4-OE, as well as in nox-OE. HAP4 globally regulated thiamine synthesis, biomass synthesis, respiration, and osmotolerance of cells, which conferred the recombinant strain hap4-OE with faster glucose metabolism and enhanced stress resistance. Moreover, overexpression of HAP4 might extend the life span of cells under caloric restriction by lowering the NADH level. Although overexpression of THI4 and HAP4 induced various similar changes at both the metabolic and the transcriptional level, the regulatory effect of THI4 was more limited than that of HAP4, and was restricted to the growth phase of cells. Our findings are expected to benefit the bio-ethanol industry.
Collapse
Affiliation(s)
- Xinchi Shi
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,School of Life Sciences, Nantong University, Nantong, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Yanan Zou
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Yong Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, China
| | - Hanjie Ying
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, China
| |
Collapse
|
17
|
Hermes Transposon Mutagenesis Shows [URE3] Prion Pathology Prevented by a Ubiquitin-Targeting Protein: Evidence for Carbon/Nitrogen Assimilation Cross Talk and a Second Function for Ure2p in Saccharomyces cerevisiae. Genetics 2018; 209:789-800. [PMID: 29769283 DOI: 10.1534/genetics.118.300981] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/01/2018] [Indexed: 11/18/2022] Open
Abstract
[URE3] is an amyloid-based prion of Ure2p, a regulator of nitrogen catabolism. While most "variants" of the [URE3] prion are toxic, mild variants that only slightly slow growth are more widely studied. The existence of several antiprion systems suggests that some components may be protecting cells from potential detrimental effects of mild [URE3] variants. Our extensive Hermes transposon mutagenesis showed that disruption of YLR352W dramatically slows the growth of [URE3-1] strains. Ylr352wp is an F-box protein, directing selection of substrates for ubiquitination by a "cullin"-containing E3 ligase. For efficient ubiquitylation, cullin-dependent E3 ubiquitin ligases must be NEDDylated, modified by a ubiquitin-related peptide called NEDD8 (Rub1p in yeast). Indeed, we find that disruption of NEDDylation-related genes RUB1, ULA1, UBA3, and UBC12 is also counterselected in our screen. We find that like ylr352wΔ [URE3] strains, ylr352wΔ ure2Δ strains do not grow on nonfermentable carbon sources. Overexpression of Hap4p, a transcription factor stimulating expression of mitochondrial proteins, or mutation of GLN1, encoding glutamine synthetase, allows growth of ylr352w∆ [URE3] strains on glycerol media. Supplying proline as a nitrogen source shuts off the nitrogen catabolite repression (NCR) function of Ure2p, but does not slow growth of ylr352wΔ strains, suggesting a distinct function of Ure2p in carbon catabolism. Also, gln1 mutations impair NCR, but actually relieve the growth defect of ylr352wΔ [URE3] and ylr352wΔ ure2Δ strains, again showing that loss of NCR is not producing the growth defect and suggesting that Ure2p has another function. YLR352W largely protects cells from the deleterious effects of otherwise mild [URE3] variants or of a ure2 mutation (the latter a rarer event), and we name it LUG1 (lets [URE3]/ure2 grow).
Collapse
|
18
|
Zhang T, Bu P, Zeng J, Vancura A. Increased heme synthesis in yeast induces a metabolic switch from fermentation to respiration even under conditions of glucose repression. J Biol Chem 2017; 292:16942-16954. [PMID: 28830930 DOI: 10.1074/jbc.m117.790923] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/18/2017] [Indexed: 01/13/2023] Open
Abstract
Regulation of mitochondrial biogenesis and respiration is a complex process that involves several signaling pathways and transcription factors as well as communication between the nuclear and mitochondrial genomes. Under aerobic conditions, the budding yeast Saccharomyces cerevisiae metabolizes glucose predominantly by glycolysis and fermentation. We have recently shown that altered chromatin structure in yeast induces respiration by a mechanism that requires transport and metabolism of pyruvate in mitochondria. However, how pyruvate controls the transcriptional responses underlying the metabolic switch from fermentation to respiration is unknown. Here, we report that this pyruvate effect involves heme. We found that heme induces transcription of HAP4, the transcriptional activation subunit of the Hap2/3/4/5p complex, required for growth on nonfermentable carbon sources, in a Hap1p- and Hap2/3/4/5p-dependent manner. Increasing cellular heme levels by inactivating ROX1, which encodes a repressor of many hypoxic genes, or by overexpressing HEM3 or HEM12 induced respiration and elevated ATP levels. Increased heme synthesis, even under conditions of glucose repression, activated Hap1p and the Hap2/3/4/5p complex and induced transcription of HAP4 and genes required for the tricarboxylic acid (TCA) cycle, electron transport chain, and oxidative phosphorylation, leading to a switch from fermentation to respiration. Conversely, inhibiting metabolic flux into the TCA cycle reduced cellular heme levels and HAP4 transcription. Together, our results indicate that the glucose-mediated repression of respiration in budding yeast is at least partly due to the low cellular heme level.
Collapse
Affiliation(s)
- Tiantian Zhang
- From the Department of Biological Sciences, St. John's University, Queens, New York 11439
| | - Pengli Bu
- From the Department of Biological Sciences, St. John's University, Queens, New York 11439
| | - Joey Zeng
- From the Department of Biological Sciences, St. John's University, Queens, New York 11439
| | - Ales Vancura
- From the Department of Biological Sciences, St. John's University, Queens, New York 11439
| |
Collapse
|
19
|
The CCAAT-Binding Complex Controls Respiratory Gene Expression and Iron Homeostasis in Candida Glabrata. Sci Rep 2017; 7:3531. [PMID: 28615656 PMCID: PMC5471220 DOI: 10.1038/s41598-017-03750-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/20/2017] [Indexed: 12/04/2022] Open
Abstract
The CCAAT-binding complex (CBC) is a heterotrimeric transcription factor which is widely conserved in eukaryotes. In the model yeast S. cerevisiae, CBC positively controls the expression of respiratory pathway genes. This role involves interactions with the regulatory subunit Hap4. In many pathogenic fungi, CBC interacts with the HapX regulatory subunit to control iron homeostasis. HapX is a bZIP protein which only shares with Hap4 the Hap4Like domain (Hap4L) required for its interaction with CBC. Here, we show that CBC has a dual role in the pathogenic yeast C. glabrata. It is required, along with Hap4, for the constitutive expression of respiratory genes and it is also essential for the iron stress response, which is mediated by the Yap5 bZIP transcription factor. Interestingly, Yap5 contains a vestigial Hap4L domain. The mutagenesis of this domain severely reduced Yap5 binding to its targets and compromised its interaction with Hap5. Hence, Yap5, like HapX in other species, acts as a CBC regulatory subunit in the regulation of iron stress response. This work reveals new aspects of iron homeostasis in C. glabrata and of the evolution of the role of CBC and Hap4L-bZIP proteins in this process.
Collapse
|
20
|
Bolotin-Fukuhara M. Thirty years of the HAP2/3/4/5 complex. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:543-559. [DOI: 10.1016/j.bbagrm.2016.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 01/22/2023]
|
21
|
Laera L, Guaragnella N, Ždralević M, Marzulli D, Liu Z, Giannattasio S. The transcription factors ADR1 or CAT8 are required for RTG pathway activation and evasion from yeast acetic acid-induced programmed cell death in raffinose. MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 3:621-631. [PMID: 28357334 PMCID: PMC5348981 DOI: 10.15698/mic2016.12.549] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 10/26/2016] [Indexed: 12/28/2022]
Abstract
Yeast Saccharomyces cerevisiae grown on glucose undergoes programmed cell death (PCD) induced by acetic acid (AA-PCD), but evades PCD when grown in raffinose. This is due to concomitant relief of carbon catabolite repression (CCR) and activation of mitochondrial retrograde signaling, a mitochondria-to-nucleus communication pathway causing up-regulation of various nuclear target genes, such as CIT2, encoding peroxisomal citrate synthase, dependent on the positive regulator RTG2 in response to mitochondrial dysfunction. CCR down-regulates genes mainly involved in mitochondrial respiratory metabolism. In this work, we investigated the relationships between the RTG and CCR pathways in the modulation of AA-PCD sensitivity under glucose repression or de-repression conditions. Yeast single and double mutants lacking RTG2 and/or certain factors regulating carbon source utilization, including MIG1, HXK2, ADR1, CAT8, and HAP4, have been analyzed for their survival and CIT2 expression after acetic acid treatment. ADR1 and CAT8 were identified as positive regulators of RTG-dependent gene transcription. ADR1 and CAT8 interact with RTG2 and with each other in inducing cell resistance to AA-PCD in raffinose and controlling the nature of cell death. In the absence of ADR1 and CAT8, AA-PCD evasion is acquired through activation of an alternative factor/pathway repressed by RTG2, suggesting that RTG2 may play a function in promoting necrotic cell death in repressing conditions when RTG pathway is inactive. Moreover, our data show that simultaneous mitochondrial retrograde pathway activation and SNF1-dependent relief of CCR have a key role in central carbon metabolism reprogramming which modulates the yeast acetic acid-stress response.
Collapse
Affiliation(s)
- Luna Laera
- National Research Council of Italy, Institute of Biomembranes and
Bioenergetics, Bari, Italy
| | - Nicoletta Guaragnella
- National Research Council of Italy, Institute of Biomembranes and
Bioenergetics, Bari, Italy
| | - Maša Ždralević
- National Research Council of Italy, Institute of Biomembranes and
Bioenergetics, Bari, Italy
| | - Domenico Marzulli
- National Research Council of Italy, Institute of Biomembranes and
Bioenergetics, Bari, Italy
| | - Zhengchang Liu
- Department of Biological Sciences, University of New Orleans, New
Orleans, LA, USA
| | - Sergio Giannattasio
- National Research Council of Italy, Institute of Biomembranes and
Bioenergetics, Bari, Italy
| |
Collapse
|
22
|
Shi X, Zou Y, Chen Y, Zheng C, Ying H. Overexpression of a Water-Forming NADH Oxidase Improves the Metabolism and Stress Tolerance of Saccharomyces cerevisiae in Aerobic Fermentation. Front Microbiol 2016; 7:1427. [PMID: 27679617 PMCID: PMC5020133 DOI: 10.3389/fmicb.2016.01427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/29/2016] [Indexed: 01/01/2023] Open
Abstract
Redox homeostasis is fundamental to the maintenance of metabolism. Redox imbalance can cause oxidative stress, which affects metabolism and growth. Water-forming NADH oxidase regulates the redox balance by oxidizing cytosolic NADH to NAD+, which relieves cytosolic NADH accumulation through rapid glucose consumption in Saccharomyces cerevisiae, thus decreasing the production of the by product glycerol in industrial ethanol production. Here, we studied the effects of overexpression of a water-forming NADH oxidase from Lactococcus lactis on the stress response of S. cerevisiae in aerobic batch fermentation, and we constructed an interaction network of transcriptional regulation and metabolic networks to study the effects of and mechanisms underlying NADH oxidase regulation. The oxidase-overexpressing strain (NOX) showed increased glucose consumption, growth, and ethanol production, while glycerol production was remarkably lower. Glucose was exhausted by NOX at 26 h, while 18.92 ± 0.94 g/L residual glucose was left in the fermentation broth of the control strain (CON) at this time point. At 29.5 h, the ethanol concentration for NOX peaked at 35.25 ± 1.76 g/L, which was 14.37% higher than that for CON (30.82 ± 1.54 g/L). Gene expression involved in the synthesis of thiamine, which is associated with stress responses in various organisms, was increased in NOX. The transcription factor HAP4 was significantly upregulated in NOX at the late-exponential phase, indicating a diauxic shift in response to starvation. The apoptosis-inducing factor Nuc1 was downregulated while the transcription factor Sok2, which regulates the production of the small signaling molecule ammonia, was upregulated at the late-exponential phase, benefiting young cells on the rim. Reactive oxygen species production was decreased by 10% in NOX, supporting a decrease in apoptosis. The HOG pathway was not activated, although the osmotic stress was truly higher, indicating improved osmotolerance. Thus, the NADH oxidase can regulate the metabolism during aerobic fermentation in S. cerevisiae, thereby protecting cells against several stresses. Our findings indicate its suitability for use in industrial processes.
Collapse
Affiliation(s)
- Xinchi Shi
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China
| | - Yanan Zou
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China
| | - Yong Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China; Jiangsu National Synergistic Innovation Center for Advanced MaterialsNanjing, China
| | - Cheng Zheng
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China
| | - Hanjie Ying
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjing, China; Jiangsu National Synergistic Innovation Center for Advanced MaterialsNanjing, China
| |
Collapse
|
23
|
Reduced Histone Expression or a Defect in Chromatin Assembly Induces Respiration. Mol Cell Biol 2016; 36:1064-77. [PMID: 26787838 DOI: 10.1128/mcb.00770-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/07/2016] [Indexed: 12/29/2022] Open
Abstract
Regulation of mitochondrial biogenesis and respiration is a complex process that involves several signaling pathways and transcription factors as well as communication between the nuclear and mitochondrial genomes. Here we show that decreased expression of histones or a defect in nucleosome assembly in the yeast Saccharomyces cerevisiae results in increased mitochondrial DNA (mtDNA) copy numbers, oxygen consumption, ATP synthesis, and expression of genes encoding enzymes of the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). The metabolic shift from fermentation to respiration induced by altered chromatin structure is associated with the induction of the retrograde (RTG) pathway and requires the activity of the Hap2/3/4/5p complex as well as the transport and metabolism of pyruvate in mitochondria. Together, our data indicate that altered chromatin structure relieves glucose repression of mitochondrial respiration by inducing transcription of the TCA cycle and OXPHOS genes carried by both nuclear and mitochondrial DNA.
Collapse
|
24
|
Tsang F, Lin SJ. Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD + homeostasis and contributes to longevity. ACTA ACUST UNITED AC 2015; 10:333-357. [PMID: 27683589 DOI: 10.1007/s11515-015-1367-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nutrient sensing pathways and their regulation grant cells control over their metabolism and growth in response to changing nutrients. Factors that regulate nutrient sensing can also modulate longevity. Reduced activity of nutrient sensing pathways such as glucose-sensing PKA, nitrogen-sensing TOR and S6 kinase homolog Sch9 have been linked to increased life span in the yeast, Saccharomyces cerevisiae, and higher eukaryotes. Recently, reduced activity of amino acid sensing SPS pathway was also shown to increase yeast life span. Life span extension by reduced SPS activity requires enhanced NAD+ (nicotinamide adenine dinucleotide, oxidized form) and nicotinamide riboside (NR, a NAD+ precursor) homeostasis. Maintaining adequate NAD+ pools has been shown to play key roles in life span extension, but factors regulating NAD+ metabolism and homeostasis are not completely understood. Recently, NAD+ metabolism was also linked to the phosphate (Pi)-sensing PHO pathway in yeast. Canonical PHO activation requires Pi-starvation. Interestingly, NAD+ depletion without Pi-starvation was sufficient to induce PHO activation, increasing NR production and mobilization. Moreover, SPS signaling appears to function in parallel with PHO signaling components to regulate NR/NAD+ homeostasis. These studies suggest that NAD+ metabolism is likely controlled by and/or coordinated with multiple nutrient sensing pathways. Indeed, cross-regulation of PHO, PKA, TOR and Sch9 pathways was reported to potentially affect NAD+ metabolism; though detailed mechanisms remain unclear. This review discusses yeast longevity-related nutrient sensing pathways and possible mechanisms of life span extension, regulation of NAD+ homeostasis, and cross-talk among nutrient sensing pathways and NAD+ homeostasis.
Collapse
Affiliation(s)
- Felicia Tsang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
25
|
Petryk N, Zhou YF, Sybirna K, Mucchielli MH, Guiard B, Bao WG, Stasyk OV, Stasyk OG, Krasovska OS, Budin K, Reymond N, Imbeaud S, Coudouel S, Delacroix H, Sibirny A, Bolotin-Fukuhara M. Functional study of the Hap4-like genes suggests that the key regulators of carbon metabolism HAP4 and oxidative stress response YAP1 in yeast diverged from a common ancestor. PLoS One 2014; 9:e112263. [PMID: 25479159 PMCID: PMC4257542 DOI: 10.1371/journal.pone.0112263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 10/06/2014] [Indexed: 12/05/2022] Open
Abstract
The transcriptional regulator HAP4, induced by respiratory substrates, is involved in the balance between fermentation and respiration in S. cerevisiae. We identified putative orthologues of the Hap4 protein in all ascomycetes, based only on a conserved sixteen amino acid-long motif. In addition to this motif, some of these proteins contain a DNA-binding motif of the bZIP type, while being nonetheless globally highly divergent. The genome of the yeast Hansenula polymorpha contains two HAP4-like genes encoding the protein HpHap4-A which, like ScHap4, is devoid of a bZIP motif, and HpHap4-B which contains it. This species has been chosen for a detailed examination of their respective properties. Based mostly on global gene expression studies performed in the S. cerevisiae HAP4 disruption mutant (ScΔhap4), we show here that HpHap4-A is functionally equivalent to ScHap4, whereas HpHap4-B is not. Moreover HpHAP4-B is able to complement the H2O2 hypersensitivity of the ScYap1 deletant, YAP1 being, in S. cerevisiae, the main regulator of oxidative stress. Finally, a transcriptomic analysis performed in the ScΔyap1 strain overexpressing HpHAP4-B shows that HpHap4-B acts both on oxidative stress response and carbohydrate metabolism in a manner different from both ScYap1 and ScHap4. Deletion of these two genes in their natural host, H. polymorpha, confirms that HpHAP4-A participates in the control of the fermentation/respiration balance, while HpHAP4-B is involved in oxidative stress since its deletion leads to hypersensitivity to H2O2. These data, placed in an evolutionary context, raise new questions concerning the evolution of the HAP4 transcriptional regulation function and suggest that Yap1 and Hap4 have diverged from a unique regulatory protein in the fungal ancestor.
Collapse
Affiliation(s)
- Nataliya Petryk
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
- Institute of Cell Biology, National Academy of Sciences, Lviv, Ukraine
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | - You-Fang Zhou
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
| | - Kateryna Sybirna
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
| | - Marie-Hélène Mucchielli
- Gif/Orsay DNA MicroArray Platform, Gif sur Yvette, France
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | - Bernard Guiard
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | - Wei-Guo Bao
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
| | - Oleh V. Stasyk
- Institute of Cell Biology, National Academy of Sciences, Lviv, Ukraine
| | - Olena G. Stasyk
- Institute of Cell Biology, National Academy of Sciences, Lviv, Ukraine
- Department of Biochemistry, Ivan Franko Lviv National University, Lviv, Ukraine
| | | | - Karine Budin
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
- Gif/Orsay DNA MicroArray Platform, Gif sur Yvette, France
| | - Nancie Reymond
- Gif/Orsay DNA MicroArray Platform, Gif sur Yvette, France
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | | | | | - Hervé Delacroix
- Gif/Orsay DNA MicroArray Platform, Gif sur Yvette, France
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | - Andriy Sibirny
- Institute of Cell Biology, National Academy of Sciences, Lviv, Ukraine
- University of Rzeszow, Rzeszow, Poland
| | - Monique Bolotin-Fukuhara
- Institut de Génétique et Microbiologie, IFR Génome 115, Université Paris-Sud and CNRS, Orsay, France
- * E-mail:
| |
Collapse
|
26
|
Binai NA, Bisschops MMM, van Breukelen B, Mohammed S, Loeff L, Pronk JT, Heck AJR, Daran-Lapujade P, Slijper M. Proteome adaptation of Saccharomyces cerevisiae to severe calorie restriction in Retentostat cultures. J Proteome Res 2014; 13:3542-53. [PMID: 25000127 DOI: 10.1021/pr5003388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Stationary-phase, carbon-starved shake-flask cultures of Saccharomyces cerevisiae are popular models for studying eukaryotic chronological aging. However, their nutrient-starved physiological status differs substantially from that of postmitotic metazoan cells. Retentostat cultures offer an attractive alternative model system in which yeast cells, maintained under continuous calorie restriction, hardly divide but retain high metabolic activity and viability for prolonged periods of time. Using TMT labeling and UHPLC-MS/MS, the present study explores the proteome of yeast cultures during transition from exponential growth to near-zero growth in severely calorie-restricted retentostats. This transition elicited protein level changes in 20% of the yeast proteome. Increased abundance of heat shock-related proteins correlated with increased transcript levels of the corresponding genes and was consistent with a strongly increased heat shock tolerance of retentostat-grown cells. A sizable fraction (43%) of the proteins with increased abundance under calorie restriction was involved in oxidative phosphorylation and in various mitochondrial functions that, under the anaerobic, nongrowing conditions used, have a very limited role. Although it may seem surprising that yeast cells confronted with severe calorie restriction invest in the synthesis of proteins that, under those conditions, do not contribute to fitness, these responses may confer metabolic flexibility and thereby a selective advantage in fluctuating natural habitats.
Collapse
Affiliation(s)
- Nadine A Binai
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Xu W, Wang J, Li Q. Microarray studies on lager brewer's yeasts reveal cell status in the process of autolysis. FEMS Yeast Res 2014; 14:714-28. [DOI: 10.1111/1567-1364.12156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/22/2014] [Accepted: 04/03/2014] [Indexed: 12/01/2022] Open
Affiliation(s)
- Weina Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology of Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| |
Collapse
|
28
|
Ostojić J, Glatigny A, Herbert CJ, Dujardin G, Bonnefoy N. Does the study of genetic interactions help predict the function of mitochondrial proteins in Saccharomyces cerevisiae? Biochimie 2013; 100:27-37. [PMID: 24262604 DOI: 10.1016/j.biochi.2013.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
Mitochondria are complex organelles of eukaryotic cells that contain their own genome, encoding key subunits of the respiratory complexes. The successive steps of mitochondrial gene expression are intimately linked, and are under the control of a large number of nuclear genes encoding factors that are imported into mitochondria. Investigating the relationships between these genes and their interaction networks, and whether they reveal direct or indirect partners, can shed light on their role in mitochondrial biogenesis, as well as identify new actors in this process. These studies, mainly developed in yeasts, are significant because mammalian equivalents of such yeast genes are candidate genes in mitochondrial pathologies. In practice, studies of physical, chemical and genetic interactions can be undertaken. The search for genetic interactions, either aggravating or alleviating the phenotype of the starting mutants, has proved to be particularly powerful in yeast since even subtle changes in respiratory phenotypes can be screened in a very efficient way. In addition, several high throughput genetic approaches have recently been developed. In this review we analyze the genetic network of three genes involved in different steps of mitochondrial gene expression, from the transcription and translation of mitochondrial RNAs to the insertion of newly synthesized proteins into the inner mitochondrial membrane, and we examine their relevance to our understanding of mitochondrial biogenesis. We find that these genetic interactions are seldom redundant with physical interactions, and thus bring a considerable amount of original and significant information as well as open new areas of research.
Collapse
Affiliation(s)
- Jelena Ostojić
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Annie Glatigny
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Christopher J Herbert
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Geneviève Dujardin
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Nathalie Bonnefoy
- Centre de Génétique Moléculaire, CNRS UPR3404 Associated to the University Paris XI-Sud, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
29
|
Abstract
Availability of key nutrients, such as sugars, amino acids, and nitrogen compounds, dictates the developmental programs and the growth rates of yeast cells. A number of overlapping signaling networks--those centered on Ras/protein kinase A, AMP-activated kinase, and target of rapamycin complex I, for instance--inform cells on nutrient availability and influence the cells' transcriptional, translational, posttranslational, and metabolic profiles as well as their developmental decisions. Here I review our current understanding of the structures of the networks responsible for assessing the quantity and quality of carbon and nitrogen sources. I review how these signaling pathways impinge on transcriptional, metabolic, and developmental programs to optimize survival of cells under different environmental conditions. I highlight the profound knowledge we have gained on the structure of these signaling networks but also emphasize the limits of our current understanding of the dynamics of these signaling networks. Moreover, the conservation of these pathways has allowed us to extrapolate our finding with yeast to address issues of lifespan, cancer metabolism, and growth control in more complex organisms.
Collapse
Affiliation(s)
- James R Broach
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
| |
Collapse
|
30
|
Ocampo A, Liu J, Schroeder EA, Shadel GS, Barrientos A. Mitochondrial respiratory thresholds regulate yeast chronological life span and its extension by caloric restriction. Cell Metab 2012; 16:55-67. [PMID: 22768839 PMCID: PMC3397320 DOI: 10.1016/j.cmet.2012.05.013] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/23/2012] [Accepted: 05/15/2012] [Indexed: 01/28/2023]
Abstract
We have explored the role of mitochondrial function in aging by genetically and pharmacologically modifying yeast cellular respiration production during the exponential and/or stationary growth phases and determining how this affects chronological life span (CLS). Our results demonstrate that respiration is essential during both growth phases for standard CLS, but that yeast have a large respiratory capacity, and only deficiencies below a threshold (~40% of wild-type) significantly curtail CLS. Extension of CLS by caloric restriction also required respiration above a similar threshold during exponential growth and completely alleviated the need for respiration in the stationary phase. Finally, we show that supplementation of media with 1% trehalose, a storage carbohydrate, restores wild-type CLS to respiratory-null cells. We conclude that mitochondrial respiratory thresholds regulate yeast CLS and its extension by caloric restriction by increasing stress resistance, an important component of which is the optimal accumulation and mobilization of nutrient stores.
Collapse
Affiliation(s)
- Alejandro Ocampo
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Jingjing Liu
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Elizabeth A. Schroeder
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
| | - Gerald S. Shadel
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
| | - Antoni Barrientos
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136
- Correspondence: ; Phone: 305-2438683; FAX: 305-2437404
| |
Collapse
|
31
|
Dueñas-Sánchez R, Gutiérrez G, Rincón AM, Codón AC, Benítez T. Transcriptional regulation of fermentative and respiratory metabolism in Saccharomyces cerevisiae industrial bakers' strains. FEMS Yeast Res 2012; 12:625-36. [PMID: 22591337 DOI: 10.1111/j.1567-1364.2012.00813.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/06/2012] [Indexed: 11/30/2022] Open
Abstract
Bakers' yeast-producing companies grow cells under respiratory conditions, at a very high growth rate. Some desirable properties of bakers' yeast may be altered if fermentation rather than respiration occurs during biomass production. That is why differences in gene expression patterns that take place when industrial bakers' yeasts are grown under fermentative, rather than respiratory conditions, were examined. Macroarray analysis of V1 strain indicated changes in gene expression similar to those already described in laboratory Saccharomyces cerevisiae strains: repression of most genes related to respiration and oxidative metabolism and derepression of genes related to ribosome biogenesis and stress resistance in fermentation. Under respiratory conditions, genes related to the glyoxylate and Krebs cycles, respiration, gluconeogenesis, and energy production are activated. DOG21 strain, a partly catabolite-derepressed mutant derived from V1, displayed gene expression patterns quite similar to those of V1, although lower levels of gene expression and changes in fewer number of genes as compared to V1 were both detected in all cases. However, under fermentative conditions, DOG21 mutant significantly increased the expression of SNF1 -controlled genes and other genes involved in stress resistance, whereas the expression of the HXK2 gene, involved in catabolite repression, was considerably reduced, according to the pleiotropic stress-resistant phenotype of this mutant. These results also seemed to suggest that stress-resistant genes control desirable bakers' yeast qualities.
Collapse
|
32
|
Reactive oxygen species-mediated control of mitochondrial biogenesis. Int J Cell Biol 2012; 2012:403870. [PMID: 22693510 PMCID: PMC3369472 DOI: 10.1155/2012/403870] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/29/2012] [Accepted: 03/31/2012] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial biogenesis is a complex process. It necessitates the contribution of both the nuclear and the mitochondrial genomes and therefore crosstalk between the nucleus and mitochondria. It is now well established that cellular mitochondrial content can vary according to a number of stimuli and physiological states in eukaryotes. The knowledge of the actors and signals regulating the mitochondrial biogenesis is thus of high importance. The cellular redox state has been considered for a long time as a key element in the regulation of various processes. In this paper, we report the involvement of the oxidative stress in the regulation of some actors of mitochondrial biogenesis.
Collapse
|
33
|
Yoboue ED, Augier E, Galinier A, Blancard C, Pinson B, Casteilla L, Rigoulet M, Devin A. cAMP-induced mitochondrial compartment biogenesis: role of glutathione redox state. J Biol Chem 2012; 287:14569-78. [PMID: 22396541 DOI: 10.1074/jbc.m111.302786] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cell fate and proliferation are tightly linked to the regulation of the mitochondrial energy metabolism. Hence, mitochondrial biogenesis regulation, a complex process that requires a tight coordination in the expression of the nuclear and mitochondrial genomes, has a major impact on cell fate and is of high importance. Here, we studied the molecular mechanisms involved in the regulation of mitochondrial biogenesis through a nutrient-sensing pathway, the Ras-cAMP pathway. Activation of this pathway induces a decrease in the cellular phosphate potential that alleviates the redox pressure on the mitochondrial respiratory chain. One of the cellular consequences of this modulation of cellular phosphate potential is an increase in the cellular glutathione redox state. The redox state of the glutathione disulfide-glutathione couple is a well known important indicator of the cellular redox environment, which is itself tightly linked to mitochondrial activity, mitochondria being the main cellular producer of reactive oxygen species. The master regulator of mitochondrial biogenesis in yeast (i.e. the transcriptional co-activator Hap4p) is positively regulated by the cellular glutathione redox state. Using a strain that is unable to modulate its glutathione redox state (Δglr1), we pinpoint a positive feedback loop between this redox state and the control of mitochondrial biogenesis. This is the first time that control of mitochondrial biogenesis through glutathione redox state has been shown.
Collapse
Affiliation(s)
- Edgar D Yoboue
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Boender LGM, Maris AJA, Hulster EAF, Almering MJH, Klei IJ, Veenhuis M, Winde JH, Pronk JT, Daran-Lapujade P. Cellular responses of Saccharomyces cerevisiae at near-zero growth rates: transcriptome analysis of anaerobic retentostat cultures. FEMS Yeast Res 2011; 11:603-20. [PMID: 22093745 PMCID: PMC3498732 DOI: 10.1111/j.1567-1364.2011.00750.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 07/09/2011] [Accepted: 08/16/2011] [Indexed: 11/30/2022] Open
Abstract
Extremely low specific growth rates (below 0.01 h(-1) ) represent a largely unexplored area of microbial physiology. In this study, anaerobic, glucose-limited retentostats were used to analyse physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to cultivation at near-zero specific growth rates. While quiescence is typically investigated as a result of carbon starvation, cells in retentostat are fed by small, but continuous carbon and energy supply. Yeast cells cultivated near-zero specific growth rates, while metabolically active, exhibited characteristics previously associated with quiescence, including accumulation of storage polymers and an increased expression of genes involved in exit from the cell cycle into G(0) . Unexpectedly, analysis of transcriptome data from retentostat and chemostat cultures showed, as specific growth rate was decreased, that quiescence-related transcriptional responses were already set in at specific growth rates above 0.025 h(-1) . These observations stress the need for systematic dissection of physiological responses to slow growth, quiescence, ageing and starvation and indicate that controlled cultivation systems such as retentostats can contribute to this goal. Furthermore, cells in retentostat do not (or hardly) divide while remaining metabolically active, which emulates the physiological status of metazoan post-mitotic cells. We propose retentostat as a powerful cultivation tool to investigate chronological ageing-related processes.
Collapse
Affiliation(s)
- Léonie GM Boender
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
- Department of Biotechnology, Delft University of Technology, DelftThe Netherlands
| | - Antonius JA Maris
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
- Department of Biotechnology, Delft University of Technology, DelftThe Netherlands
| | - Erik AF Hulster
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
- Department of Biotechnology, Delft University of Technology, DelftThe Netherlands
| | - Marinka JH Almering
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
- Department of Biotechnology, Delft University of Technology, DelftThe Netherlands
| | - Ida J Klei
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
- Molecular Cell Biology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenHaren, The Netherlands
| | - Marten Veenhuis
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
- Molecular Cell Biology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenHaren, The Netherlands
| | - Johannes H Winde
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
- Department of Biotechnology, Delft University of Technology, DelftThe Netherlands
| | - Jack T Pronk
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
- Department of Biotechnology, Delft University of Technology, DelftThe Netherlands
| | - Pascale Daran-Lapujade
- Kluyver Centre for Genomics of Industrial FermentationDelft, The Netherlands
- Department of Biotechnology, Delft University of Technology, DelftThe Netherlands
| |
Collapse
|
35
|
Rao AR, Pellegrini M. Regulation of the yeast metabolic cycle by transcription factors with periodic activities. BMC SYSTEMS BIOLOGY 2011; 5:160. [PMID: 21992532 PMCID: PMC3216092 DOI: 10.1186/1752-0509-5-160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 10/12/2011] [Indexed: 01/03/2023]
Abstract
Background When growing budding yeast under continuous, nutrient-limited conditions, over half of yeast genes exhibit periodic expression patterns. Periodicity can also be observed in respiration, in the timing of cell division, as well as in various metabolite levels. Knowing the transcription factors involved in the yeast metabolic cycle is helpful for determining the cascade of regulatory events that cause these patterns. Results Transcription factor activities were estimated by linear regression using time series and genome-wide transcription factor binding data. Time-translation matrices were estimated using least squares and were used to model the interactions between the most significant transcription factors. The top transcription factors have functions involving respiration, cell cycle events, amino acid metabolism and glycolysis. Key regulators of transitions between phases of the yeast metabolic cycle appear to be Hap1, Hap4, Gcn4, Msn4, Swi6 and Adr1. Conclusions Analysis of the phases at which transcription factor activities peak supports previous findings suggesting that the various cellular functions occur during specific phases of the yeast metabolic cycle.
Collapse
Affiliation(s)
- Aliz R Rao
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, USA.
| | | |
Collapse
|
36
|
Shifting the fermentative/oxidative balance in Saccharomyces cerevisiae by transcriptional deregulation of Snf1 via overexpression of the upstream activating kinase Sak1p. Appl Environ Microbiol 2011; 77:1981-9. [PMID: 21257817 DOI: 10.1128/aem.02219-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
With the aim to reduce fermentation by-products and to promote respiratory metabolism by shifting the fermentative/oxidative balance, we evaluated the constitutive overexpression of the SAK1 and HAP4 genes in Saccharomyces cerevisiae. Sak1p is one of three kinases responsible for the phosphorylation, and thereby the activation, of the Snf1p complex, while Hap4p is the activator subunit of the Hap2/3/4/5 transcriptional complex. We compared the physiology of a SAK1-overexpressing strain with that of a strain overexpressing the HAP4 gene in wild-type and sdh2 deletion (respiratory-deficient) backgrounds. Both SAK1 and HAP4 overexpressions led to the upregulation of glucose-repressed genes and to reduced by-product formation rates (ethanol and glycerol). SAK1 overexpression had a greater impact on growth rates than did HAP4 overexpression. Elevated transcript levels of SAK1, but not HAP4, resulted in increased biomass yields in batch cultures grown on glucose (aerobic and excess glucose) as well as on nonfermentable carbon sources. SAK1 overexpression, but not the combined overexpression of SAK1 and HAP4 or the overexpression of HAP4 alone, restored growth on ethanol in an sdh2 deletion strain. In glucose-grown shake flask cultures, the sdh2 deletion strain with SAK1 and HAP4 overexpression produced succinic acid at a titer of 8.5 g liter(-1) and a yield of 0.26 mol (mol glucose)(-1) within 216 h. We here report for the first time that a constitutively high level of expression of SAK1 alleviates glucose repression and shifts the fermentative/oxidative balance under both glucose-repressed and -derepressed conditions.
Collapse
|
37
|
Leadsham JE, Gourlay CW. cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation. BMC Cell Biol 2010; 11:92. [PMID: 21108829 PMCID: PMC3001716 DOI: 10.1186/1471-2121-11-92] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/25/2010] [Indexed: 12/31/2022] Open
Abstract
Background Appropriate control of mitochondrial function, morphology and biogenesis are crucial determinants of the general health of eukaryotic cells. It is therefore imperative that we understand the mechanisms that co-ordinate mitochondrial function with environmental signaling systems. The regulation of yeast mitochondrial function in response to nutritional change can be modulated by PKA activity. Unregulated PKA activity can lead to the production of mitochondria that are prone to the production of ROS, and an apoptotic form of cell death. Results We present evidence that mitochondria are sensitive to the level of cAMP/PKA signaling and can respond by modulating levels of respiratory activity or committing to self execution. The inappropriate activation of one of the yeast PKA catalytic subunits, Tpk3p, is sufficient to commit cells to an apoptotic death through transcriptional changes that promote the production of dysfunctional, ROS producing mitochondria. Our data implies that cAMP/PKA regulation of mitochondrial function that promotes apoptosis engages the function of multiple transcription factors, including HAP4, SOK2 and SCO1. Conclusions We propose that in yeast, as is the case in mammalian cells, mitochondrial function and biogenesis are controlled in response to environmental change by the concerted regulation of multiple transcription factors. The visualization of cAMP/TPK3 induced cell death within yeast colonies supports a model that PKA regulation plays a physiological role in coordinating respiratory function and cell death with nutritional status in budding yeast.
Collapse
Affiliation(s)
- Jane E Leadsham
- Department of Biosciences, University of Kent, Canterbury Kent, England, UK
| | | |
Collapse
|
38
|
Shen YQ, Burger G. TESTLoc: protein subcellular localization prediction from EST data. BMC Bioinformatics 2010; 11:563. [PMID: 21078192 PMCID: PMC3000424 DOI: 10.1186/1471-2105-11-563] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 11/15/2010] [Indexed: 11/25/2022] Open
Abstract
Background The eukaryotic cell has an intricate architecture with compartments and substructures dedicated to particular biological processes. Knowing the subcellular location of proteins not only indicates how bio-processes are organized in different cellular compartments, but also contributes to unravelling the function of individual proteins. Computational localization prediction is possible based on sequence information alone, and has been successfully applied to proteins from virtually all subcellular compartments and all domains of life. However, we realized that current prediction tools do not perform well on partial protein sequences such as those inferred from Expressed Sequence Tag (EST) data, limiting the exploitation of the large and taxonomically most comprehensive body of sequence information from eukaryotes. Results We developed a new predictor, TESTLoc, suited for subcellular localization prediction of proteins based on their partial sequence conceptually translated from ESTs (EST-peptides). Support Vector Machine (SVM) is used as computational method and EST-peptides are represented by different features such as amino acid composition and physicochemical properties. When TESTLoc was applied to the most challenging test case (plant data), it yielded high accuracy (~85%). Conclusions TESTLoc is a localization prediction tool tailored for EST data. It provides a variety of models for the users to choose from, and is available for download at http://megasun.bch.umontreal.ca/~shenyq/TESTLoc/TESTLoc.html
Collapse
Affiliation(s)
- Yao-Qing Shen
- Robert-Cedergren Center for Bioinformatics and Genomics; Biochemistry Department, Université de Montréal, 2900 Edouard-Montpetit, Montreal, QC, H3T 1J4, Canada.
| | | |
Collapse
|
39
|
Sybirna K, Petryk N, Zhou YF, Sibirny A, Bolotin-Fukuhara M. A novel Hansenula polymorpha transcriptional factor HpHAP4-B, able to functionally replace the S. cerevisiae HAP4 gene, contains an additional bZip motif. Yeast 2010; 27:941-54. [DOI: 10.1002/yea.1802] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
40
|
Ocampo A, Zambrano A, Barrientos A. Suppression of polyglutamine-induced cytotoxicity in Saccharomyces cerevisiae by enhancement of mitochondrial biogenesis. FASEB J 2009; 24:1431-41. [PMID: 20008543 DOI: 10.1096/fj.09-148601] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alterations in mitochondrial metabolism have been associated with age-related neurodegenerative disorders. This is seen in diseases caused by misfolding of proteins with expanded polyglutamine (polyQ) tracts, such as Huntington's disease. Although evidence of mitochondrial impairment has been extensively documented in patients and disease models, the mechanisms involved and their relevance to the initiation of polyQ cytotoxicity and development of clinical manifestations remain controversial. We report that in yeast models of polyQ cytotoxicity, wild-type and mutant polyQ domains might associate early with the outer mitochondrial membrane. The association of mutant domains with mitochondrial membranes could contribute to induce significant changes in mitochondrial physiology, ultimately compromising the cell's ability to respire. The respiratory defect can be fully prevented by enhancing mitochondrial biogenesis by overexpression of Hap4p, the catalytic subunit of the transcriptional activator Hap2/3/4/5p complex, the master regulator of the expression of many nuclear genes encoding mitochondrial proteins in yeast. Protecting cellular respiratory capacity in this way ameliorates the effect of expanded polyQ on cellular fitness. We conclude that mitochondrial dysfunction is an important contributor to polyQ cytotoxicity. Our results suggest that therapeutic approaches enhancing mitochondrial biogenesis could reduce polyQ toxicity and delay the development of clinical symptoms in patients.
Collapse
Affiliation(s)
- Alejandro Ocampo
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
| | | | | |
Collapse
|
41
|
Mittal N, Babu MM, Roy N. The efficiency of mitochondrial electron transport chain is increased in the long-lived mrg19 Saccharomyces cerevisiae. Aging Cell 2009; 8:643-53. [PMID: 19732042 DOI: 10.1111/j.1474-9726.2009.00518.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Integrity of mitochondrial functionality is a key determinant of longevity in several organisms. In particular, reduced mitochondrial ROS (mtROS) production leading to decreased mtDNA damage is believed to be a crucial aspect of longevity. The generation of low mtROS was thought to be due to low mitochondrial oxygen consumption. However, recent studies have shown that higher mitochondrial oxygen consumption could still result in low mtROS and contribute to longevity. This increased mitochondrial efficiency (i.e. low mtROS generated despite high oxygen consumption) was explained as a result of mitochondrial biogenesis, which provides more entry points for the electrons to the electron transport chain (ETC), thereby resulting in low mtROS production. In this study, we provide evidence for the existence of an alternative pathway to explain the observed higher mitochondrial efficiency in the long-lived mrg19 mutant of Saccharomyces cerevisiae. Although we observe similar amounts of mitochondria in mrg19 and wild-type (wt) yeast, we find that mrg19 mitochondria have higher expression of ETC components per mitochondria in comparison with the wt. These findings demonstrate that more efficient mitochondria because of increased ETC per mitochondria can also produce less mtROS. Taken together, our findings provide evidence for an alternative explanation for the involvement of higher mitochondrial activity in prolonging lifespan. We anticipate that similar mechanisms might also exist in eukaryotes including human.
Collapse
Affiliation(s)
- Nitish Mittal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab, India
| | | | | |
Collapse
|
42
|
Multiple defects in the respiratory chain lead to the repression of genes encoding components of the respiratory chain and TCA cycle enzymes. J Mol Biol 2009; 387:1081-91. [PMID: 19245817 DOI: 10.1016/j.jmb.2009.02.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 02/11/2009] [Accepted: 02/16/2009] [Indexed: 12/18/2022]
Abstract
Respiratory complexes III, IV and V are formed by components of both nuclear and mitochondrial origin and are embedded in the inner mitochondrial membrane. Their assembly requires the auxiliary factor Oxa1, and the absence of this protein has severe consequences on these three major respiratory chain enzymes. We have studied, in the yeast Saccharomyces cerevisiae, the effect of the loss of Oxa1 function and of other respiratory defects on the expression of nuclear genes encoding components of the respiratory complexes and tricarboxylic acid cycle enzymes. We observed that the concomitant decrease in the level of two respiratory enzymes, complexes III and IV, led to their repression. These genes are known targets of the transcriptional activator complex Hap2/3/4/5 that plays a central role in the reprogramming of yeast metabolism when cells switch from a fermenting, glucose-repressed state to a respiring, derepressed state. We found that the Hap4 protein, the regulatory subunit of the transcriptional complex, was present at a lower level in the oxa1 mutants whereas no change in HAP4 transcript level was observed, suggesting a posttranscriptional modulation. In addition, an altered mitochondrial morphology was observed in mutants with decreased expression of Hap2/3/4/5 target genes. We suggest that the aberrant mitochondrial morphology, presumably caused by the severely decreased level of at least two respiratory enzymes, might be part of the signalling pathway linking the mitochondrial defect and Hap2/3/4/5.
Collapse
|
43
|
Glucose regulates transcription in yeast through a network of signaling pathways. Mol Syst Biol 2009; 5:245. [PMID: 19225458 PMCID: PMC2657534 DOI: 10.1038/msb.2009.2] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 01/07/2009] [Indexed: 11/08/2022] Open
Abstract
Addition of glucose to yeast cells increases their growth rate and results in a massive restructuring of their transcriptional output. We have used microarray analysis in conjunction with conditional mutations to obtain a systems view of the signaling network responsible for glucose-induced transcriptional changes. We found that several well-studied signaling pathways—such as Snf1 and Rgt—are responsible for specialized but limited responses to glucose. However, 90% of the glucose-induced changes can be recapitulated by the activation of protein kinase A (PKA) or by the induction of PKB (Sch9). Blocking signaling through Sch9 does not interfere with the glucose response, whereas blocking signaling through PKA does. We conclude that both Sch9 and PKA regulate a massive, nutrient-responsive transcriptional program promoting growth, but that they do so in response to different nutritional inputs. Moreover, activating PKA completely recapitulates the transcriptional growth program in the absence of any increase in growth or metabolism, demonstrating that activation of the growth program results solely from the cell's perception of its nutritional status.
Collapse
|
44
|
Elstner M, Andreoli C, Klopstock T, Meitinger T, Prokisch H. The mitochondrial proteome database: MitoP2. Methods Enzymol 2009; 457:3-20. [PMID: 19426859 DOI: 10.1016/s0076-6879(09)05001-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Defining the mitochondrial proteome is a prerequisite for fully understanding the organelles function as well as mechanisms underlying mitochondrial pathology. The core functions of mitochondria include oxidative phosphorylation, amino acid metabolism, fatty acid oxidation, and ion homeostasis. In addition to these well-known functions, many crucial properties in cell signaling, cell differentiation and cell death are only now being elucidated, and with them the proteins involved. With the wealth of information arriving from single protein studies and sophisticated genome-wide approaches, MitoP2 was designed and is maintained to consolidate knowledge on mitochondrial proteins in one comprehensive database, thus making all pertinent data readily accessible (http://www.mitop2.de). Although the identification of the human mitochondrial proteome is ultimately the prime objective, integration of other species includes Saccharomyces cerevisiae, mouse, Arabidopsis thaliana, and Neurospora crassa so orthology between these species can be interrogated. Data from genome-wide studies can be individually retrieved and are also processed by a support vector machine (SVM) to generate a score that indicates the likelihood of a candidate protein having a mitochondrial location. Manually validated proteins constitute the reference set of the database that contains over 590 yeast, 920 human, and 1020 mouse entries, and that is used for benchmarking the SVM score. Multiple search options allow for the interrogation of the reference set, candidates, disease related proteins, chromosome locations as well as availability of mouse models. Taken together, MitoP2 is a valuable tool for basic scientists, geneticists, and clinicians who are investigating mitochondrial physiology and dysfunction.
Collapse
Affiliation(s)
- M Elstner
- Institute of Human Genetics, Helmholtz Zentrum Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | | | | | | | | |
Collapse
|
45
|
Aiyar RS, Gagneur J, Steinmetz LM. Identification of mitochondrial disease genes through integrative analysis of multiple datasets. Methods 2008; 46:248-55. [PMID: 18930150 PMCID: PMC2774125 DOI: 10.1016/j.ymeth.2008.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 10/03/2008] [Accepted: 10/08/2008] [Indexed: 11/24/2022] Open
Abstract
Determining the genetic factors in a disease is crucial to elucidating its molecular basis. This task is challenging due to a lack of information on gene function. The integration of large-scale functional genomics data has proven to be an effective strategy to prioritize candidate disease genes. Mitochondrial disorders are a prevalent and heterogeneous class of diseases that are particularly amenable to this approach. Here we explain the application of integrative approaches to the identification of mitochondrial disease genes. We first examine various datasets that can be used to evaluate the involvement of each gene in mitochondrial function. The data integration methodology is then described, accompanied by examples of common implementations. Finally, we discuss how gene networks are constructed using integrative techniques and applied to candidate gene prioritization. Relevant public data resources are indicated. This report highlights the success and potential of data integration as well as its applicability to the search for mitochondrial disease genes.
Collapse
Affiliation(s)
- Raeka S. Aiyar
- European Molecular Biology Laboratory, Meyerhofstraβe 1, 69117 Heidelberg, Germany
| | - Julien Gagneur
- European Molecular Biology Laboratory, Meyerhofstraβe 1, 69117 Heidelberg, Germany
| | - Lars M. Steinmetz
- European Molecular Biology Laboratory, Meyerhofstraβe 1, 69117 Heidelberg, Germany
| |
Collapse
|
46
|
MitoP2: an integrative tool for the analysis of the mitochondrial proteome. Mol Biotechnol 2008; 40:306-15. [PMID: 18780189 DOI: 10.1007/s12033-008-9100-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 08/21/2008] [Indexed: 12/21/2022]
Abstract
Mitochondria are crucial for normal cell metabolism and maintenance. Mitochondrial dysfunction has been implicated in a spectrum of human diseases, ranging from rare monogenic to common multifactorial disorders. Important for the understanding of organelle function is the assignment of its constituents, and although over 1,500 proteins are predicted to be involved in mammalian mitochondrial function, so far only about 900 are assigned to mitochondria with reasonable certainty. Continuing efforts are being taken to obtain a complete inventory of the mitochondrial proteome by single protein studies and high-throughput approaches. To be of best value for the scientific community this data needs to be structured, explored, and customized. For this purpose, the MitoP2 database ( http://www.mitop2.de ) was established and is maintained in order to incorporate such data. The central database contains manually evaluated yeast, mouse, and human reference proteins, which show convincing evidence of a mitochondrial location. In addition, entries from genome-wide approaches that suggest protein localization are integrated and serve to compile a combined score for each candidate, which provides a best estimate of mitochondrial localization. Furthermore, it integrates information on the orthology between species, including Saccharomyces cerevisiae, mouse, human, Arabidopsis thaliana, and Neurospora crassa, thus mutually enhancing evidence across species. In contrast to other known databases, MitoP2 takes into account the reliability by which the protein is estimated as being mitochondrially located, as described herein. Multiple search functions, as well as information on disease causing genes and available mouse models, makes MitoP2 a valuable tool for the genetic investigation of human mitochondrial pathology.
Collapse
|
47
|
Bonander N, Ferndahl C, Mostad P, Wilks MDB, Chang C, Showe L, Gustafsson L, Larsson C, Bill RM. Transcriptome analysis of a respiratory Saccharomyces cerevisiae strain suggests the expression of its phenotype is glucose insensitive and predominantly controlled by Hap4, Cat8 and Mig1. BMC Genomics 2008; 9:365. [PMID: 18671860 PMCID: PMC2536679 DOI: 10.1186/1471-2164-9-365] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 07/31/2008] [Indexed: 01/01/2023] Open
Abstract
Background We previously described the first respiratory Saccharomyces cerevisiae strain, KOY.TM6*P, by integrating the gene encoding a chimeric hexose transporter, Tm6*, into the genome of an hxt null yeast. Subsequently we transferred this respiratory phenotype in the presence of up to 50 g/L glucose to a yeast strain, V5 hxt1-7Δ, in which only HXT1-7 had been deleted. In this study, we compared the transcriptome of the resultant strain, V5.TM6*P, with that of its wild-type parent, V5, at different glucose concentrations. Results cDNA array analyses revealed that alterations in gene expression that occur when transitioning from a respiro-fermentative (V5) to a respiratory (V5.TM6*P) strain, are very similar to those in cells undergoing a diauxic shift. We also undertook an analysis of transcription factor binding sites in our dataset by examining previously-published biological data for Hap4 (in complex with Hap2, 3, 5), Cat8 and Mig1, and used this in combination with verified binding consensus sequences to identify genes likely to be regulated by one or more of these. Of the induced genes in our dataset, 77% had binding sites for the Hap complex, with 72% having at least two. In addition, 13% were found to have a binding site for Cat8 and 21% had a binding site for Mig1. Unexpectedly, both the up- and down-regulation of many of the genes in our dataset had a clear glucose dependence in the parent V5 strain that was not present in V5.TM6*P. This indicates that the relief of glucose repression is already operable at much higher glucose concentrations than is widely accepted and suggests that glucose sensing might occur inside the cell. Conclusion Our dataset gives a remarkably complete view of the involvement of genes in the TCA cycle, glyoxylate cycle and respiratory chain in the expression of the phenotype of V5.TM6*P. Furthermore, 88% of the transcriptional response of the induced genes in our dataset can be related to the potential activities of just three proteins: Hap4, Cat8 and Mig1. Overall, our data support genetic remodelling in V5.TM6*P consistent with a respiratory metabolism which is insensitive to external glucose concentrations.
Collapse
Affiliation(s)
- Nicklas Bonander
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bonnefoy N, Fiumera HL, Dujardin G, Fox TD. Roles of Oxa1-related inner-membrane translocases in assembly of respiratory chain complexes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:60-70. [PMID: 18522806 DOI: 10.1016/j.bbamcr.2008.05.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 05/02/2008] [Accepted: 05/05/2008] [Indexed: 11/28/2022]
Abstract
Members of the family of the polytopic inner membrane proteins are related to Saccharomyces cerevisiae Oxa1 function in the assembly of energy transducing complexes of mitochondria and chloroplasts. Here we focus on the two mitochondrial members of this family, Oxa1 and Cox18, reviewing studies on their biogenesis as well as their functions, reflected in the phenotypic consequences of their absence in various organisms. In yeast, cytochrome c oxidase subunit II (Cox2) is a key substrate of these proteins. Oxa1 is required for co-translational translocation and insertion of Cox2, while Cox18 is necessary for the export of its C-terminal domain. Genetic and biochemical strategies have been used to investigate the functions of distinct domains of Oxa1 and to identify its partners in protein insertion/translocation. Recent work on the related bacterial protein YidC strongly indicates that it is capable of functioning alone as a translocase for hydrophilic domains and an insertase for TM domains. Thus, the Oxa1 and Cox18 probably catalyze these reactions directly in a co- and/or posttranslational way. In various species, Oxa1 appears to assist in the assembly of different substrate proteins, although it is still unclear how Oxa1 recognizes its substrates, and whether additional factors participate in this beyond its direct interaction with mitochondrial ribosomes, demonstrated in S. cerevisiae. Oxa1 is capable of assisting posttranslational insertion and translocation in isolated mitochondria, and Cox18 may posttranslationally translocate its only known substrate, the Cox2 C-terminal domain, in vivo. Detailed understanding of the mechanisms of action of these two proteins must await the resolution of their structure in the membrane and the development of a true in vitro mitochondrial translation system.
Collapse
Affiliation(s)
- Nathalie Bonnefoy
- Centre de Génétique Moléculaire, CNRS UPR 2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
49
|
Fontanesi F, Jin C, Tzagoloff A, Barrientos A. Transcriptional activators HAP/NF-Y rescue a cytochrome c oxidase defect in yeast and human cells. Hum Mol Genet 2008; 17:775-88. [PMID: 18045776 DOI: 10.1093/hmg/ddm349] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cell survival and energy production requires a functional mitochondrial respiratory chain. Biogenesis of cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is a very complicated process and requires the assistance of a large number of accessory factors. Defects in COX assembly alter cellular respiration and produce severe human encephalomyopathies. Mutations in SURF1, a COX assembly factor of exact unknown function, produce Leigh's syndrome (LS), the most frequent cause of COX deficiency in infants. In the yeast Saccharomyces cerevisiae, deletion of the SURF1 homologue SHY1 results in a similar COX deficiency. In order to identify genetic modifiers of the shy1 mutant phenotype, we have explored for genetic interactions involving SHY1. Here we report that overexpression of Hap4p, the catalytic subunit of the CCAAT binding transcriptional activator Hap2/3/4/5p complex, suppresses the respiratory defect of yeast shy1 mutants by increasing the expression of nuclear-encoded COX subunits that interact with the mitochondrially encoded Cox1p. Analogously, overexpression of the Hap complex human homologue NF-YA/B/C transcription complex in SURF1-deficient fibroblasts from an LS patient efficiently rescues their COX deficiency.
Collapse
Affiliation(s)
- Flavia Fontanesi
- Department of Neurology, The John T. MacDonald Foundation Center for Medical Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | |
Collapse
|
50
|
Badotti F, Dário MG, Alves SL, Cordioli MLA, Miletti LC, de Araujo PS, Stambuk BU. Switching the mode of sucrose utilization by Saccharomyces cerevisiae. Microb Cell Fact 2008; 7:4. [PMID: 18304329 PMCID: PMC2268662 DOI: 10.1186/1475-2859-7-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Accepted: 02/27/2008] [Indexed: 11/17/2022] Open
Abstract
Background Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L) initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. Results We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Conclusion Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by effectively reducing sucrose uptake by the yeast cells, avoiding overflow metabolism, with the concomitant reduction in ethanol production. The use of this modified yeast strain in simpler batch culture mode can be a viable option to more complicated traditional sucrose-limited fed-batch cultures for biomass-directed processes of S. cerevisiae.
Collapse
Affiliation(s)
- Fernanda Badotti
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | | | | | | | | | | | | |
Collapse
|