1
|
Choi JH, Lim YS, Kim MK, Bae SH. Analyses of DNA double-strand break repair pathways in tandem arrays of HXT genes of Saccharomyces cerevisiae. J Microbiol 2020; 58:957-966. [PMID: 33125670 DOI: 10.1007/s12275-020-0461-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 01/02/2023]
Abstract
Eukaryotic genomes contain numerous homologous repeat sequences including redundant genes with divergent homology that can be potential recombination targets. Recombination between divergent sequences is rare but poses a substantial threat to genome stability. The hexose transporter (HXT) gene family shares high sequence similarities at both protein and DNA levels, and some members are placed close together in tandem arrays. In this study, we show that spontaneous interstitial deletions occur at significantly high rates in HXT gene clusters, resulting in chimeric HXT sequences that contain a single junction point. We also observed that DNA double-strand breaks created between HXT genes produce primarily interstitial deletions, whereas internal cleavage of the HXT gene resulted in gene conversions as well as deletion products. Interestingly, interstitial deletions were less constrained by sequence divergence than gene conversion. Moreover, recombination-defective mutations differentially affected the survival frequency. Mutations that impair single-strand annealing (SSA) pathway greatly reduced the survival frequency by 10-1,000-fold, whereas disruption of Rad51-dependent homologous recombination exhibited only modest reduction. Our results indicate that recombination in the tandemly repeated HXT genes occurs primarily via SSA pathway.
Collapse
Affiliation(s)
- Ju-Hee Choi
- Department of Biological Sciences, College of Natural Science, Inha University, Incheon, 22212, Republic of Korea
| | - Ye-Seul Lim
- Department of Biological Sciences, College of Natural Science, Inha University, Incheon, 22212, Republic of Korea
| | - Min-Ku Kim
- Department of Biological Sciences, College of Natural Science, Inha University, Incheon, 22212, Republic of Korea
| | - Sung-Ho Bae
- Department of Biological Sciences, College of Natural Science, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
2
|
Copper metabolism in Saccharomyces cerevisiae: an update. Biometals 2020; 34:3-14. [PMID: 33128172 DOI: 10.1007/s10534-020-00264-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/23/2020] [Indexed: 02/05/2023]
Abstract
Copper is an essential element in all forms of life. It acts as a cofactor of some enzymes and is involved in forming proper protein conformations. However, excess copper ions in cells are detrimental as they can generate free radicals or disrupt protein structures. Therefore, all life forms have evolved conserved and exquisite copper metabolic systems to maintain copper homeostasis. The yeast Saccharomyces cerevisiae has been widely used to investigate copper metabolism as it is convenient for this purpose. In this review, we summarize the mechanism of copper metabolism in Saccharomyces cerevisiae according to the latest literature. In brief, bioavailable copper ions are incorporated into yeast cells mainly via the high-affinity transporters Ctr1 and Ctr3. Then, intracellular Cu+ ions are delivered to different organelles or cuproproteins by different chaperones, including Ccs1, Atx1, and Cox17. Excess copper ions bind to glutathione (GSH), metallothioneins, and copper complexes are sequestered into vacuoles to avoid toxicity. Copper-sensing transcription factors Ace1 and Mac1 regulate the expression of genes involved in copper detoxification and uptake/mobilization in response to changes in intracellular copper levels. Though numerous recent breakthroughs in understanding yeast's copper metabolism have been achieved, some issues remain unresolved. Completely elucidating the mechanism of copper metabolism in yeast helps decode the corresponding system in humans and understand how copper-related diseases develop.
Collapse
|
3
|
Timouma S, Schwartz JM, Delneri D. HybridMine: A Pipeline for Allele Inheritance and Gene Copy Number Prediction in Hybrid Genomes and Its Application to Industrial Yeasts. Microorganisms 2020; 8:microorganisms8101554. [PMID: 33050146 PMCID: PMC7600756 DOI: 10.3390/microorganisms8101554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/17/2020] [Accepted: 09/26/2020] [Indexed: 12/31/2022] Open
Abstract
Genome-scale computational approaches are opening opportunities to model and predict favorable combination of traits for strain development. However, mining the genome of complex hybrids is not currently an easy task, due to the high level of redundancy and presence of homologous. For example, Saccharomyces pastorianus is an allopolyploid sterile yeast hybrid used in brewing to produce lager-style beers. The development of new yeast strains with valuable industrial traits such as improved maltose utilization or balanced flavor profiles are now a major ambition and challenge in craft brewing and distilling industries. Moreover, no genome annotation for most of these industrial strains have been published. Here, we developed HybridMine, a new user-friendly, open-source tool for functional annotation of hybrid aneuploid genomes of any species by predicting parental alleles including paralogs. Our benchmark studies showed that HybridMine produced biologically accurate results for hybrid genomes compared to other well-established software. As proof of principle, we carried out a comprehensive structural and functional annotation of complex yeast hybrids to enable system biology prediction studies. HybridMine is developed in Python, Perl, and Bash programming languages and is available in GitHub.
Collapse
Affiliation(s)
- Soukaina Timouma
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, University of Manchester, M1 7DN Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, M13 9PT Manchester, UK
- Correspondence: (S.T.); (J.-M.S.); (D.D.)
| | - Jean-Marc Schwartz
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, M13 9PT Manchester, UK
- Correspondence: (S.T.); (J.-M.S.); (D.D.)
| | - Daniela Delneri
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, University of Manchester, M1 7DN Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, M13 9PT Manchester, UK
- Correspondence: (S.T.); (J.-M.S.); (D.D.)
| |
Collapse
|
4
|
Bu L, Katju V. Early evolutionary history and genomic features of gene duplicates in the human genome. BMC Genomics 2015; 16:621. [PMID: 26290067 PMCID: PMC4546093 DOI: 10.1186/s12864-015-1827-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 08/07/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human gene duplicates have been the focus of intense research since the development of array-based and targeted next-generation sequencing approaches in the last decade. These studies have primarily concentrated on determining the extant copy-number variation from a population-genomic perspective but lack a robust evolutionary framework to elucidate the early structural and genomic characteristics of gene duplicates at emergence and their subsequent evolution with increasing age. RESULTS We analyzed 184 gene duplicate pairs comprising small gene families in the draft human genome with 10% or less synonymous sequence divergence. Human gene duplicates primarily originate from DNA-mediated events, taking up genomic residence as intrachromosomal copies in direct or inverse orientation. The distribution of paralogs on autosomes follows random expectations in contrast to their significant enrichment on the sex chromosomes. Furthermore, human gene duplicates exhibit a skewed gradient of distribution along the chromosomal length with significant clustering in pericentromeric regions. Surprisingly, despite the large average length of human genes, the majority of extant duplicates (83%) are complete duplicates, wherein the entire ORF of the ancestral copy was duplicated. The preponderance of complete duplicates is in accord with an extremely large median duplication span of 36 kb, which enhances the probability of capturing ancestral ORFs in their entirety. With increasing evolutionary age, human paralogs exhibit declines in (i) the frequency of intrachromosomal paralogs, and (ii) the proportion of complete duplicates. These changes may reflect lower survival rates of certain classes of duplicates and/or the role of purifying selection. Duplications arising from RNA-mediated events comprise a small fraction (11.4%) of all human paralogs and are more numerous in older evolutionary cohorts of duplicates. CONCLUSIONS The degree of structural resemblance, genomic location and duplication span appear to influence the long-term maintenance of paralogs in the human genome. The median duplication span in the human genome far exceeds that in C. elegans and yeast and likely contributes to the high prevalence of complete duplicates relative to structurally heterogeneous duplicates (partial and chimeric). The relative roles of regulatory sequence versus exon-intron structure changes in the acquisition of novel function by human paralogs remains to be determined.
Collapse
Affiliation(s)
- Lijing Bu
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Vaishali Katju
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA. .,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, TX, 77843-4458, USA.
| |
Collapse
|
5
|
Adler M, Anjum M, Berg OG, Andersson DI, Sandegren L. High fitness costs and instability of gene duplications reduce rates of evolution of new genes by duplication-divergence mechanisms. Mol Biol Evol 2014; 31:1526-35. [PMID: 24659815 DOI: 10.1093/molbev/msu111] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An important mechanism for generation of new genes is by duplication-divergence of existing genes. Duplication-divergence includes several different submodels, such as subfunctionalization where after accumulation of neutral mutations the original function is distributed between two partially functional and complementary genes, and neofunctionalization where a new function evolves in one of the duplicated copies while the old function is maintained in another copy. The likelihood of these mechanisms depends on the longevity of the duplicated state, which in turn depends on the fitness cost and genetic stability of the duplications. Here, we determined the fitness cost and stability of defined gene duplications/amplifications on a low copy number plasmid. Our experimental results show that the costs of carrying extra gene copies are substantial and that each additional kilo base pairs of DNA reduces fitness by approximately 0.15%. Furthermore, gene amplifications are highly unstable and rapidly segregate to lower copy numbers in absence of selection. Mathematical modeling shows that the fitness costs and instability strongly reduces the likelihood of both sub- and neofunctionalization, but that these effects can be offset by positive selection for novel beneficial functions.
Collapse
Affiliation(s)
- Marlen Adler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mehreen Anjum
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Otto G Berg
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Linus Sandegren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Katju V, Bergthorsson U. Copy-number changes in evolution: rates, fitness effects and adaptive significance. Front Genet 2013; 4:273. [PMID: 24368910 PMCID: PMC3857721 DOI: 10.3389/fgene.2013.00273] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/18/2013] [Indexed: 11/13/2022] Open
Abstract
Gene copy-number differences due to gene duplications and deletions are rampant in natural populations and play a crucial role in the evolution of genome complexity. Per-locus analyses of gene duplication rates in the pre-genomic era revealed that gene duplication rates are much higher than the per nucleotide substitution rate. Analyses of gene duplication and deletion rates in mutation accumulation lines of model organisms have revealed that these high rates of copy-number mutations occur at a genome-wide scale. Furthermore, comparisons of the spontaneous duplication and deletion rates to copy-number polymorphism data and bioinformatic-based estimates of duplication rates from sequenced genomes suggest that the vast majority of gene duplications are detrimental and removed by natural selection. The rate at which new gene copies appear in populations greatly influences their evolutionary dynamics and standing gene copy-number variation in populations. The opportunity for mutations that result in the maintenance of duplicate copies, either through neofunctionalization or subfunctionalization, also depends on the equilibrium frequency of additional gene copies in the population, and hence on the spontaneous gene duplication (and loss) rate. The duplication rate may therefore have profound effects on the role of adaptation in the evolution of duplicated genes as well as important consequences for the evolutionary potential of organisms. We further discuss the broad ramifications of this standing gene copy-number variation on fitness and adaptive potential from a population-genetic and genome-wide perspective.
Collapse
Affiliation(s)
- Vaishali Katju
- Department of Biology, University of New Mexico Albuquerque, NM, USA
| | | |
Collapse
|
7
|
Katju V. In with the old, in with the new: the promiscuity of the duplication process engenders diverse pathways for novel gene creation. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:341932. [PMID: 23008799 PMCID: PMC3449122 DOI: 10.1155/2012/341932] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/03/2012] [Indexed: 01/26/2023]
Abstract
The gene duplication process has exhibited far greater promiscuity in the creation of paralogs with novel exon-intron structures than anticipated even by Ohno. In this paper I explore the history of the field, from the neo-Darwinian synthesis through Ohno's formulation of the canonical model for the evolution of gene duplicates and culminating in the present genomic era. I delineate the major tenets of Ohno's model and discuss its failure to encapsulate the full complexity of the duplication process as revealed in the era of genomics. I discuss the diverse classes of paralogs originating from both DNA- and RNA-mediated duplication events and their evolutionary potential for assuming radically altered functions, as well as the degree to which they can function unconstrained from the pressure of gene conversion. Lastly, I explore theoretical population-genetic considerations of how the effective population size (N(e)) of a species may influence the probability of emergence of genes with radically altered functions.
Collapse
Affiliation(s)
- Vaishali Katju
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
8
|
Bu L, Bergthorsson U, Katju V. Local synteny and codon usage contribute to asymmetric sequence divergence of Saccharomyces cerevisiae gene duplicates. BMC Evol Biol 2011; 11:279. [PMID: 21955875 PMCID: PMC3190396 DOI: 10.1186/1471-2148-11-279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 09/28/2011] [Indexed: 11/10/2022] Open
Abstract
Background Duplicated genes frequently experience asymmetric rates of sequence evolution. Relaxed selective constraints and positive selection have both been invoked to explain the observation that one paralog within a gene-duplicate pair exhibits an accelerated rate of sequence evolution. In the majority of studies where asymmetric divergence has been established, there is no indication as to which gene copy, ancestral or derived, is evolving more rapidly. In this study we investigated the effect of local synteny (gene-neighborhood conservation) and codon usage on the sequence evolution of gene duplicates in the S. cerevisiae genome. We further distinguish the gene duplicates into those that originated from a whole-genome duplication (WGD) event (ohnologs) versus small-scale duplications (SSD) to determine if there exist any differences in their patterns of sequence evolution. Results For SSD pairs, the derived copy evolves faster than the ancestral copy. However, there is no relationship between rate asymmetry and synteny conservation (ancestral-like versus derived-like) in ohnologs. mRNA abundance and optimal codon usage as measured by the CAI is lower in the derived SSD copies relative to ancestral paralogs. Moreover, in the case of ohnologs, the faster-evolving copy has lower CAI and lowered expression. Conclusions Together, these results suggest that relaxation of selection for codon usage and gene expression contribute to rate asymmetry in the evolution of duplicated genes and that in SSD pairs, the relaxation of selection stems from the loss of ancestral regulatory information in the derived copy.
Collapse
Affiliation(s)
- Lijing Bu
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
9
|
Rogers RL, Hartl DL. Chimeric genes as a source of rapid evolution in Drosophila melanogaster. Mol Biol Evol 2011; 29:517-29. [PMID: 21771717 DOI: 10.1093/molbev/msr184] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chimeric genes form through the combination of portions of existing coding sequences to create a new open reading frame. These new genes can create novel protein structures that are likely to serve as a strong source of novelty upon which selection can act. We have identified 14 chimeric genes that formed through DNA-level mutations in Drosophila melanogaster, and we investigate expression profiles, domain structures, and population genetics for each of these genes to examine their potential to effect adaptive evolution. We find that chimeric gene formation commonly produces mid-domain breaks and unites portions of wholly unrelated peptides, creating novel protein structures that are entirely distinct from other constructs in the genome. These new genes are often involved in selective sweeps. We further find a disparity between chimeric genes that have recently formed and swept to fixation versus chimeric genes that have been preserved over long periods of time, suggesting that preservation and adaptation are distinct processes. Finally, we demonstrate that chimeric gene formation can produce qualitative expression changes that are difficult to mimic through duplicate gene formation, and that extremely young chimeric genes (d(S) < 0.03) are more likely to be associated with selective sweeps than duplicate genes of the same age. Hence, chimeric genes can serve as an exceptional source of genetic novelty that can have a profound influence on adaptive evolution in D. melanogaster.
Collapse
Affiliation(s)
- Rebekah L Rogers
- Department of Organismic and Evolutionary Biology, Harvard University, USA.
| | | |
Collapse
|
10
|
Capra JA, Pollard KS, Singh M. Novel genes exhibit distinct patterns of function acquisition and network integration. Genome Biol 2010; 11:R127. [PMID: 21187012 PMCID: PMC3046487 DOI: 10.1186/gb-2010-11-12-r127] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 11/18/2010] [Accepted: 12/27/2010] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Genes are created by a variety of evolutionary processes, some of which generate duplicate copies of an entire gene, while others rearrange pre-existing genetic elements or co-opt previously non-coding sequence to create genes with 'novel' sequences. These novel genes are thought to contribute to distinct phenotypes that distinguish organisms. The creation, evolution, and function of duplicated genes are well-studied; however, the genesis and early evolution of novel genes are not well-characterized. We developed a computational approach to investigate these issues by integrating genome-wide comparative phylogenetic analysis with functional and interaction data derived from small-scale and high-throughput experiments. RESULTS We examine the function and evolution of new genes in the yeast Saccharomyces cerevisiae. We observed significant differences in the functional attributes and interactions of genes created at different times and by different mechanisms. Novel genes are initially less integrated into cellular networks than duplicate genes, but they appear to gain functions and interactions more quickly than duplicates. Recently created duplicated genes show evidence of adapting existing functions to environmental changes, while young novel genes do not exhibit enrichment for any particular functions. Finally, we found a significant preference for genes to interact with other genes of similar age and origin. CONCLUSIONS Our results suggest a strong relationship between how and when genes are created and the roles they play in the cell. Overall, genes tend to become more integrated into the functional networks of the cell with time, but the dynamics of this process differ significantly between duplicate and novel genes.
Collapse
Affiliation(s)
- John A Capra
- Gladstone Institutes, University of California, San Francisco, 1650 Owens St, San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
11
|
Nacher J, Hayashida M, Akutsu T. The role of internal duplication in the evolution of multi-domain proteins. Biosystems 2010; 101:127-35. [DOI: 10.1016/j.biosystems.2010.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 11/30/2022]
|
12
|
Vinci CR, Clarke SG. Homocysteine methyltransferases Mht1 and Sam4 prevent the accumulation of age-damaged (R,S)-AdoMet in the yeast Saccharomyces cerevisiae. J Biol Chem 2010; 285:20526-31. [PMID: 20421295 DOI: 10.1074/jbc.m110.113076] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biological methyl donor S-adenosyl-l-methionine (AdoMet) is spontaneously degraded by inversion of its sulfonium center to form the R,S diastereomer. Unlike its precursor, (S,S)-AdoMet, (R,S)-AdoMet has no known cellular function and may have some toxicity. Although the rate of (R,S)-AdoMet formation under physiological conditions is significant, it has not been detected at substantial levels in vivo in a wide range of organisms. These observations imply that there are mechanisms that either dispose of (R,S)-AdoMet or convert it back to (S,S)-AdoMet. Previously, we identified two homocysteine methyltransferases (Mht1 and Sam4) in yeast capable of recognizing and metabolizing (R,S)-AdoMet. We found similar activities in worms, plants, and flies. However, it was not established whether these activities could prevent R,S accumulation. In this work, we show that both the Mht1 and Sam4 enzymes are capable of preventing R,S accumulation in Saccharomyces cerevisiae grown to stationary phase; deletion of both genes results in significant (R,S)-AdoMet accumulation. To our knowledge, this is the first time that such an accumulation of (R,S)-AdoMet has been reported in any organism. We show that yeast cells can take up (R,S)-AdoMet from the medium using the same transporter (Sam3) used to import (S,S)-AdoMet. Our results suggest that yeast cells have evolved efficient mechanisms not only for dealing with the spontaneous intracellular generation of the (R,S)-AdoMet degradation product but for utilizing environmental sources as a nutrient.
Collapse
Affiliation(s)
- Chris R Vinci
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, CA 90095-1569, USA
| | | |
Collapse
|